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Abstract. In this paper we address the blind subspace deconvolution
(BSSD) problem; an extension of both the blind source deconvolution
(BSD) and the independent subspace analysis (ISA) tasks. While previ-
ous works have been focused on the undercomplete case, here we extend
the theory to complete systems. Particularly, we derive a separation tech-
nique for the complete BSSD problem: we solve the problem by reducing
the estimation task to ISA via linear prediction. Numerical examples
illustrate the efficiency of the proposed method.

Key words: complete blind subspace deconvolution, separation princi-
ple, linear prediction, independent subspace analysis

1 Introduction

Recently, research on independent component analysis (ICA) [1, 2] and its ex-
tensions has gained much attention. One can think of ICA as a cocktail-party
problem, where there are D one-dimensional sound sources and D microphones
and the task is to estimate the original sources from the observed mixed signals.
Nonetheless, applications in which only certain groups of sources are indepen-
dent may be highly relevant in practice. In this case, the independent sources can
be multidimensional. For instance, consider the generalization of the cocktail-
party problem, where independent groups of people are talking separately about
independent topics or more than one group of musicians are playing at the party.
This problem is referred to as independent subspace analysis (ISA) [3].1 Another
extension of the original ICA task is the blind source deconvolution (BSD) prob-
lem. This problem emerges, for example, when a cocktail-party takes place in an
echoic room. Several theoretical questions of ICA, ISA and BSD have already
been addressed (see, e.g., [4], [5] and [6] for recent reviews, respectively), and
numerous application areas show the potential of these fields including (i) re-
mote sensing applications: passive radar/sonar processing, (ii) image-deblurring,
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1 ISA is also called multidimensional independent component analysis and group ICA
in the literature.
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image restoration, (iii) speech enhancement using microphone arrays, acoustics,
(iv) multi-antenna wireless communications, sensor networks, (v) financial, gene
and biomedical signal—EEG, ECG, MEG, fMRI—analysis, (vi) face view recog-
nition, (vii) optics, (viii) seismic exploration.

The simultaneous assumption of the two extensions, that is, ISA combined
with BSD, has recently emerged in the literature. For example, at the cocktail-
party, groups of people or groups of musicians may form independent source

groups and echoes may be present. The task is called blind subspace deconvo-
lution (BSSD). Probably one of the most exciting and fundamental hypotheses
of the ICA research has been formed by [3]: the solution of the ISA problem
can be separated to ICA and then clustering the ICA elements into statistically
dependent subspaces. This ISA separation principle has been rigorously proven
for some distribution types in [5], and forms the basis of the state-of-the-art ISA
algorithms. Similar separation based techniques can be derived for the solution
of the undercomplete BSSD task (uBSSD), where in terms of the cocktail-party
problem there are more microphones than acoustic sources. It has been shown
that the uBSSD problem can be reduced to ISA by means of temporal con-
catenation [5]. However, the associated ISA problem can easily become ‘high
dimensional’. The dimensionality problem can be circumvented by applying a
linear predictive approximation (LPA) based reduction [7]. Here, we show that
it is possible to extend the LPA idea to the complete BSSD task.2 In the un-
dercomplete case, the LPA based solution was based on the observation that
the polynomial matrix describing the temporal convolution had, under rather
general conditions3, a polynomial matrix left inverse. In the complete case such
an inverse doesn’t exist in general. However, provided that the convolution can
be represented by an infinite order autoregressive process, one can construct an
efficient estimation method for the hidden components via an asymptotically
consistent LPA procedure. This thought is used here to extend the technique of
[7] to the complete case.

The paper is structured as follows: Section 2 formulates the problem domain.
Section 3 shows how to transform the complete BSSD task into an ISA task
via LPA. Section 4 contains numerical illustrations. Conclusions are drawn in
Section 5.

2 The BSSD Model

Here, we define the BSSD task [5]. Assume that we have M hidden, independent,
multidimensional components (random variables). Suppose also that only their

x(t) =

L
∑

l=0

Hls(t − l) (1)

2 The overcomplete BSSD task is challenging and as of yet no general solution is
known.

3 If the coefficients of the undercomplete polynomial matrix are drawn from a non-
degenerate continuous distribution, such an inverse exists with probability one.
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convolutive mixture is available for observation, where x(t) ∈ RDx and s(t) is the
concatenation of the components sm(t) ∈ Rdm , that is s(t) = [s1(t); . . . ; sM (t)] ∈

RDs (Ds =
∑M

m=1
dm). Denoting the time-shift operation by z, one may write

Eq. (1) compactly as

x = H[z]s, (2)

where the mixing process is described by the polynomial matrix H[z] :=
∑L

l=0
Hlz

l ∈
R[z]Dx×Ds . We assume that the components sm are

1. independent: I(s1, . . . , sM ) = 0, where I denotes the mutual information,

2. i.i.d. (independent identically distributed) in t, and

3. there is at most one Gaussian component among sms.

The goal of the BSSD problem is to estimate the original source s(t) by using
observations x(t) only. While Dx > Ds is the undercomplete case , Dx = Ds is
the complete one. The case L = 0 corresponds to the ISA task, and if dm = 1
(∀m) also holds, then the ICA task is recovered. In the BSD task dm = 1 (∀m)
and L is a non-negative integer.

3 Method

Contrary to previous works [5, 7] focusing on the undercomplete BSSD prob-
lem, in the present paper we address the complete task (D = Dx = Ds). We
assume that the polynomial matrix H[z] is invertible, that is det(H[z]) 6= 0, for
all z ∈ C, |z| ≤ 1. Let E(·) and cov(·) denote the expectation value, and the co-
variance of a random variable, respectively. Because the mean can be subtracted
from the process and the transformation x = (H[z]B−1)(Bs) leads to the same
observation, one may presume, without any loss of generality, that s is white:

E(s) = 0, cov(s) = I, (3)

where I is the identity matrix. The invertibility of H[z] implies that the ob-
servation process x can be represented as an infinite order autoregressive (AR)
process [8]:

x(t) =

∞
∑

j=1

Fjx(t − j) + F0s(t). (4)

By applying a finite order LPA approximation (fitting an AR process to x),
the innovation process F0s(t) can be estimated. The innovation can be seen as
the observation of an ISA problem because components of s are independent:
ISA techniques can be used to identify components sm. Choosing the order

of the fitted AR process to x as p = o(T
1

3 )
T→∞

−−−−→ ∞, where T denotes the
number of samples, guarantees that the AR approximation for the MA model is
asymptotically consistent [9].
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4 Illustrations

Here, we illustrate the efficiency of the proposed complete BSSD estimation
technique. Test cases are introduced in Section 4.1. To evaluate the solutions
we use the performance measure given in Section 4.2. Numerical results are
presented in Section 4.3.

4.1 Databases

We define three databases to study our identification algorithm. The smiley test
has 2-dimensional source components representing the 6 basic facial expressions
(dm = 2, M = 6). Sources sm were generated by sampling 2-dimensional coordi-
nates proportional to the corresponding pixel intensities (see Fig. 1(a)). In the
3D-geom test sms were random variables uniformly distributed on 3-dimensional
geometric forms (dm = 3). We chose 4 different components (M = 4) and, as
a result, the dimension of the hidden source s is D = 12 (see Fig. 1(b)). Our
Beatles test [5] is a non-i.i.d. example. Here, hidden sources are stereo Beatles
songs.4 8 kHz sampled portions of two songs (A Hard Day’s Night, Can’t Buy
Me Love) made the hidden sms. Thus, the dimension of the components dm was
2, the number of the components M was 2, and the dimension of the hidden
source D was 4.

(a) (b)

Fig. 1: Illustration of the smiley (a) and the 3D-geom databases (b).

4.2 Performance Measure, the Amari-index

Recovery of components sm are subject to the ambiguities of the ISA task.
Namely, components of equal dimension can be recovered up to permutation and
invertible transformation within the subspaces [10]. For this reason, in the ideal
case, the linear transformation G that optimally approximates the relation s 7→
ŝ, where ŝ denotes the estimated hidden source, resides also within the subspaces
and so it is a block-permutation matrix. This block-permutation structure can
be measured by the ISA adapted version [11] of the Amari-error [12] normalized
to the interval [0, 1] [13]. Namely, let us suppose that the source components

4 See http://rock.mididb.com/beatles/.
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are d-dimensional5, and let us decompose matrix G ∈ RD×D into blocks of size
d × d: G = [Gij ]i,j=1,...,M . Let gij denote the sum of the absolute values of

matrix Gij ∈ Rd×d. Now, the following term

r(G) :=
1

2M(M − 1)





M
∑

i=1

(

∑M
j=1

gij

maxj gij
− 1

)

+

M
∑

j=1

(

∑M
i=1

gij

maxi gij
− 1

)



 (5)

denotes the Amari-index that takes values in [0,1]: for an ideal block-permutation
matrix G it takes 0; for the worst case it takes 1.

4.3 Simulations

Results on databases smiley, 3D-geom and Beatles are provided here. The Amari-
index was used to measure the performance of the proposed complete BSSD
method. For each individual parameter, 20 random runs were averaged. Our
parameters are: T , the sample number of observations x(t), L, the parameter of
the length of the convolution (the length of the convolution is L + 1), and λ,
parameter of the invertible H[z]. It is expected that if the roots of H[z] are close
to the unit circle then our estimation will deteriorate, because the invertibility
of H[z] comes to question. We investigated this by generating the polynomial
matrix H[z] as follows:

H[z] =

[

L
∏

l=0

(I − λOiz)

]

H0 (|λ| < 1, λ ∈ R), (6)

where matrices H0 and Oi ∈ RD×D were random orthogonal and the λ → 1
limit was studied. ‘Random run’ means random choice of quantities H[z] and s.
The AR fit to observation x was performed by the method detailed in [14]. To
study how the o(T 1/3) AR order (see Section 3) is exploited, the order of the

estimated AR process was limited from above by pmax(T ) = 2⌊T
1

3
−

1

1000 ⌋, and
we used the Schwarz’s Bayesian Criterion to determine the optimal popt order
from the interval [1, pmax(T )]. The ISA subtask on the estimated innovation was
carried out by the joint f-decorrelation method [15].

First we studied the Amari-index as a function of the sample size. For the
smiley and 3D-geom databases the sample number T varied between 1, 000 and
20, 000. The length of convolution varied as L = 1, 2, 5, 10. The λ parameter of
H[z] was chosen as 0.4, 0.6, 0.7, 0.8, 0.85, 0.9. Results are shown in Fig. 2(a)-(b).
The estimation errors indicate that for L = 10 and about λ = 0.85 the estimation
is still efficient, see Fig. 3 for an illustration of the estimated source components.
The Amari-indices follow the power law r(T ) ∝ T−c (c > 0). The power law
decline is manifested by straight line on log-log scale. The slopes of these straight
lines are very close to each other. Numerical values for the estimation errors are

5 The d = dm (∀m) constraint was used only at the performance measurements (i.e.,
for the Amari-index).
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given in Table 1. The estimated optimal AR orders are provided in Fig. 2(c).
The figure demonstrates that as λ → 1 the maximal possible order pmax(T ) is
more and more exploited.

On the Beatles database the λ parameter was increased to 0.9, and the sample
number T varied between 1, 000 and 100, 000. Results are presented in Fig. 2(d).
According to the figure, for L = 1, 2, 5 the error of estimation drops for sample
number T = 10, 000 − 20, 000, and for L = 10 the ‘power law’ decline of the
Amari-index, which was apparent on the smiley and the 3D-geom databases,
also appears. Numerical values for the estimation errors are given in Table 1. On
the Beatles test, the maximal possible AR order pmax(T ) was fully exploited on
the examined parameter domain.

L = 1 L = 2 L = 5 L = 10

smiley 0.99% (±0.11%) 1.04% (±0.09%) 1.22% (±0.15%) 1.69% (±0.26%)
3D-geom 0.42% (±0.06%) 0.54% (±0.05%) 0.88% (±0.14%) 1.15% (±0.24%)
Beatles 0.72% (±0.12%) 0.75% (±0.11%) 0.90% (±0.23%) 6.64% (±7.49%)

Table 1: Amari-index in percentages on the smiley, 3D-geom (λ = 0.85, T = 20, 000)
and the Beatles dataset (λ = 0.9, T = 100, 000) for different convolution lengths:
mean± standard deviation. For other sample numbers, see Fig. 2.

5 Conclusions

In this paper we focused on the complete case of the blind subspace deconvolu-
tion (BSSD) problem, a common extension of the independent subspace analysis
(ISA) and the blind source deconvolution (BSD) tasks. We presented a separa-
tion technique for the solution of the complete BSSD task: the estimation task
has been reduced to ISA via linear predictive approximation (LPA). We also
demonstrated the efficiency of the algorithm on different datasets. Our simula-
tions revealed that the error of the estimation of the hidden sources decreases
in a power law fashion as the sample size increases. Interestingly, our algorithm
recovered the sources when the assumptions of the BSSD problem were violated;
that is in the case of the Beatles songs with non-i.i.d. sources. This result points
to the ISA separation principle; one expects that it may be valid for a larger
domain. Similar conjecture exists for joint block diagonalization [16] about the
global minima.

Acknowledgments. This work has been supported by the National Office for
Research and Technology.
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Fig. 2: Precision of the estimations and the estimated optimal AR orders. The plots
are on log-log scale. (a), (b): on the smiley (3D-geom) database the Amari-index as
a function of the sample number for different λ → 1 parameter values of H[z] and
convolution lengths, respectively. In (a): L = 10, in (b): λ = 0.85. (c): on the smiley

(3D-geom) database the estimated AR order as a function of the sample number with
L = 10 for different λ values. (d): the same as (b), but for the Beatles dataset with
λ = 0.9. For graphical illustration, see Fig. 3. For numerical values, see Table 1.
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

(j) (k) (l) (m) (n)

Fig. 3: Illustration of the estimations on the 3D-geom[(a),(b),(e)-(i)] and smi-

ley [(c),(d),(j)-(n)] datasets. Number of samples: T = 20, 000. Length of the convo-
lution: L = 10. In the first row: λ = 0.4. (a), (c): observed convolved signal x(t). (b),
(d): Hinton-diagram of G, ideally a block-permutation matrix with 2 × 2 and 3 × 3
blocks, respectively. (e)-(i), (j)-(n): estimated components ŝm, recovered up to the ISA
ambiguities from left to right for λ = 0.4, 0.6, 0.7, 0.8, 0.85. All the plotted estimations
have average Amari-indices, see Fig. 2(a).
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