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Abstract

We treat the problem of searching for hidden multi-
dimensional independent auto-regressive processes. First,
we transform the problem to Independent Subspace Anal-
ysis (ISA). Our main contribution concerns ISA. We show
that under certain conditions, ISA is equivalent to a combi-
natorial optimization problem. For the solution of this op-
timization we apply the cross-entropy method. Numerical
simulations indicate that the cross-entropy method can pro-
vide considerable improvements over other state-of-the-art
methods.

1. The IPA Model

1.1 The IPA Equations

THE IPA (Independent Process Analysis) model is

sm(t + 1) = Fmsm(t) + em(t), m = 1, . . . , M (1)
z(t) = As(t). (2)

Here: the unknown mixing matrix A ∈ RD×D, the hidden
components sm ∈ Rd, and s(t) := [s1(t); . . . ; sM (t)] ∈ RD.
Goal of IPA: estimate s(t) and A (or W := A−1: separa-
tion matrix) by using observations z(t) only. Specially: (i)
ISA (∀Fm = 0), (ii) Independent Component Analysis (ICA),
when ∀Fm = 0 and d = 1.

1.2 Assumptions
• em(t) is i.i.d. in t, ei(t) is independent from ej(t), if i 6= j

•Fms correspond to stable AR processes
•A: invertible
•whitened noise process e(t) and orthogonal A [without

loss of generality (invertible A, innovation trick)], that is

E[e(t)] = 0, E
[
e(t)e(t)T

]
= ID, ∀t, (3)

ID = AAT . (4)

1.3 Uncertainties of the IPA Model
• IPA identification ambiguities, alike to ICA and ISA

• IPA
innovation trick [1, 2, 3]−−−−−−−−−−−−−−−→ ISA, where the innovation of a

stochastic process u(t) is

ũ(t) := u(t)− E[u(t)|u(t− 1),u(t− 2), . . .]. (5)

For an AR process, the innovation is identical to
the noise that drives the process ⇒ IPA model
[F := blockdiag(F1, . . . ,FM )]:

s(t + 1) = Fs(t) + e(t), (6)
z(t) = AFA−1z(t− 1) + Ae(t− 1), (7)
z̃(t) = Ae(t− 1) = As̃(t). (8)

•Concerning the ISA task, if s and z are white, then
– lessened ISA ambiguities: (i) permutation of the

components, (i) orthogonal transformation within sub-
spaces,

– W is orthogonal.
Identification ambiguities of the ISA task are detailed in [4].

2. The ISA Separation Theorem

ISA task ⇔ minimization of mutual information between the
components ⇔

J(W) :=

M∑

m=1

H(ym) −→ min
W∈RD×D: orthogonal

(9)

Here, (i) y = Wz =
[
y1; . . . ;yM

]
, ym are the estimated

components and (ii) H is Shannon’s (multi-dimensional) dif-
ferential entropy. Our main result:
Theorem 1 (Separation theorem for ISA) Let us sup-
pose, that all the u = [u1; . . . ; ud] = sm components of
source s in the ISA task satisfy
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i=1
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d∑

i=1
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iH (ui) ,∀w :

d∑

i=1

w2
i = 1. (10)

Assuming that WICA(z) is unique (up to permutation and
sign of the components), then it is WISA(z) (up to permuta-
tion and sign of the components). In other words

WISA = PWICA, (11)

where P
(
∈ RD×D

)
is a permutation matrix to be deter-

mined. (Proof in [5], e.g., for elliptically symmetric sources)

⇒ IPA estimation steps:
1. observe z(t) and estimate the AR model,
2. whiten the innovation of the AR process and perform ICA

on it,
3. solve the combinatorial problem: search for the permuta-

tion of the ICA sources that minimizes the cost J .
Thus IPA needs only two (more) steps: (i) Ĥ, and (ii) opti-
mization of J in SD (permutations of length D).

3. Assistants

3.1 Multi-dimensional Entropy Estimation by
the k-nearest Neighbor Method
Entropy estimation (similar to [3]) based on k-nearest neigh-
bors [6, 7]: asymptotically unbiased and strongly consistent
[6]. Basic idea:

Ĥ({u1, . . . ,uT}, k, γ)
T→∞−−−−→ Hα(u) + c, (12)

Hα(u)
α→1 (γ→0)−−−−−−−−−→ H(u), (13)

where (i) u(1), . . . ,u(T ) is an i.i.d. sample from the distri-
bution of u ∈ Rd, (ii) Hα denotes Rényi’s α-entropy and (iii)
α := d−γ

d . [3]: (i) only IPA algorithm at present (to our best
knowledge), (ii) Jacobi rotations for pairs, after ICA prepro-
cessing (ICA-Jacobi).

3.2 Cross-Entropy Method for Combinatorial
Optimization
For permutation search (P) CE [8] technique, cost function

J : x ∈ SD → J(PxWICA), (14)

where Px is the permutation matrix associated to x.
Our method is similar to the Travelling Salesman Problem
(TSP) solved by CE: travel cost ↔ J(x)} ⇒ ICA-TSP.

4. Numerical Studies

4.1 Databases
Four databases (as the innovation of the hidden pro-
cesses), three in Fig. 1, the fourth:
• uniform ui(t) coordinates (i = 1, . . . , k) on {0, . . . , k − 1},
• uk+1 := mod(u1 + . . . + uk, k).
⇒ every k-element subset of {u1, . . . , uk+1} is made of in-
dependent variables; all-k-independent problem [9], in our
simulations M = 5 and d = k + 1 = 4.

...
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Figure 1: 3 test databases: densities of em. Each
object represents a probability density. Left: num-
bers: 10× 2 = 20-dimensional problem, uniform distribu-
tion on the images of numbers. Middle: 3D-geom:
6× 3 = 18-dimensional problem, uniform distribution on
3-dimensional geometric objects. Right: smiley: 6 basic
facial expressions [10], non-uniform distribution defined in
2 dimensions, 6× 2 = 12-dimensional problem.

In the test examples:
• entropy estimation: k = 3, γ = 0.01

• dimensions: D = 12, 18, 20 and d = 2, 3, 4

• sample number: T = 300, 400, . . . , 1500

•measure of goodness: normalized Amari-distance (r,
average of 10 computer runs) → measure of block-
permutation property.
That is, for matrix B ∈ RD×D: (i) 0 ≤ r(B) ≤ 1, and (ii)
r(B) = 0 ⇔ B is a block-permutation matrix with d × d
sized blocks (⇔ 0 for optimal IPA estimation: B := WA).

4.2 Results and Discussion
• ICA-Jacobi: exhaustive search for all Jacobi pairs with 50

angles in [0, π/2] several times until convergence
• Still, ICA-TSP is superior in all of the studied examples.
•Quantitative results in Table 1, innovations estimated by

the ICA-TSP method on facial expressions in Fig. 2.
•Greedy ICA-Jacobi method seems to be similar or some-

times inferior to the global ICA-TSP, in spite of the much
smaller search space available for the latter.
• Simulations indicate that conditions of the ‘Separation

Theorem’ may be too restrictive.

•Non-combinatorial IPA approach (based on the Separa-
tion Theorem) in [11].
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Figure 2: Mean±standard deviation of r(T ) (upper row).
Gray: ICA-Jacobi, black: ICA-TSP. In the lower row, black:
relative precision of estimation, dashed: average over the
different sample numbers. Columns from left to right cor-
respond to databases ‘numbers’, ‘3D-geom’, ‘smiley’, ‘all-3-
independent’, respectively.

Table 1: Average normalized Amari-errors (in 100 · r%±
standard deviation, for T = 1500) and precision of the
ICA-TSP relative to that of ICA-Jacobi in sample domain
300− 1500.

Database ICA-Jacobi ICA-TSP Improvement
(min-mean-max)

numbers 3.06% (±0.22) 2.40% (±0.11) 1.03 - 1.30 - 1.54
3D-geom 1.99% (±0.17) 1.69% (±0.10) 1.09 - 1.20 - 1.50

smiley 5.26% (±2.76) 3.44% (±0.36) 1.16 - 1.43 - 1.92
all-3-indep. 30.05% (±17.90) 4.31% (±5.61) 1.96 - 5.18 -11.12

Figure 3: Illustration of the ICA-TSP algorithm on the ‘smi-
ley’ database. Upper row: density function of the sources
(using 106 data points). Middle row: 1,500 samples of
the observed mixed signals (z(t)). The ICA-TSP algorithm
works on these data. Lower row: Estimated separated
sources (recovered up to permutation and orthogonal trans-
formation).
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