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1. Introduction

Cocktail-party Problems (increasing generality):

• Independent component analysis (ICA) [1, 2]: one-
dimensional sound sources.

• Independent subspace analysis (ISA) [3]: independent
groups of people.

• Blind source deconvolution (BSD) [4]: one-dimensional
sound sources and echoic room.

• Blind subspace deconvolution (BSSD) [5]: independent
source groups and echoes.

Separation Theorem:

• ISA ([3], proof for certain distribution types [5]):
ISA = ICA + clustering.

It forms the basis of the state-of-the-art ISA algorithms.
• Undercomplete BSSD (uBSSD):

– uBSSD = temporal concatenation + ISA [5]: but ‘high
dimensional’ associated ISA problem.

– uBSSD = LPA (linear predictive approximation) + ISA
[6]. Based on: an undercomplete polynomial matrix
has a polynomial matrix left inverse (with prob. one).

Here: complete BSSD problem using linear predictive ap-
proximation. It is asymptotically consistent.

2. The BSSD Model

BSSD Equations [5]:

• Observation x(t) ∈ R
Dx is convolutive mixture of hid-

den, independent, multidimensional components (ran-
dom variables; s

m ∈ Rdm)

x(t) =

L∑

l=0

Hls(t − l). (1)

Here, s(t) = [s1(t); . . . ; sM (t)] ∈ R
Ds. Compactly:

x = H[z]s (2)

• Goal of BSSD: estimate the original source s(t) by us-
ing observations x(t) only.

• Specially: ISA (L = 0), ICA (L = 0,∀dm = 1), BSD
(∀dm = 1).

•Dx > Ds (Dx = Ds): undercomplete (complete) case.

BSSD Assumptions: Components s
m are

• independent: I(s1, . . . , sM ) = 0,
• i.i.d. (independent identically distributed) in t,
• there is at most one Gaussian component among s

ms.

3. Method

Our Scenario: complete task (D = Dx = Ds), and H[z] is
invertible, that is

det(H[z]) 6= 0,∀z ∈ C, |z| ≤ 1. (3)

Without loss of generality [x = (H[z]B−1)(Bs)] s is white:
E(s) = 0, cov(s) = I.

Separation: invertibility of H[z] ⇒ observation process x

has AR(∞) representation [7]:

x(t) =

∞∑

j=1

Fjx(t − j) + F0s(t). (4)

Steps:

1. AR(p)-fit to x: estimation for innovation F0s(t),
2. ISA on the estimated innovation (components of s are

independent) ⇒ ŝ
m.

If p = o(T
1

3)
T→∞
−−−−→ ∞ (T : sample number) ⇒ the AR

approx. for the MA model is asymptotically consistent [8].

4. Illustrations

Databases:

• smiley : density functions correspond to the 6 basic fa-
cial expressions [dm = 2, M = 6, D = 12; Fig. 1(a)].

• 3D-geom: s
ms were random variables uniformly dis-

tributed on 3-dimensional geometric forms [dm =
3,M = 4, D = 12; Fig. 1(b)].

• Beatles [5]: non-i.i.d., stereo Beatles songs (dm =
2,M = 2, D = 4).

(a) (b)

Figure 1: Illustration: smiley (a), 3D-geom dataset (b).

Performance Measure, the Amari-index:

• Recovery of components s
m: subject to ISA ambigui-

ties [9]
– permutation (components of equal dimension),
– invertible transformation within the subspaces.

•⇒In the ideal case: G optimally approximating s 7→ ŝ

resides also within the subspaces, a block-permutation
matrix.

• Its measure: Amari-index (r = r(G) ∈ [0, 1])

– ICA: Amari-error [10]
[11]
−−−→ ISA

[12]
−−−→ ISA, ∈ [0, 1],

– r = 0 ↔ perfect estimation, r = 1 ↔ worst possible.

Simulation Parameters:

• performance measure: Amari-index over 20 random
(H[z], e) runs.

• studied parameters: sample number (T ), convolution
length (L + 1); invertibility of H[z] (λ → 1)

H[z] = [

L∏

l=0

(I − λOiz)]H0 (|λ| < 1, λ ∈ R). (5)

Here, H0 and Oi ∈ R
D×D: random orthogonal.

• ARfit: [13].
• Upper limit for the AR order (+SBC): pmax(T ) =

2⌊T
1

3
− 1

1000⌋ ⇒ popt ∈ [1, pmax(T )].
• ISA subtask: joint f-decorrelation method [14].

Illustrations:

• smiley, 3D-geom tests: 1, 000 ≤ T ≤ 20, 000, L ∈
{1, 2, 5, 10}, λ ∈ {0.4, 0.6, 0.7, 0.8, 0.85, 0.9}. Results in
Fig. 2(a)-(b):
– L = 10, λ = 0.85: estimation is still efficient (Fig. 3).
– Power law decrease of the Amari-indices: r(T ) ∝ T−c

(c > 0).
– Numerical values of the estimation errors: Table 1.
– Estimated optimal AR order: Fig. 2(c), as λ → 1

pmax(T ) is more and more exploited.
• Beatles: λ = 0.9, 1, 000 ≤ T ≤ 100, 000, Fig. 2(d).

– L = 1, 2, 5: error of estimation drops for sample num-
ber T = 10, 000 − 20, 000.

– L = 10: ‘power law’ decline appears.
– Numerical values of the estimation errors: Table 1,
– Estimated optimal AR order: pmax(T ) fully exploited.
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Figure 2: Precision, estimated optimal AR orders, on log-
log scale. (a) [L = 10, λ → 1], (b) [λ = 0.85]: Amari-index,
smiley (3D-geom). (c): estimated AR order, L = 10, differ-
ent λ values. (d): as (b), Beatles, λ = 0.9.

L = 1 L = 5 L = 10

smiley 0.99% (±0.11%) 1.22% (±0.15%) 1.69% (±0.26%)
3D-geom 0.42% (±0.06%) 0.88% (±0.14%) 1.15% (±0.24%)
Beatles 0.72% (±0.12%) 0.90% (±0.23%) 6.64% (±7.49%)

Table 1: Amari-index in percentages, mean± standard
deviation, for different L values: smiley, 3D-geom (λ =
0.85, T = 20, 000), Beatles dataset (λ = 0.9, T = 100, 000).
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Figure 3: Illustration of the estimations (T = 20, 000, L =
10): 3D-geom [(a),(b),(e)-(i)], smiley [(c),(d),(j)-(n)]. First
row: λ = 0.4. (a), (c): observed convolved signal x(t). (b),
(d): Hinton-diagram of G, ideally a block-permutation matrix
with 2 × 2 and 3 × 3 blocks, respectively. (e)-(i), (j)-(n): esti-
mated components ŝ

m, recovered up to the ISA ambiguities
from left to right for λ = 0.4, 0.6, 0.7, 0.8, 0.85.
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