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ABSTRACT

In this paper we extend Independent Component Analysis
(ICA) task to controlled dynamical systems. To our best
knowledge this is the first work that considers the con-
trol task in this field, which may open the door for ex-
tended ICA applications. We treat Independent Subspace
Analysis (ISA) task, the multidimensional generalization
of ICA. In particular, we consider the identification prob-
lem of ARX models, i.e., hidden AutoRegressive dynam-
ical systems subject to eXogenous control inputs. In our
case, these ARX models are driven by independent mul-
tidimensional noise processes. The goal is the estimation
of the hidden variables, that is, the parameters of the sys-
tem and the driving noise. We aim efficient estimation by
choosing suitable control values. For the optimal choice
of the control we adapt the D-optimality principle, also
known as ‘InfoMax method’. To this end, we decouple
the problem into a fully observable one and an ISA task.
We solve the two problems and join the results to estimate
the hidden variables. Numerical examples illustrate the
efficiency of our method.

Keywords: D-optimal design, ARX models, indepen-
dent subspace analysis, separation principle

1 INTRODUCTION

Our goal is to connect independent component analysis
and a novel result, the D-optimal identification of dynam-
ical systems.

One can think of independent compo-
nent/subspace/process analysis (ICA-Independent
Component Analysis [3, 4], ISA-Independent Subspace
Analysis [2], IPA-Independent Process Analysis [8])
by considering the cocktail-party problem, where we
haveM pieces of independent sources or source groups
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(s = [s1, . . . ; sM ]), but although we observe their mixture
only, which in the simplest ICA/ISA case means that
we observex = As, we still would like to recover the
original s sources. The ICA task and its extensions have
been successfully applied on a number of fields, includ-
ing: (i) denoising, (ii) analysis of biomedical- (EEG,
fMRI, MEG, ECG) and financial data, (iii) recognition of
face- and facial pose, (iv) gene analysis, (v) processing
of radar/sonar data, (vi) optics, (vii) seismic exploration.
The ICA problem family allows for hidden variables but
makes no reference to control.

It has been shown in a recent work [6] that the param-
eters and the driving noise of controlled dynamical sys-
tems (ARX models: AutoRegressive process with eXoge-
nous inputs) can be efficiently estimated by means of D-
optimality principles. This theory, which allows control
variables, has been formulated only for the fully observ-
able case. By contrast, the ICA/ISA/IPA problem family
can model hidden independent variables, but can not ac-
count for control. We unify these directions: we treat D-
optimal identification parameter and noise estimation of
controlled hidden dynamical systems driven by indepen-
dent sources. We solve the problem by decoupling it into
a fully observable task and an ISA problem. Our method
may offer important extension possibilities for ICA appli-
cations.

In Section 2 we review the D-optimal identification
of fully observed ARX models. The ARX-IPA model of
hidden processes is introduced in Section 3. Our solution
technique for the ARX-IPA task is derived in Section 4.
Illustrations are provided in Section 5.

2 D-OPTIMAL IDENTIFICATION OF
ARX MODELS

We sketch the basic thoughts that lead to D-optimal iden-
tification of ARX models. The dynamical system is fully
observed and evolves according to the ARX equation

st+1 =
I−1
∑

i=0

Fist−i +
J−1
∑

j=0

Bjut+1−j + et+1, (1)

where (i) s ∈ RDs , e ∈ RDe (Ds = De) represent
the state of the system and the noise, respectively, (ii)
u ∈ RDu represents the control variables, and (iii) poly-
nomial matrixFAR[z] := I −

∑I−1

i=0
Fiz

i+1 (given by



matricesFi ∈ RDs×Ds and identity matrixI) is sta-
ble, that isdet(FAR[z]) 6= 0, for all z ∈ C, |z| ≤ 1.
Our task is the efficient estimation of parametersΘ =
[F0, . . . ,FI−1,B0, . . . ,BJ−1] that determine the dynam-
ics and noisee that drives the process by the ‘optimal
choice’ of control valuesu. Formally, D-optimality aims
to maximize one of the two objectives

Jpar(ut+1) := I(Θ, st+1|st, st−1, . . . ,ut+1,ut, . . .),

Jnoise(ut+1) := I(et+1, st+1|st, st−1, . . . ,ut+1,ut, . . .)

for ut+1 ∈ U . In other words, we choose control value
u from the achievable domainU such that it maximizes
the mutual information between the next observation and
the parameters (or the driving noise) of the system. It
can be shown [6], that if (i)Θ has matrix Gaussian, (ii)
e has Gaussian, and covariance matrix ofe has inverted
Wishart distributions, then in the Bayesian setting, max-
imization of theJ objectives can be reduced to the solu-
tion of a quadratic programming task, priors ofΘ ande

remain in their supposed distribution family and undergo
simple updating. The considerations allow for control, but
assume full observability about the state variables. Now,
we extend the method to hidden variables in the ARX-IPA
model of the next section.

3 THE ARX-IPA MODEL

In the ARX-IPA model we assume that states of the sys-
tem can not be observed directly, but its linear and un-
known mixture (x) is available for observation:

st+1 =
I−1
∑

i=0

Fist−i +
J−1
∑

j=0

Bjut+1−j + et+1, (2)

xt = Ast. (3)

We assume for thecomponents of e = [e1; . . . ; eM ] ∈
RDe e

m ∈ Rdm that at most one of them may be Gaus-
sian, their temporal distributions are i.i.d. (independent
identically distributed), andI(e1; . . . ; eM ) = 0, that is,
they satisfy the conditions of the ISA problem. Our task
is to estimate the unknown invertible mixing matrixA ∈
RDs×Ds , parameters[F0, . . . ,FI−1,B0, . . . ,BJ−1], s

ande by means of observationsx only.

4 IDENTIFICATION METHOD FOR
ARX-IPA

There is a so-calledISA separation principle for the ISA
task conjectured by Cardoso [2]. For some distribution
types the conjecture has gained rigorous proof [10]. Ac-
cording to this principle, the ISA problem can be de-
composed: (i) one may set aside that there are subspaces
in the background and invoke a classical ICA algorithm,
then (ii) cluster the estimated ICA elements into statisti-
cally dependent groups. One can reduce the estimation
of multidimensional hidden components of AR processes
[7], moving average (MA), ARMA, ARIMA (Integrated
ARMA) processes, for real and complex variables, and
also for post nonlinear mixing to the solution of the ISA

task [8]. All of these estimations, however, are concerned
with the control free case – subject to the independence
of the components. Below, we solve the ARX-IPA model
of Section 3, i.e., we include the control variables. Alike
to other process model cases, we transform the solution
of the problem to two subproblems: to that of a fully ob-
served model (Section 2) and an ISA task.

One can apply the basis transformation rule of ARX
processes and use (2) and (3) repeatedly to get

xt+1 =

I−1
∑

i=0

(AFiA
−1)xt−i+

J−1
∑

j=0

(ABj)ut+1−j+(Aet+1)

(4)
According to the d-central limit theorem [5]Aet+1

is approximately Gaussian and thus the parameters
([AF0A

−1, . . . ,AFI−1A
−1,AB0, . . . ,ABJ−1)]) and

the noise (Aet+1) of processx can be estimated by means
of the D-optimality principle that assumes a fully ob-
served process. The estimated noise can be seen as the
observation of an ISA problem because components ofe

are independent. ISA techniques can be used to identify
A and then from the estimated parameters of processx,
the estimations ofFi andBj follow.

5 ILLUSTRATIONS

The D-optimal ARX-IPA identification algorithm of Sec-
tion 4 is illustrated below. Test cases are introduced in
Section 5.1. The quality of the solutions will be measured
by the Amari-index (Section 5.2). Numerical results are
provided in Section 5.3.

5.1 Databases

Three databases were defined to study our algorithm.
The databases are illustrated in Fig. 1. In the3D-geom
testems were random variables uniformly distributed on
3-dimensional geometric forms (dm = 3). We chose 6
different components (M = 6) and, as a result, the di-
mension of the hidden sourcee is De = 18. In the
ABC database, hidden sourcese

m were uniform distri-
butions defined by 2-dimensional images (d = 2) of
the English alphabet.M was 10 (A-J). Thecelebrities
test has 2-dimensional source components generated from
cartoons of celebrities (dm = 2, M = 10).1 Sourcesem

were generated by sampling 2-dimensional coordinates
proportional to the corresponding pixel intensities. In
other words, 2-dimensional images of celebrities were
considered as density functions.M = 10 was chosen.

5.2 Performance measure, the Amari-index

Recovery of componentsem are subject to the ambigu-
ities of ISA task. Namely, components of equal dimen-
sion can be recovered up to the permutation (of equal
dimension) and invertible transformation within the sub-
spaces [11]. Let us suppose, that all components are
d-dimensional (d = dm, ∀m). Then, in the ideal
case, the product of the estimated ISA demixing matrix

1See http://www.smileyworld.com.



(a)
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Figure 1: Illustration of the test datasets. (a):3D-geom,
(b): ABC (first two components), (c):celebrities set.

ŴISA and mixing matrixA is a block-permutation matrix
G := ŴISAA ∈ RDe×De made ofd × d sized blocks.
This block-permutation property can be measured by the
Amari-index. Namely, let matrixG be decomposed into
d × d blocks: G =

[

G
ij
]

i,j=1,...,M
. Let gij denote

the sum of the absolute values of the elements of matrix
G

ij ∈ Rd×d. The Amari-error [1] can be adapted to the
ISA task [12] that we normalize to interval [0,1] to get the
Amari-index:

r(G) :=
1

2M(M − 1)

[

M
∑

i=1

(

∑M

j=1
gij

maxj gij
− 1

)

+

M
∑

j=1

(

∑M

i=1
gij

maxi gij
− 1

)



 . (5)

One can see that0 ≤ r(G) ≤ 1 for any matrixG, and
r(G) = 0 if and only if G is a block-permutation matrix
with d×d sized blocks.r(G) = 1 is in the worst case, i.e,
when all the elements ofG are equal in absolute value.

5.3 Simulations

Results on databases3D-geom, ABC andcelebrities are
provided here. The Amari-index was used to measure
the performance (the precision of estimation ofê) of the
ARX-IPA method of Section 4.2 For each individual pa-
rameter,20 random runs were averaged. Our parameters
are: T , the sample number of observationsx(t), I, the
order of dynamics of the AR part,J , the temporal mem-
ory of the effect of the control applied,δu, the upper limit
of the magnitude of the control (U := {u : maxi|ui| ≤
δu}), andλ, parameter of the stableFAR[z]. ‘Random run’
means random choice of quantitiesFAR[z], Hjs,A ande.
In each simulationA was a random orthogonal matrix,
sample numberT varied between1, 000 and 100, 000,

2We note that the InfoMax objectivesJpar andJnoise look
forward only by one-step, so the method is greedy. The objective
could be extended to include long-term cumulated contributions,
but the solution is not yet known for this task. According to
experiences, estimation of noisee can proceed by usingJpar

first for a some iterations and then useJnoise to compute the
control values [6].

we optimizedJpars andJnoise on intervals[1, T/2] and
[T/2 + 1, T ], respectively (see footnote 2), the dimen-
sion of the control was equal to the the dimension ofs

(Du = Ds), the ISA task was solved by using the JFD
method [9], the elements of matricesHj were generated
independently from standard Gaussian distributions, and
stableFAR[z] was generated as follows

FAR[z] =

I−1
∏

i=0

(I − λOiz) (|λ| < 1, λ ∈ R), (6)

where matricesOi ∈ RDs×Ds were random orthogonal.
We sum up our experiences about the ARX-IPA

method here:

1. Dependence onδu: We studied the effect of the mag-
nitude of control (δu) on the precision of the esti-
mation for ‘small’ I, J (I, J ≤ 3) values and for
λ = 0.95. We found that for a range of not too large
control valuesδu the estimation is precise (Fig. 2(a))
and the error follows a power law in the number of
samples:r(T ) ∝ T−c (c > 0) is a straight line on
log-log scale. Similar results were found for all three
databases in all experiments (Fig. 2(b)). Figure 3 il-
lustrates the results of the estimations. In the rest
of the studies we fixed the maximum of the control
magnitude toδu = 0.2 and show the results of the
3D-geom database.

2. Dependence onJ : Increasing the temporal mem-
ory of the effect of the control applied (J =
3, 5, 10, 20, 50) precise estimation was found even
for J = 50. The estimation error is shown in
Fig. 4(a).

3. Dependencies onI andλ: We found that the order of
the dynamics of the AR process (I) can be increased
provided thatλ in Eq. (6) is decreased: ForJ = 1
and forI = 5, 10, 20, 50, the estimation is precise
up to values approximately equal toλ = 0.85 − 0.9,
0.65 − 0.7, 0.45 − 0.5, 0.25 − 0.3, respectively. Re-
sults are depicted in Fig. 4(b).
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