TOWARDS INDEPENDENT SUBSPACE ANALYSIS IN CONTROLLED
DYNAMICAL SYSTEMS

Zoltdn Szabé Andrés Lérincz
Department of Information Systems, E6tvos Lorand Univgrsi
P&zmany P. sétany 1/C, Budapest H-1117, Hungary
WWW home pagehtt p://nipg.inf.elte. hu
szzoli @s.elte.hu, andras.lorincz@lte. hu

ABSTRACT (s = [s!,...;sM]), but although we observe their mixture
only, which in the simplest ICA/ISA case means that
we observex = As, we still would like to recover the
original s sources. The ICA task and its extensions have
been successfully applied on a humber of fields, includ-
ing: (i) denoising, (ii) analysis of biomedical- (EEG,
efMRI, MEG, ECG) and financial data, (iii) recognition of
face- and facial pose, (iv) gene analysis, (v) processing
of radar/sonar data, (vi) optics, (vii) seismic exploratio
The ICA problem family allows for hidden variables but

In this paper we extend Independent Component Analysis
(ICA) task to controlled dynamical systems. To our best
knowledge this is the first work that considers the con-
trol task in this field, which may open the door for ex-
tended ICA applications. We treat Independent Subspac
Analysis (ISA) task, the multidimensional generalization
of ICA. In particular, we consider the identification prob-
lem of ARX models, i.e., hidden AutoRegressive dynam-
e o MakeS o eerence o contol
tidiménsional noise processes. The goal is the estimation Ithas been shown in a recent work [6] that the param-
P ' 9 eters and the driving noise of controlled dynamical sys-

of the hidden yarlables, that is, t_he parameters of the SYStems (ARX models: AutoRegressive process with eXoge-
tem and the driving noise. We aim efficient estimation by

hoosi itabl trol val For th timal choi nous inputs) can be efficiently estimated by means of D-
gf ?ﬁ;'ggni?éla :;gg rtotr:/: B‘_es' t'rr?;I't € Orpnlcm?ecagcc)e optimality principles. This theory, which allows control
Known as ‘Infovl\\//lax mgthod’ Toptrllis elnydpvlve Idpec,ouple variables, has been formulated only for the fully observ-
the problem into a fully observable one and an ISA task. able case. By contrast, the ICA/ISA/IPA problem family

. . can model hidden independent variables, but can not ac-
We solve the two problems and join the results to estimate P

the hidden variables. Numerical examples illustrate the count for control. We unify these directions: we treat D-
- : P optimal identification parameter and noise estimation of
efficiency of our method.

controlled hidden dynamical systems driven by indepen-
dent sources. We solve the problem by decoupling it into
Keywords: D-optimal design, ARX models, indepen- a fully observable task and an ISA problem. Our method

dent subspace analysis, separation principle may offer important extension possibilities for ICA appli-
cations.

In Section 2 we review the D-optimal identification

1 INTRODUCTION of fully observed ARX models. The ARX-IPA model of

Our goal is to connect independent component analysishidden processes is introduced in Section 3. Our solution
and a novel result, the D-optimal identification of dynam- technique for the ARX-IPA task is derived in Section 4.
ical systems. Illustrations are provided in Section 5.

One can think of independent compo-
nent/subspace/process analysis (ICA-Independent 2  D_-OPTIMAL IDENTIEICATION OF
Component Analysis [3, 4], ISA-Independent Subspace
Analysis [2], IPA-Independent Process Analysis [8]) ARX MODELS
by considering the cocktail-party problem, where we We sketch the basic thoughts that lead to D-optimal iden-
have M pieces of independent sources or source groupstification of ARX models. The dynamical system is fully
observed and evolves according to the ARX equation
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(©?2008 The University of Liverpool. ICA Research Network u € RP+ represents the control variables, and (iii) poly-
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matricesF; € RP<*Ps and identity matrixI) is sta- task [8]. All of these estimations, however, are concerned

ble, that isdet(Far[z]) # 0, for all z € C,|z| < 1. with the control free case — subject to the independence
Our task is the efficient estimation of paramet&®s= of the components. Below, we solve the ARX-IPA model
[Fo,...,F;_1,Bo,...,By_1] thatdetermine the dynam- of Section 3, i.e., we include the control variables. Alike

ics and noisee that drives the process by the ‘optimal to other process model cases, we transform the solution
choice’ of control values. Formally, D-optimality aims  of the problem to two subproblems: to that of a fully ob-

to maximize one of the two objectives served model (Section 2) and an ISA task.
One can apply the basis transformation rule of ARX
Jpar(We41) == 1(O, 8441[8¢,8i-1, ..., Uyg1, Uy, .. ), processes and use (2) and (3) repeatedly to get
Jnoise(Wes1) = I(€441,8t41(8t,8¢—1, -+, W1, Uy - - ) -1 -1
_ —1
for u;.1 € U. In other words, we choose control value ¥t+1 = Y (AF A )xi+) (ABj)upsi—j+(Aei1)
u from the achievable domaiti such that it maximizes =0 3=0 4
the mutual information between the next observation and (4)

it According to the d-central limit theorem [She; iy

is approximately Gaussian and thus the parameters
([AFoAfl, Ce ,AF[,1A71, ABqy,..., Aijl)]) and

the noise Ae; 1) of procesx can be estimated by means
of the D-optimality principle that assumes a fully ob-

the parameters (or the driving noise) of the system.
can be shown [6], that if (i has matrix Gaussian, (ii)
e has Gaussian, and covariance matrixedfas inverted
Wishart distributions, then in the Bayesian setting, max-

imization of theJ objectives can be reduced to the solu- . )
tion of a quadratic programming task, priors@fande served process. The estimated noise can be seen as the

remain in their supposed distribution family and undergo ©Pservation of an ISA problem because components of
simple updating. The considerations allow for control, but &€ independent. ISA techniques can be used to identify
assume full observability about the state variables. Now, A and.ther) from the estimated parameters of progess
we extend the method to hidden variables in the ARX-IPA the estimations aF’; andB; follow.

model of the next section.

5 ILLUSTRATIONS

3 THE ARX-IPA MODEL The D-optimal ARX-IPA identification algorithm of Sec-

In the ARX-IPA model we assume that statef the sys- tion 4 is illustrated below. Test cases are introduced in
tem can not be observed directly, but its linear and un- S€ction 5.1. The quality of the solutions will be measured
known mixture &) is available for observation: by the Amari-index (Section 5.2). Numerical results are

provided in Section 5.3.

I—-1 J—1
St+1 = Z Fise—i + Z Bjuiii-j +e1,  (2) 5.1 Databases
i=0 §=0
%, — As 3) Three databases were defined to study our algorithm.
¢ v The databases are illustrated in Fig. 1. In 82geom
We assume for theomponents of e — [el;...;eM] e teste™s were random variables uniformly distributed on

3-dimensional geometric formg,, = 3). We chose 6
different componentsi( = 6) and, as a result, the di-
mension of the hidden soureeis D, = 18. In the
ABC database, hidden source® were uniform distri-
butions defined by 2-dimensional images & 2) of
the English alphabetM was 10 (A-J). Thecelebrities
test has 2-dimensional source components generated from
cartoons of celebritiesd(,, = 2, M = 10).! Sourcese™
were generated by sampling 2-dimensional coordinates
4 |IDENTIFICATION METHOD FOR proportional to the corresponding pixel intensities. In
ARX-IPA other words, 2-dimensional images of celebrities were
considered as density functions. = 10 was chosen.

RP- em ¢ R that at most one of them may be Gaus-
sian, their temporal distributions are i.i.d. (indeperiden
identically distributed), and(e!;...;e) = 0, that is,
they satisfy the conditions of the ISA problem. Our task
is to estimate the unknown invertible mixing matex €
RP:*DPs - parameterdFy,...,F;_1,Bo,...,Bs_1], s
ande by means of observationsonly.

There is a so-calletSA separation principle for the ISA
task conjectured by Cardoso [2]. For some distribution .
types the conjecture has gained rigorous proof [10]. Ac- 2-2 Performance measure, the Amari-index

cording to this principle, the ISA problem can be de- Recovery of componenis™ are subject to the ambigu-
composed: (i) one may set aside that there are subspaceges of ISA task. Namely, components of equal dimen-
in the background and inVOke a CIaSSical ICA algorithm, sion can be recovered up to the permutation (Of equa|
then (ii) cluster the estimated ICA elements into statisti- dimension) and invertible transformation within the sub-
cally dependent groups. One can reduce the estimationspaces [11]. Let us suppose, that all components are
of multidimensional hidden components of AR processes g-dimensional ¢ = d,,, ¥m). Then, in the ideal
[7], moving average (MA), ARMA, ARIMA (Integrated  case, the product of the estimated ISA demixing matrix
ARMA) processes, for real and complex variables, and

also for post nonlinear mixing to the solution of the ISA See http://ww.smileyworld.com.



Figure 1: lllustration of the test datasets. (&pR-geom,
(b): ABC (first two components), (ckelebrities set.

W sa and mixing matrixA is a block-permutation matrix

G = WisaA € RP<*xPe made ofd x d sized blocks.
This block-permutation property can be measured by the
Amari-index. Namely, let matrixG be decomposed into

d x d blocks: G = [GY] ., . Letg" denote
the sum of the absolute values of the elements of matrix
G ¢ R?4, The Amari-error [1] can be adapted to the
ISA task [12] that we normalize to interval [0,1] to get the
Amari-index:

M M

. 1 E i—1 gij
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M M i
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One can see thét < r(G) < 1 for any matrixG, and
r(G) = 0if and only if G is a block-permutation matrix
with d x d sized blocksr(G) = 1 is in the worst case, i.e,
when all the elements & are equal in absolute value.

5.3 Simulations

Results on databas@&®-geom, ABC and celebrities are
provided here. The Amari-index was used to measure
the performance (the precision of estimationepbf the
ARX-IPA method of Section 4. For each individual pa-
rameter,20 random runs were averaged. Our parameters
are: T, the sample number of observatiorg&), I, the
order of dynamics of the AR part], the temporal mem-
ory of the effect of the control applied,, the upper limit

of the magnitude of the control(:= {u : max;|u;| <

d. }), and), parameter of the stabBagr[z]. ‘Random run’
means random choice of quantitBsr[z], H;s, A ande.

In each simulationA was a random orthogonal matrix,
sample numbefl” varied betweenl, 000 and 100, 000,

2We note that the InfoMax objectivefq, and Jyeis. look
forward only by one-step, so the method is greedy. The dlsgect
could be extended to include long-term cumulated confiobst
but the solution is not yet known for this task. According to
experiences, estimation of noisecan proceed by usindpa-
first for a some iterations and then ugg,:s. to compute the
control values [6].

we optimized.Jp,,s and J,,qis ON intervals(1,7'/2] and
[T/2 + 1,T], respectively (see footnote 2), the dimen-
sion of the control was equal to the the dimensiors of
(D, = Dy), the ISA task was solved by using the JFD
method [9], the elements of matricék; were generated
independently from standard Gaussian distributions, and
stableF ar[z] Was generated as follows

I—-1
Farlz] = [[@-X0:2) (Al <1,A€R), (6)

=0

where matrice®; € RP-*Ps were random orthogonal.
We sum up our experiences about the ARX-IPA
method here:

1. Dependence af),: We studied the effect of the mag-
nitude of control §,) on the precision of the esti-
mation for ‘small’ I, J (I,J < 3) values and for
A = 0.95. We found that for a range of not too large
control values,, the estimation is precise (Fig. 2(a))
and the error follows a power law in the number of
samples:r(T) o« T~° (¢ > 0) is a straight line on
log-log scale. Similar results were found for all three
databases in all experiments (Fig. 2(b)). Figure 3 il-
lustrates the results of the estimations. In the rest
of the studies we fixed the maximum of the control
magnitude to),, = 0.2 and show the results of the
3D-geomdatabase.

. Dependence od: Increasing the temporal mem-
ory of the effect of the control appliedJ( =
3,5,10,20,50) precise estimation was found even
for J = 50. The estimation error is shown in
Fig. 4(a).

. Dependencies chand\: We found that the order of
the dynamics of the AR procesE)(can be increased
provided that\ in Eq. (6) is decreased: Fofr = 1
and forl = 5, 10, 20, 50, the estimation is precise
up to values approximately equal o= 0.85 — 0.9,
0.65 —0.7,0.45 — 0.5, 0.25 — 0.3, respectively. Re-
sults are depicted in Fig. 4(b).
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