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K-Independent Subspace Analysis (K-ISA)

Cocktail party problem: groups of people / music bands

ISA nicknames: MICA, group ICA, IVA

K ∈{R,C }
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K-ISA Equations

Observation z is mixture of independent components:

z(t) = As(t),

s(t) = [s1(t); . . . ; sM(t)],

where

sm(t) ∈ K
dm are i.i.d. sampled random variables in time,

si is independent of sj , if i 6= j ,

mixing matrix A ∈ R
D×D is invertible, with D := dim(s).

Goal: ŝ. Specially for ∀dm = 1: R-ICA, C-ICA.
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Ambiguities of the K-ISA Model

Hidden components can (only) be determined up to

permutation, and

invertible linear transformation within subspaces.

Whitening assumption:

E [s] = 0, cov [s] = ID,

E [z] = 0, cov [z] = ID.︸ ︷︷ ︸

⇓

Lessened ambiguities: invertible → orthogonal (R) / unitary(C).
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f-uncorrelatedness

Whitening ⇔ second order uncorrelatedness

Our approach: independence is approximated as
uncorrelatedness for a „lot of functions” (for ∀f ∈ F)
Formally,

1 Estimation of the hidden source in feedforward architecture:

y(t) = Wz(t).

2 f-covariance matrix is estimated empirically, after applying a
function f(∈ F):

C(f, T ) = ĉov [f(y), f(y)],

3 Cost function for W to make the blocks zero in C(f, T ) out of
the block-diagonal, for all f ∈ F.
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Cost for ISA Based on Joint f-decorrelation

Cost function for ISA:

J(F, T , W) :=
∑

f∈F

‖M ◦ C(f, T , W)‖2 → min
W:orthogonal

,

where M picks out the f-covariance of different subspaces.

J should be minimized to solve the ISA problem.

Too difficult: optimization on the Stiefel / flag manifold
[Nishimori et al., 2006]!

⇓

Reduce the task further.
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The K-ISA Separation Theorem

Essence:

K-ISA = K-ICA + permutation search (with K-ISA cost).

Formally,

Theorem

Let H denote Shannon’s differential entropy. Let us suppose
that the u := sm components in K-ISA satisfy

H

(
d∑

i=1

wiui

)
≥

d∑

i=1

|wi |
2H(ui), ∀ ‖w‖

K
= 1

then WISA = PWICA with a P ∈ R
D×D permutation matrix.

References: [Cardoso, 1998], [Szabó et al., 2006a].
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Simulations

Test databases (can be scaled in d)
d-geom (M = 4):

d-spherical (M = 3):

Performance measure: normalized Amari-error r ∈ [0, 1].
Measures block permutation property of WA.
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Results-1: d-geom
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Results-2: d-spherical
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Connection to Other Techniques (d = 1)

Alike to KC (kernel covariance) we use a function set F

[Gretton et al., 2003].
For F = {f}:

f-decorrelation is equivalent to minimization the cost

0 ≤ QW (f, T ) := −
1
2

log

{
det[C(f, T )]

∏M
m=1 det[Cm,m(f, T )]

}
.

This is right the cost function of KGV (kernel generalized
variance) [Bach and Jordan, 2002].
With RNN architecture (instead of feedforward), K = R

gives rise to self-organization (⇐ gradient)
[Meyer-Bäse et al., 2006].
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Summary

Presented K-ISA method: joint decorrelation on function
set F:

with feedforward architecture:
Reduction using the K-ISA Separation Theorem

K-ISA = K-ICA + permutation search (with K-ISA cost)
⇔ KGV for F = {f}.

with recurrent architecture: self-organization.

First step toward large scale problems:
few hundred dimensions,
„power law” decrease of estimation error.
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Thank you for the paying attention!
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