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Abstract. The goal of this paper is to search for independent multi-
dimensional processes subject to missing and mixed observations. The
corresponding cocktail-party problem has a number of successful applica-
tions, however, the case of missing observations has been worked out only
for the simplest Independent Component Analysis (ICA) task, where the
hidden processes (i) are one-dimensional, and (ii) signal generation in time
is independent and identically distributed (i.i.d.). Here, the missing ob-
servation situation is extended to processes with (i) autoregressive (AR)
dynamics and (ii) multidimensional driving sources. Performance of the
solution method is illustrated by numerical examples.

1 Introduction

Independent Component Analysis (ICA) [1] has received considerable attention
in signal processing. One may consider ICA as a cocktail party problem: we have
D speakers (sources) and D microphones (sensors), which measure the mixed
signals emitted by the sources. The task is to recover the original sources from
the mixed observations only. One assumes in this estimation that the sources are
independent. ICA model has gained successful applications, e.g., in (i) feature
extraction, (ii) denoising, (iii) analysis of financial and neurobiological data, and
(iv) face processing. For a recent review about ICA, see [2]. The model is more
realistic if we assume that not all, but only some groups of the hidden sources are
independent (‘speakers are talking in groups’). This is the Independent Subspace
Analysis (ISA) generalization of the ICA problem [3]. Applications of the ISA
model include (i) the analysis of EEG, fMRI, ECG signals and gene data, (ii)
pattern and face direction recognition. For a recent review of ISA techniques,
see [4].

In spite of the large number of successful applications, the case of missing
observation is considered only for the simplest ICA model in the literature [5,
6]. We extend the solution to (i) multidimensional sources (ISA) and (ii) ease
the i.i.d. constraint; we consider AR Independent Process Analysis (AR-IPA
problem).

The paper is structured as follows: Section 2 formulates the problem do-
main. Section 3 treats the solution technique. Section 4 contains the numerical
illustrations. Conclusions are drawn in Section 5.
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2 The AR-IPA Model with Missing Observations

We define the AR-IPA model for missing observations (mAR-IPA). Let us assume
that we can only partially (at certain coordinates/time instants) observe (y) the
mixture (x) of independent AR sources, that is

st+1 =
L−1
∑

l=0

Flst−l + et+1, xt = Ast, yt = Mt(xt), (1)

where (i) the driving noises, or the innovation process em of the components
sm ∈ R

dm of the hidden source s = [s1; . . . ; sM ] are independent, non-Gaussian,
and i.i.d. in time, (ii) the unknown mixing matrix A ∈ R

D×D is invertible,

(D =
∑M

m=1
dm), (iii) the AR dynamics F[z] = I−

∑L−1

l=0
Flz

l+1, where I is the
identity matrix and z is the time step operator, is stable, that is det(F[z]) 6= 0, for
all z ∈ C, |z| ≤ 1, (iv) the Mt ‘mask mappings’ represent the coordinates and the
time indices of the non-missing observations. Our task is the estimation of the
hidden source s and the mixing matrix A (or its inverse W) from observation y.
The case Mt = identity and L = 0 corresponds to the ISA task, and if ∀dm = 1
also holds then the ICA task is recovered.

3 Method

The mAR-IPA task can be accomplished as follows. The x process corre-
sponds to an invertible linear transformation of the hidden AR process s and
thus the x process is also an AR process with innovation Aet+1: xt+1 =
∑L−1

l=0
AFlA

−1xt−l + Aet+1. According to the d-dependent central limit theo-
rem [7], the distribution of variable Ae is approximately Gaussian, so one carry
out the estimation by

1. identifying the partially observed AR process yt, and then by

2. estimating the independent components em from the estimated innovation
by means of ISA.

For further details, see Section 4.2.

4 Illustrations

Here, we illustrate the efficiency of the proposed mAR-IPA estimation technique.
Test cases are introduced in Section 4.1. Numerical results are presented in
Section 4.2.

4.1 Databases

We define three databases to study our identification algorithm. In the ABC

database, hidden sources em were uniform distributions defined by 2-dimensional
images (dm = 2) of the English alphabet (see Fig. 1(a); M = 3, D = 6). In the
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(a) (b)

Fig. 1: Illustration of the (a): ABC and (b): 3D-geom databases.

3D-geom test ems were random variables uniformly distributed on 3-dimensional
geometric forms (dm = 3, M = 2, D = 6; see Fig. 1(b)). In the Beatles test
hidden sources (sm) are 8 kHz sampled portions of two stereo Beatles songs (A
Hard Day’s Night, Can’t Buy Me Love; dm = 2, M = 2, D = 4).1

4.2 Simulations

Results on databases ABC, 3D-geom and Beatles are provided here. Because of
the ambiguities of the ISA problem, components of the hidden sources can only
be recovered up to permutation and invertible transformation within the sub-
spaces [8]. For this reason, and because we demonstrate the case of d-dimensional

sources, the optimal estimation provides matrix G := ŴISAA, which is a block-
permutation matrix made of d×d sized blocks. This block-permutation property
can be measured by the Amari-index

r(G) :=
1

2M(M − 1)





M
∑

i=1

(

∑M

j=1
gij

maxj gij

− 1

)

+

M
∑

j=1

(

∑M

i=1
gij

maxi gij

− 1

)



 , (2)

where gij =
∑d

k,l=1
|Gij

kl| with the d × d sized block decomposition of G =
[

Gij ∈ R
d×d

]

i,j=1,...,M
∈ R

D×D.2 The Amari-index takes values in [0, 1]: for an

ideal block-permutation matrix G it takes 0; for the worst case it is 1. This mea-
sure was used to evaluate the performance of the proposed mAR-IPA method.
For each individual parameter, 10 random runs (A, F[z], e) were averaged. Our
parameters are: T , the sample number of observations yt, L, the order of the
AR process, p, the probability of missing observation in Mt (xt,is, the coordi-
nates of process x, were not observed with probability p, independently), and
λ, the (contraction) parameter of the stable polynomial matrix F[z]. It is ex-
pected that if the roots of F[z] are close to the unit circle then our estimation
will deteriorate. We investigated this by generating the polynomial matrix F[z]

as F[z] =
∏L

l=1
(I − λOiz) (|λ| < 1, λ ∈ R), where matrices Oi ∈ R

D×D were
random orthogonal and the λ → 1 limit was studied. Mixing matrix A was
a random orthogonal matrix. AR fit subject to missing observations was ac-
complished by means of (i) the maximum likelihood (ML) principle [9], (ii) the

1See http://rock.mididb.com/beatles/.
2One can apply a similar construction in case of different dm source dimensions [4].
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subspace technique [10], and (iii) in a Bayesian framework using normal-inverted
Wishart (shortly NIW ) conjugate prior and filling in the next missing data using
the maximum-a-posteriori estimation of the parameters [11]. In the ISA subtask,
we used the ISA separation theorem [12] and grouped the computed ICA com-
ponents. FastICA [13] was used for the ICA estimation and the dependency of
the elements was estimated by means of the kernel canonical correlation method
[14]. The performance of the method is summarized by notched boxed plots,
which show the quartiles (Q1, Q2, Q3), depict the outliers, i.e., those that fall
outside of interval [Q1−1.5(Q3−Q1), Q3+1.5(Q3−Q1)] by circles, and whiskers
represent the largest and smallest non-outlier data points.

The L order of the AR process was 1 and 2 for the ABC and the 3D-geom

tasks, respectively, contraction parameter λ was varied between values 0.1 and
0.99, the probability of missing observations took different values (p = 0.01, 0.1,
0.15, 0.2), and sample number T was set to 1, 000, 2, 000, and 5, 000. According
to our experiences, the methods are efficient on both tasks. The most precise
method is ML followed by the subspace method and the NIW technique (see
Fig. 2(a)). Running time of the algorithms is the opposite and the ML technique
is computation time demanding (see Fig. 2(b)). Considering the ratio of missing
observations – in the parameter range we studied – the ML, the subspace and
the NIW method can handle parameter p up to 0.2 − 0.3 (see Fig. 2(c)-(d)),
p = 0.15 − 0.2, and p = 0.1 − 0.15, respectively. Figure 2(c)-(d) demonstrate
that the ML method works robustly for the contraction parameter λ and provides
reasonable estimations for values around 1. Figure 2(e)-(j) illustrate the ML
component estimations for different p values.

Because of the high computation demands of the ML technique, the perfor-
mances of the subspace and NIW methods were studied on the Beatles test.
According to the Schwarz’s Bayesian Criterion we used the crude L = 10
AR estimation. Results for sample number T = 30, 000 are summarized in
Fig. 3. According to the figure, the methods give reasonable estimations up to
p = 0.1− 0.15. In accord with our previous experiences, the subspace method is
more precise, but it is somewhat slower.

5 Conclusions

We addressed the problem of independent process analysis subject to missing ob-
servations. Previous works assumed 1D, i.i.d. ICA sources that we extended to
multidimensional Independent Subspace Analysis (ISA) and we allowed an au-
toregressive dynamics, too. During the solution, we used the separation principle
that breaks the problem into two subproblems, namely to the identification of
the AR process subject to missing observations and to ISA. Numerical examples
were used to illustrate the performance of different methods.
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Fig. 2: Illustration of the estimations on the 3D-geom and ABC datasets. (a),
(b): Amari-index and elapsed time, respectively as a function of the probability
of missing observation (p) for the 3D-geom dataset on log-log scale and for AR
order L = 1 and sample number T = 5000. (c)-(d): Amari-index for the ML

method for p = 0.2 and for p = 0.3 as a function of the AR order for the
ABC test. (e)-(j): illustration of the estimation for the ML method: L = 1,
T = 5, 000, λ = 0.9; (e) observation before mapping Mt (x). (g): estimated
components (êm) with average Amari-index for p = 0.01. (f): Hinton-diagram
of matrix G for (g)–it is approximately a block-permutation matrix with 2 × 2
blocks. (h)-(j): like (g), but for p = 0.1, p = 0.2, and p = 0.3, respectively.
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Fig. 3: Illustration of the subspace and the NIW methods for the Beatles dataset
for sample number T = 30, 000 and AR order L = 10. (a): Amari-index as a
function of the rate of missing observations p on log-log scale, (b): elapsed time.
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