
Acta Cybernetica 19 (2009) 177�190.

Complex Independent Process Analysis∗

Zoltán Szabó† and András L®rincz‡

Abstract

We present a general framework for the search of hidden independent pro-
cesses in the complex domain. The task is to estimate the hidden independent
multidimensional complex-valued components observing only the mixture of
the processes driven by them. In our model (i) the hidden independent pro-
cesses can be multidimensional, they may be subject to (ii) moving averaging,
or may evolve in an autoregressive manner, or (iii) they can be non-stationary.
These assumptions are covered by integrated autoregressive moving average
processes and thus our task is to solve their complex extensions. We show
how to reduce the undercomplete version of complex integrated autoregres-
sive moving average processes to real independent subspace analysis that we
can solve. Simulations illustrate the working of the algorithm.

1 Introduction

Our task is to �nd multidimensional independent components for complex variables.
This task joins complex-valued neural networks [6] with independent component
analysis (ICA) [4]. Although (i) complex-valued neural networks have several suc-
cessful applications and (ii) there is a natural tendency to apply complex-valued
computations for the analysis of biomedical signals (see, e.g., [2] and [3] for the anal-
ysis of EEG and fMRI data, respectively) the methodology of searching complex-
valued independent components is barely treated in the literature. There are exist-
ing methods for the simplest ICA and blind source deconvolution tasks, but � to
the best of our knowledge � there has been no study on non-i.i.d multidimensional
hidden variables for the complex case. We provide the tools for this important
problem family.

The paper is structured as follows: We treat the simplest complex-valued inde-
pendent subspace analysis (complex ISA) problem and its solution in Section 2. In
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the next section, the more general task, the complex-valued integrated autoregres-
sive moving average independent subspace task is formulated. Section 4 contains
our numerical illustrations. Conclusions are drawn in Section 5. The Appendix
elaborates on the reduction technique: we show the series of transcriptions that
reduce this task family to real independent subspace analysis.

2 The ISA Model

Below, in Section 2.1 we introduce the independent subspace analysis (ISA) prob-
lem. We show, how to reduce the complex-valued case to the real-valued one in
Section 2.2.

2.1 The ISA Equations

We provide a joined formalism below for both the real and the complex-valued ISA
models. To do so, let K ∈ {R, C} may stand for either real or for complex numbers
and KD1×D2 denote the set of D1 ×D2 matrices over K. The de�nition of the ISA
task is as follows. We assume M pieces of hidden independent multidimensional
random variables (components).1 Only the linear mixture of these variables is
available for observation. Formally,

x(t) = Ae(t), (1)

where e(t) =
[
e1(t); . . . ; eM (t)

]
∈ KDe (De = Md) is a vector concatenated of the

independent components em(t) ∈ Rd, where � for the sake of notational simplicity
� we used identical dimension for each components. The dimensions of observation
x and hidden source e are Dx and De, respectively. A ∈ KDx×De is the so-called
mixing matrix. The goal of the ISA task is to estimate the original source e(t) from
observations x(t). Our ISA assumptions are the followings:

1. For a given m, em(t) is i.i.d. in time t.

2. I(e1, . . . , eM ) = 0, where I stands for the mutual information of the argu-
ments.

3. A ∈ KDx×Ds has full column rank, so it has a left inverse.

If K = C, then one can talk about complex-valued ISA (complex ISA). For the case
of K = R, the ISA task is real-valued. The particular case of d = 1 gives rise to the
ICA task.

1An excellent review can be found in [5] on complex random variables. Throughout this
paper all complex variables are assumed to be full, i.e., they are not concentrated in any lower
dimensional complex subspace.
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2.2 Reduction of Complex-valued ISA to Real-valued ISA

In what follows, the complex ISA task is reduced to a real-valued one. To do so,
consider the mappings

ϕv : CL 3 v 7→ v ⊗
[

<(·)
=(·)

]
∈ R2L, (2)

ϕM : CL1×L2 3 M 7→ M ⊗
[

<(·) −=(·)
=(·) <(·)

]
∈ R2L1×2L2 , (3)

where ⊗ is the Kronecker product, < stands for the real part, = for the imaginary
part, subscript 'v' (`M ') for vector (matrix). Known properties of mappings ϕv,
ϕM are as follows [8]:

det[ϕM (M)] = |det(M)|2 (M ∈ CL×L), (4)

ϕM (M1M2) = ϕM (M1)ϕM (M2) (M1 ∈ CL1×L2 ,M2 ∈ CL2×L3), (5)

ϕv(Mv) = ϕM (M)ϕv(v) (M ∈ CL1×L2 ,v ∈ CL2), (6)

ϕM (M1 + M2) = ϕM (M1) + ϕM (M2) (M1,M2 ∈ CL1×L2), (7)

ϕM (cM) = cϕM (M) (M ∈ CL1×L2 , c ∈ R). (8)

In words: (4) describes transformation of determinant, while (5), (6), (7) and (8)
expresses preservation of operation for matrix-matrix multiplication, matrix-vector
multiplication, matrix addition, real scalar-matrix multiplication, respectively.

Now, one may apply ϕv to the complex ISA equation ((1) with K =C) and use
(6). The result is as follows:

ϕv(x) = ϕM (A)ϕv(e). (9)

Given that (i) the independence of em ∈ Cd is equivalent to that of ϕv(em) ∈ R2d,
and (ii) the existence of the left inverse of ϕM (A) is inherited from A (see Eq. (5)),
we end up with a real-valued ISA task with observation ϕv(x) and M pieces of
2d-dimensional hidden components ϕv(em).

3 Complex-valued Integrated Autoregressive Mov-

ing Average Independent Subspace Analysis

The solution of the complex-valued ISA task is important, because a series of tran-
scriptions enables one to reduce much more general processes to it. We elaborate
on this transcription series in the Appendix. Here, we provide the end result of
this series, the model for complex-valued integrated autoregressive moving average
independent subspace analysis. This will be the subject of our illustrations in the
next section.
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The complex-valued autoregressive moving average independent subspace task
is this:

s(t) =
p∑

i=1

Pis(t − i) +
q∑

j=0

Qje(t − j), (10)

x(t) = As(t). (11)

These equations can be written in a more compact form by introducing the nota-
tions P[z] := I −

∑p
i=1 Piz

i ∈ K[z]Ds×Ds and Q[z] :=
∑q

j=0 Qjz
j ∈ K[z]Ds×De .

Here, polynomial matrices P[z] and Q[z] represent the autoregressive (AR) and the
moving average (MA) parts, respectively. Now, we can simply write the complex-
valued autoregressive moving average independent subspace task as this:

P[z]s = Q[z]e, (12)

x = As. (13)

Now, we provide the de�nition of the complex-valued integrated autoregressive mov-
ing average independent subspace task. This means that the di�erence process is
complex-valued autoregressive moving average process. For the sake of notational
transparency, let ∇r[z] := (I − Iz)r denote the operator of the rth order di�erence
(0 ≤ r ∈ Z), where I is the identity matrix. Then, the general integrated task
as is follows. We assume M pieces of hidden independent random variables (com-
ponents). Only the linear mixture of ARIMA(p, r, q) (0 ≤ p, r ∈ Z; −1 ≤ q ∈ Z)
processes driven by these hidden components is available for observation. Formally,

P[z]∇r[z]s = Q[z]e, (14)

x = As, (15)

where e(t) =
[
e1(t); . . . ; eM (t)

]
∈ KDe (De = Md) is a vector concatenated of

the independent components em(t) ∈ Rd. Observation x ∈ KDx , hidden source
s ∈ KDs , mixing matrix A ∈ KDx×Ds , polynomial matrices P[z] := I−

∑p
i=1 Piz

i ∈
K[z]Ds×Ds and Q[z] :=

∑q
j=0 Qjz

j ∈ K[z]Ds×De . The task is to estimate the orig-
inal source e(t) from observations x(t).

The conditions, when we can reduce the complex-valued integrated autoregres-
sive moving average independent subspace task to an ISA task are as follows:

1. For a given m, em(t) is i.i.d. in time t.

2. I(e1, . . . , eM ) = 0.

3. A ∈ CDx×Ds has full column rank.

4. Polynomial matrix P[z] is stable (det(P[z]) has no roots within the closed
unit circle).

5. The task is undercomplete: Dx > De.
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The case of r = 0 corresponds to the complex-valued autoregressive moving average
independent subspace task. Details of the series of transcriptions can be found in
the Appendix. The interested reader may �nd further details and a number of
references about multidimensional independent component analysis in [13].

4 Illustrations

The complex-valued integrated autoregressive moving average independent sub-
space analysis problem can be reduced to a real ISA task as it is detailed in Ap-
pendix B. Here we illustrate the performance of the algorithm based on those
reductions. To evaluate the solutions we use a performance measure given in Sec-
tion 4.1. Our test database is described in Section 4.2. Numerical results are
summarized in Section 4.3.

4.1 Performance Index

Using the reduction principle of Section B, in the ideal case, the product of matrix
ϕM (A)ϕM (Q0) and the matrices provided by PCA (principal component analysis),

ISA, i.e., G := (ŴISAŴPCA)ϕM (A)ϕM (Q0) ∈ R2De×2De is a block-permutation
matrix made of 2d× 2d blocks. This block-permutation structure can be measured
by the normalized version of the Amari-error [1] adapted to the ISA task [19]. Let
us decompose matrix G ∈ R2De×2De into blocks of size 2d×2d: G = [Gij ]i,j=1,...,M .

Let gij denote the sum of the absolute values of matrix Gij ∈ R2d×2d. Now, the
following term [15]

r(G) :=
1

2M(M − 1)

 M∑
i=1

(∑M
j=1 gij

maxj gij
− 1

)
+

M∑
j=1

(∑M
i=1 gij

maxi gij
− 1

) (16)

denotes the Amari-index that takes values in [0,1]: for an ideal block-permutation
matrix G it takes 0; for the worst case it takes 1.

4.2 Test Database

We created a database for the illustration, which is scalable in dimension d. The
hidden sources em were de�ned by geometrical forms in Cd. Using that ϕv : Cd →
R2d is a bijection, variables em were created in R2d. Namely, we used geometrical
forms in R2d, applied uniform sampling on these and the ϕ−1

v derived image of the
samples R2d was taken as em ∈ Cd. Geometrical forms were chosen as follows.
We used: (i) the surface of the unit ball, (ii) the straight lines that connect the
opposing corners of the unit cube, (iii) the broken line between 2d + 1 points
0 → e1 → e1 +e2 → . . . → e1 + . . .+e2d (where ei is the i canonical basis vector in
R2d, i.e., all of its coordinates are zero except the i, which is 1), and (iv) the skeleton
of the unit square. Thus in our numerical studies the number of components M
was equal to 4. For illustration, see Fig 1.
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(a) (b) (c) (d)

Figure 1: Illustration of our test database. Hidden components em ∈ Cd are
de�ned as variables uniformly distributed on geometrical forms, shown here. For
this, bijection ϕv : Cd → R2d was used. The �gure serves illustrative purposes only,
because 2d is even.

4.3 Simulations

We present our simulation results here. We focus on 2 distinct issues:

1. How does the estimation error scale with the number of samples? Sample
number T ranged between 2, 000 ≤ T ≤ 30, 000 and the orders of the AR and
MA processes were kept low: p = 1, q = 1 (precisely, MA order: q + 1 = 2).

2. We assumed that polynomial matrix P[z] of Eq. (14) is stable. In the case of
r = 0 this means that process s is stationary. For r > 1 the model describes
non-stationary processes. It is expected that if the roots of P[z] are close to
the unit circle then our estimation will deteriorate. We investigated this by
generating polynomial matrix P[z] as follows:

P[z] =
p∏

i=1

(I − λUiz) (|λ| < 1, λ ∈ R) (17)

Matrices Ui ∈ CDs×Ds were random unitary matrices and the λ → 1 limit
was studied. Now, sample number was set to T = 20, 000. For the `small
task' (p = 1, q = 1) we could not see relevant performance drops even for
λ = 0.99, therefore we increased parameters p and q to 5 and 10, respectively.

In our simulations: (i) the measure of undercompleteness was 2 (Dx = Ds =
2De), (ii) the Amari-index was used to measure the precision of our method. For
all values of parameters (T, p, r, q), the average performances upon 20 random ini-
tializations of e,Q[z],P[z] and A were taken. In economic computations, the value
of r is typically ≤ 2, we investigated values between 1 ≤ r ≤ 3. The coordinates of
matrices Qj in the MA part (see Eq. (14)) were chosen independently and uniformly
from the {v = v1 + iv2 ∈ C : −1

2 ≤ v1, v2 ≤ 1
2} complex unit square. The mixing

matrix A (see, Eq. (15)) was drawn randomly from the unitary group. Polynomial
matrix P[z] was generated according to Eq. (17). The choice of λ is detailed later.
The order of the AR estimation (see Fig. 4) was constrained from above as follows
deg(ŴAR[z]) ≤ 2(q + 1) + p (i.e., two times the MA length + the AR length).
We used the technique of [9] with the Schwarz's Bayesian Criterion to determine
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the optimal order of the AR process. We applied the method of [14] to solve the
associated ISA task.

In our �rst test the order of AR (p) and the order of MA processes (q) were set to
the minimal meaningful values, 1. We investigated the estimation error as a function
of the sample number. Parameter r of the process was set to r = 1, 2 and 3 in the
di�erent computations. Sample number varied as T = 2, 5, 10, 20, 30 · 103. Scaling
properties of the algorithm were studied by changing the value of the dimension of
the components d between 1 and 15. The value of λ was 0.9 (see, Eq. (17)). Our
results are summarized in Fig. 2(e), with an illustrative example given in Fig. 2(a)-
(d).2 According to Fig. 2(e), our method could recover the hidden components with
high precision. The Amari-index r(T ) follows power law r(T ) ∝ T−c (c > 0). The
power law is manifested by straight lines on loglog scales. The slope of the lines are
about the same for di�erent d values. The actual values of the Amari-index can be
found in Table 1 for sample number T = 30, 000.

(a) (b) (c) (d)
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Figure 2: Illustration of our method. (a)-(d): AR order p = 1, MA order q = 1,
order of integration r = 1, sample number T = 30, 000. (a)-(b): typical 2D pro-
jection of the observed mixed x signal, and its rth-order di�erence. (c): estimated
components [ϕv(em)]. (d): Hinton-diagram of G, ideally block-permutation matrix
with 2 × 2 blocks. (e): average Amari-index as a function of the sample size on
loglog scale for di�erent dimensional (d) components; λ = 0.9, p = 1, q = 1, r = 1
(r ≤ 3). For T = 30, 000, the exact errors are shown in Table 1. (f): Estimation
error on log scale as a function of the magnitude of the roots of polynomial matrix
P[z]. (If λ = 1 then the roots are on the unit circle.) Parameters: r = 1, 2 and 3;
AR order: p = 5; MA order: q = 10.

2The r = 1 case is illustrated, results are similar in the studied r ≤ 3 domain.
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In our other test we investigated what happens if the roots of polynomial matrix
P[z] move towards the unit circle from the outside. In these simulations, parameter
λ of Eq. (17) was varied. Our question was the following: How does our method
behave when λ is close to 1? The sample number was set to T = 20, 000 and simul-
taneously the AR order p, and MA order q were increased to 5 and 10, respectively.
Dimension d of components em was 5. Parameter r took values on 1, 2 and 3.
Results are shown in Fig. 2(f). According to this �gure, there is a sudden change
in the performance at around λ = 0.9 − 0.95. Estimations for parameters r = 1, 2
and 3 have about the same errors. We note that for p = 1 and q = 1 we did not
experience any degradation of performance up to λ = 0.99.

d = 1 d = 5 d = 10 d = 15
0.29% (±0.05) 1.59% (±0.05) 4.36% (±2.61) 6.40% (±3.10)

Table 1: Amari-index as a function of the dimension of the components d: average
± std. Sample size: T = 30, 000. For other sample numbers, see Fig. 2(e).

5 Conclusions

We have given a general framework for the search of hidden independent com-
ponents in the complex domain. This integrated autoregressive moving average
subspace problem formulation can cover several distinct assumptions. The hidden
processes (i) may be multidimensional, (ii) can be autoregressive or moving average
processes, and (iii) may be non-stationary processes, too. We have shown that the
undercomplete version of this task can be reduced to real-valued ISA problem. We
investigated the e�ciency of our method by means of numerical simulations. We
experienced that (i) the estimation error decreases and follows a power law as a
function of the sample number and (ii) the estimation is robust if the AR term is
stable.
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Appendix

In this Appendix we elaborate on the details of the general K-ARIMA-IPA model.
Section A: we describe special cases, going step-by-step to more general process
models. In Section B we reduce the complex-valued ARIMA-IPA task to the real-
valued case. This reduction is analogous to the main lines of Section 2.2.

A The K-ARIMA-IPA Equations

We de�ned the ISA task in Section 2.1. In case of ISA, one assumes that the hidden
sources are independent and identically distributed (i.i.d.) in time. Temporal inde-
pendence is, however, a gross oversimpli�cation of sources. Temporal dependencies
can be diminished, e.g., by an

• autoregressive (AR) assumption for the hidden sources. This is the AR inde-
pendent process analysis (AR-IPA) task [7, 11]:

s(t) =
p∑

i=1

Pis(t − i) + Q0e(t), (18)

x(t) = As(t). (19)

Here, we assume the i.i.d. property for driving noise e(t), but not for hidden
source s(t). The state equation ((18)) and the observation ((19)) can be
written compactly using the polynomial matrix formalism: let z stand for the
time-shift operation, that is (zv)(t) := v(t − 1) and polynomials of D1 × D2

matrices are denoted as K[z]D1×D2 := {F[z] =
∑N

n=0 Fnzn,Fn ∈ KD1×D2}.
Then, Eqs. (18)-(19) take the forms:

P[z]s = Q0e, (20)

x = As, (21)

where P[z] := I −
∑p

i=1 Piz
i ∈ K[z]Ds×Ds represents the AR part of order p.

For p = 0, the K-valued ISA (K-ISA) task is recovered.
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• moving average (MA) assumption. The observation in the K-MA-IPA task
(which could also be called K-blind subspace deconvolution (BSSD) [16, 17])
task) is as follows:

x(t) =
q∑

j=0

Qje(t − j). (22)

In polynomial matrix form
x = Q[z]e, (23)

where Q[z] :=
∑q

j=0 Qjz
j ∈ K[z]Ds×De represents the MA part of order q.

Here:

� for q = 0 the K-ISA task appears.

� If d = 1 holds, then we end up with the K-BSD (K-blind source decon-
volution) problem.

Combining the AR and the MA assumptions the K-ARMA-IPA task emerges:

s(t) =
p∑

i=1

Pis(t − i) +
q∑

j=0

Qje(t − j), (24)

x(t) = As(t), (25)

which can be written compactly as

P[z]s = Q[z]e, (26)

x = As, (27)

where P[z] := I −
∑p

i=1 Piz
i ∈ K[z]Ds×Ds and Q[z] :=

∑q
j=0 Qjz

j ∈ K[z]Ds×De .
For the general ARMA process the condition is that polynomial matrix P[z] is
stable, that is det(P[z]) 6= 0, for all z ∈ C, |z| ≤ 1. We note that the stability of
P[z] implies the stationarity of ARMA process s.

Using temporal di�erences, we enter the domain of non-stationary processes. In
such case the ARMA property is assumed for the �rst order di�erence process s(t)−
s(t−1), or similarly for higher order di�erence processes. For the general order r, let
∇r[z] := (I−Iz)r denote the operator of the rth order di�erence (0 ≤ r ∈ Z), where
I is the identity matrix. Then, the de�nition of the K-ARIMA-IPA task as is follows.
We assume M pieces of hidden independent random variables (components). Only
the linear mixture of ARIMA(p, r, q) (0 ≤ p, r ∈ Z; −1 ≤ q ∈ Z) processes driven
by these hidden components is available for observation. Formally,

P[z]∇r[z]s = Q[z]e, (28)

x = As, (29)

where e(t) =
[
e1(t); . . . ; eM (t)

]
∈ KDe (De = Md) is a vector concatenated of

the independent components em(t) ∈ Rd. Observation x ∈ KDx , hidden source
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Figure 3: The K-ARIMA-IPA model. Arrows show the direction of generalization.
The labels of the arrows explain the method of the generalization. For example:

`K-ICA
d≥1−−→K-ISA' means that the K-ISA task is the generalization of the K-ICA

task such that the hidden independent sources may be multidimensional, i.e., d ≥ 1.

s ∈ KDs , mixing matrix A ∈ KDx×Ds , polynomial matrices P[z] := I−
∑p

i=1 Piz
i ∈

K[z]Ds×Ds and Q[z] :=
∑q

j=0 Qjz
j ∈ K[z]Ds×De . The goal of the K-ARIMA-IPA

task is to estimate the original source e(t) from observations x(t).
Our K-ARIMA-IPA assumptions are listed below:

1. For a given m, em(t) is i.i.d. in time t.

2. I(e1, . . . , eM ) = 0.

3. A ∈ KDx×Ds has full column rank.

4. Polynomial matrix P[z] is stable.

The K-ARMA-IPA task corresponds to the r = 0 case.

The relations amongst the di�erent tasks are summarized in Fig. 3.

B Decomposition of the C-uARIMA-IPA Model

Here, we reduce the C-ARIMA-IPA task to R-ISA for the undercomplete case (Dx >
De; C-uARIMA-IPA; letter `u' is to show the restriction for the undercomplete
case). The reduction takes two steps:

1. In Section B.1, the C-uARIMA-IPA task is reduced to the R-uARIMA-IPA
task.
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2. The R-uARIMA-IPA task can be solved following the route suggested in [10],
because it can be reduced to the R-ISA task. The undercomplete assumption
is used in the second step only. For the sake of completeness, we also provide
a description of the second step (Section B.2).

In addition to the conditions of the ARIMA-IPA task, we assume that Q[z] has left
inverse. In other words, there exists a polynomial matrix W[z] ∈ R[z]De×Ds such
that W[z]Q[z] = IDe (thus Ds > De)

3.

B.1 Reducing the Complex ARIMA-IPA Task to Real Vari-

ables

Here we reduce the tasks of Fig. 3, which have complex variables to real variables.
In particular, we reduce the C-uARIMA-IPA problem to the R-uARIMA-IPA task.

One may apply ϕv to the (28)-(29) C-ARIMA-IPA equations (with K =C) and
use (6)-(8). The result is as follows:

ϕM (P[z])∇r[z]ϕv(s) = ϕM (Q[z])ϕv(e), (30)

ϕv(x) = ϕM (A)ϕv(s). (31)

Given that (i) the independence of em ∈ Cd is equivalent to that of ϕv(em) ∈ R2d,
and (ii) the stability of ϕM (P[z]) and the existence of the left inverse of ϕM (Q[z])
are inherited from P[z] and Q[z], respectively (see Eqs. (4) and (5)), we end up with
an R-ARIMA-IPA task with (p, r, q) parameters and M pieces of 2d-dimensional
hidden components ϕv(em).

B.2 Reduction of R-uARIMA-IPA to R-ISA
We ended up with a R-uARIMA-IPA task in Section B.1. This task can be reduced
to a R-ISA task as it has been shown in [10]. The reduction requires two steps: (i)
temporal di�erencing and (ii) linear prediction. These steps are formalized by the
following lemmas:

Lemma 1. Di�erentiating the observation x of an R-(u)ARIMA-IPA task in rth

order one obtains an R-(u)ARMA-IPA task:

P[z] (∇r[z]s) = Q[z]e, (32)

∇r[z]x = A (∇r[z]s) , (33)

(where, the relation zx = A(zs) has been used).

We note that polynomial matrix ϕM (Q[z]) derived from the C-uARIMA-IPA
task has a left inverse (see Section B.1). Thus, we can apply the above quoted
linear prediction based result:

3One can show for Ds > De that under mild conditions Q[z] has left inverse with probability
1 [12]; e.g., when the matrix [Q0, . . . ,Qq ] is drawn from a continuous distribution.
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C-uARIMA-IPA ⇓
ϕv,ϕM

// R-uARIMA-IPA ⇓
∇r[z]

// R-uARMA-IPA ⇓
ŴAR[z],ŴPCA

// R-ISA

Figure 4: Reduction of C-uARIMA-IPA to R-ISA. Pre�x `u': undercomplete case.
Double arrows: transformations of the reduction steps. Estimated R-ISA sep-
aration matrix: ŴISA. ŴR−ARIMA[z] = ŴISAŴPCAŴAR[z]∇r[z]. Estimated

source: ŴR−ARIMA[z]ϕv(x), or after transforming back to the complex space

ê = ϕ−1
v [ŴR−ARIMA[z]ϕv(x)].

Lemma 2. In the R-uARMA-IPA task, observation process x(t) is autoregressive
and its innovation x̃(t) := x(t) − E[x(t)|x(t − 1),x(t − 2), . . .] is AQ0e(t), where
E[·|·] denotes the conditional expectation value. Consequently, there is a polynomial
matrix WAR[z] ∈ R[z]Dx×Dx such that WAR[z]x = AQ0e.

Thus, AR �t of∇r[z] (ϕv[x(t)]) can be used for the estimation of ϕM (AQ0)ϕv[e(t)].
This innovation corresponds to the observation of an undercomplete R-ISA model
(Dx > De), which can be reduced to a complete R-ISA (Dx = De) using princi-
pal component analysis (PCA). Finally, the solution can be �nished by any R-ISA
procedure. The steps of our algorithm are summarized in Fig. 4.

The reduction procedure implies that the derived hidden components ϕv(em)
can be recovered only up to the ambiguities of the R-ISA task [18]: components
of (identical dimensions) can be recovered only up to permutations. Within each
subspaces, unambiguity is warranted only up to linear transformations that can be
reduced to orthogonal transformations provided that both the hidden source (e)
and the observation are white; their expectation values are 0 and the covariance
matrices are identity matrices. These conditions make no loss to the generality of
our solution. Notice that the unitary property of matrix M is equivalent to the
orthogonality of matrix ϕM (M) [8]. Thus, apart from a permutation of the com-
ponents, we can reproduce components em only up to an unitary transformation.
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