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The task

Samples: {(xi , yi )}ℓi=1. Wanted: f ∈ H such that f (xi ) ≈ yi .

Distribution regression:

xi -s are distributions,
available only through samples: {xi ,n}Ni

n=1.

⇒ Training examples: labelled bags.
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Example: aerosol prediction from satellite images

Bag := pixels of a multispectral satellite image over an area.
Label of a bag := aerosol value.

Relevance: climate research.
Engineered methods [Wang et al., 2012]: 100×RMSE = 7.5− 8.5.
Using distribution regression?
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Wider context

Context:

machine learning: multi-instance learning,
statistics: point estimation tasks (without analytical formula).

Applications:

computer vision: image = collection of patch vectors,
network analysis: group of people = bag of friendship graphs,
natural language processing: corpus = bag of documents,
time-series modelling: user = set of trial time-series.
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Several algorithmic approaches

1 Parametric fit: Gaussian, MOG, exp. family
[Jebara et al., 2004, Wang et al., 2009, Nielsen and Nock, 2012].

2 Kernelized Gaussian measures:
[Jebara et al., 2004, Zhou and Chellappa, 2006].

3 (Positive definite) kernels:
[Cuturi et al., 2005, Martins et al., 2009, Hein and Bousquet, 2005].

4 Divergence measures (KL, Rényi, Tsallis): [Póczos et al., 2011].

5 Set metrics: Hausdorff metric [Edgar, 1995]; variants
[Wang and Zucker, 2000, Wu et al., 2010, Zhang and Zhou, 2009,
Chen and Wu, 2012].
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Theoretical guarantee?

MIL dates back to [Haussler, 1999, Gärtner et al., 2002].

Sensible methods in regression: require density estimation
[Póczos et al., 2013, Oliva et al., 2014, Reddi and Póczos, 2014]
+ assumptions:

1 compact Euclidean domain.
2 output = R ([Oliva et al., 2013] allows distribution).

Szabó et al. Two-stage Sampled Learning Theory on Distributions



Kernel, RKHS

k : D×D → R kernel on D, if

∃ϕ : D → H(ilbert space) feature map,
k(a, b) = 〈ϕ(a), ϕ(b)〉H (∀a, b ∈ D).
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Kernel, RKHS

k : D×D → R kernel on D, if

∃ϕ : D → H(ilbert space) feature map,
k(a, b) = 〈ϕ(a), ϕ(b)〉H (∀a, b ∈ D).

Kernel examples: D = R
d (p > 0, θ > 0)

k(a, b) = (〈a, b〉+ θ)
p
: polynomial,

k(a, b) = e−‖a−b‖22/(2θ
2): Gaussian,

k(a, b) = e−θ‖a−b‖1 : Laplacian.

In the H = H(k) RKHS (∃!): ϕ(u) = k(·, u).
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Kernel: example domains (D)

Euclidean space: D = R
d .

Graphs, texts, time series, dynamical systems.

Distributions!
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Problem formulation

Given:

labelled bags ẑ = {(x̂i , yi)}ℓi=1,

i th bag: x̂i = {xi ,1, . . . , xi ,N} i .i .d.∼ xi ∈ P (D), yi ∈ R.

Task: find a P (D) → R mapping based on ẑ.
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Problem formulation

Given:

labelled bags ẑ = {(x̂i , yi)}ℓi=1,

i th bag: x̂i = {xi ,1, . . . , xi ,N} i .i .d.∼ xi ∈ P (D), yi ∈ R.

Task: find a P (D) → R mapping based on ẑ.

Construction: distribution embedding (µx)

P (D)
µ=µ(k)−−−−→X ⊆ H = H(k)
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Problem formulation

Given:

labelled bags ẑ = {(x̂i , yi)}ℓi=1,

i th bag: x̂i = {xi ,1, . . . , xi ,N} i .i .d.∼ xi ∈ P (D), yi ∈ R.

Task: find a P (D) → R mapping based on ẑ.

Construction: distribution embedding (µx) + ridge regression

P (D)
µ=µ(k)−−−−→X ⊆ H = H(k)

f ∈H=H(K)−−−−−−−→R.
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Problem formulation

Given:

labelled bags ẑ = {(x̂i , yi)}ℓi=1,

i th bag: x̂i = {xi ,1, . . . , xi ,N} i .i .d.∼ xi ∈ P (D), yi ∈ R.

Task: find a P (D) → R mapping based on ẑ.

Construction: distribution embedding (µx) + ridge regression

P (D)
µ=µ(k)−−−−→X ⊆ H = H(k)

f ∈H=H(K)−−−−−−−→R.

Our goal: risk bound compared to the regression function

fρ(µx) =

∫

R

ydρ(y |µx).
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Goal in details

Expected risk:

R [f ] = E(x ,y) |f (µx)− y |2 .

Contribution: analysis of the excess risk

E(f λẑ , fρ) = R[f λẑ ]−R[fρ]
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Goal in details

Expected risk:

R [f ] = E(x ,y) |f (µx)− y |2 .

Contribution: analysis of the excess risk

E(f λẑ , fρ) = R[f λẑ ]−R[fρ] ≤ g(ℓ,N , λ) → 0 and rates,
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Goal in details

Expected risk:

R [f ] = E(x ,y) |f (µx)− y |2 .

Contribution: analysis of the excess risk

E(f λẑ , fρ) = R[f λẑ ]−R[fρ] ≤ g(ℓ,N , λ) → 0 and rates,

f λẑ = argmin
f ∈H

1

ℓ

ℓ∑

i=1

|f (µx̂i )− yi |2 + λ ‖f ‖2
H
, (λ > 0).
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Goal in details

Expected risk:

R [f ] = E(x ,y) |f (µx)− y |2 .

Contribution: analysis of the excess risk

E(f λẑ , fρ) = R[f λẑ ]−R[fρ] ≤ g(ℓ,N , λ) → 0 and rates,

f λẑ = argmin
f ∈H

1

ℓ

ℓ∑

i=1

|f (µx̂i )− yi |2 + λ ‖f ‖2
H
, (λ > 0).

We consider the well-specified assumption: fρ ∈ H.
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Step-1: mean embedding

k : D×D → R kernel; canonical feature map: ϕ(u) = k(·, u).
Mean embedding of a distribution x , x̂i ∈ P(D):

µx =

∫

D

k(·, u)dx(u) ∈ H(k),

µx̂i =
1

N

N∑

n=1

k(·, xi ,n).

Linear K ⇒ set kernel:

K (µx̂i , µx̂j ) =
〈
µx̂i , µx̂j

〉

H
=

1

N2

N∑

n,m=1

k(xi ,n, xj ,m).
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Step-1: mean embedding

k : D×D → R kernel; canonical feature map: ϕ(u) = k(·, u).
Mean embedding of a distribution x , x̂i ∈ P(D):

µx =

∫

D

k(·, u)dx(u) ∈ H(k),

µx̂i =
1

N

N∑

n=1

k(·, xi ,n).

Nonlinear K example:

K (µx̂i , µx̂j ) = e−
‖µx̂i −µx̂j

‖2
H

2σ2 .
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Step-2: ridge regression (analytical solution)

Given:

training sample: ẑ,
test distribution: t.

Prediction on t:

(f λẑ ◦ µ)(t) = k(K+ ℓλIℓ)
−1[y1; . . . ; yℓ],

K = [K (µx̂i , µx̂j )] ∈ R
ℓ×ℓ,

k = [K (µx̂1, µt), . . . ,K (µx̂ℓ , µt)] ∈ R
1×ℓ.

(1)

(2)

(3)

Szabó et al. Two-stage Sampled Learning Theory on Distributions



Blanket assumptions

D: separable, topological domain.

k :

bounded: sup
u∈D

k(u, u) ≤ Bk ∈ (0,∞),

continuous.

K : bounded; Hölder continuous: ∃L > 0, h ∈ (0, 1] such that

‖K (·, µa)− K (·, µb)‖H ≤ L ‖µa − µb‖hH .

y : bounded.

X = µ (P(D)) ∈ B(H).
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Performance guarantee (in human-readable format)

Difficulty of the task:

fρ is ’c-smooth’,
’b-decaying covariance operator’.

Contribution: If ℓ ≥ λ− 1
b
−1, then with high probability

E(f λẑ , fρ) ≤
logh(ℓ)

Nhλ3
+ λc +

1

ℓ2λ
+

1

ℓλ
1
b

︸ ︷︷ ︸

g(ℓ,N,λ)

.
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Performance guarantee (in human-readable format)

Difficulty of the task:

fρ is ’c-smooth’,
’b-decaying covariance operator’.

Contribution: If ℓ ≥ λ− 1
b
−1, then with high probability

E(f λẑ , fρ) ≤ logh(ℓ)
Nhλ3 + λc +

1

ℓ2λ
+

1

ℓλ
1
b

︸ ︷︷ ︸

g(ℓ,N,λ)

.

x̂i c-smoothness

Szabó et al. Two-stage Sampled Learning Theory on Distributions



Performance guarantee: example

Assume

b is ’large’ (1/b ≈ 0, ’small’ effective input dimension),

h = 1 (K : Lipschitz),
✄

✂

�

✁
1 =

✄

✂

�

✁
2 in (4) ⇒ λ; ℓ = Na (a > 0),

t = ℓN: total number of samples processed.

Then

1 c = 2 (’smooth’ fρ): E(f λẑ , fρ) ≈ t−
2
7 – faster convergence,

2 c = 1 (’non-smooth’ fρ): E(f λẑ , fρ) ≈ t−
1
5 – slower.
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Hölder K examples

In case of compact metric D, universal k :

KG Ke KC

e−
‖µa−µb‖

2
H

2θ2 e−
‖µa−µb‖H

2θ2

(

1 + ‖µa − µb‖2H /θ2
)−1

h = 1 h = 1
2 h = 1

Kt Ki

(

1 + ‖µa − µb‖θH
)−1 (

‖µa − µb‖2H + θ2
)− 1

2

h = θ
2 (θ ≤ 2) h = 1

They are functions of ‖µa − µb‖H ⇒ computation: similar to set
kernel.
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Demo

Supervised entropy learning:
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Aerosol prediction from satellite images:

State-of-the-art baseline: 7.5− 8.5 (±0.1− 0.6).
MERR: 7.81 (±1.64).
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Summary

Problem: distribution regression.

Literature: large number of heuristics.

Contribution:

a simple ridge solution is consistent,
specifically, the set kernel is so (15-year-old open question).

Code in ITE, extended analysis (submitted to JMLR):

https://bitbucket.org/szzoli/ite/

http://arxiv.org/abs/1411.2066.
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Thank you for the attention!
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Appendix: contents

Topological definitions, separability.

Prior definition (ρ).

∃ρ, X ∈ B(H).

Universal kernel examples.

Demos: further details.

Hausdorff metric.

Weak topology on P(D).
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Topological space, open sets

Given: D 6= ∅ set.

τ ⊆ 2D is called a topology on D if:
1 ∅ ∈ τ , D ∈ τ .
2 Finite intersection: O1 ∈ τ , O2 ∈ τ ⇒ O1 ∩ O2 ∈ τ .
3 Arbitrary union: Oi ∈ τ (i ∈ I ) ⇒ ∪i∈IOi ∈ τ .

Then, (D, τ) is called a topological space; O ∈ τ : open sets.
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Closed-, compact set, closure, dense subset, separability

Given: (D, τ). A ⊆ D is

closed if D\A ∈ τ (i.e., its complement is open),

compact if for any family (Oi )i∈I of open sets with
A ⊆ ∪i∈IOi , ∃i1, . . . , in ∈ I with A ⊆ ∪n

j=1Oij .

Closure of A ⊆ D:

Ā :=
⋂

A⊆C closed in D

C . (4)

A ⊆ D is dense if Ā = D.

(D, τ) is separable if ∃ countable, dense subset of D.
Counterexample: l∞/L∞.
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Prior: ρ ∈ P(b, c)

Let the T : H → H covariance operator be

T =

∫

X

K (·, µa)K
∗(·, µa)dρX (µa)

with eigenvalues tn (n = 1, 2, . . .).

Assumption: ρ ∈ P(b, c) = set of distributions on X × Y

α ≤ nbtn ≤ β (∀n ≥ 1;α > 0, β > 0),

∃g ∈ H such that fρ = T
c−1
2 g with ‖g‖2

H
≤ R (R > 0),

where b ∈ (1,∞), c ∈ [1, 2].

Intuition: 1/b – effective input dimension, c – smoothness of
fρ.
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Notes on the assumptions: ∃ρ, X ∈ B(H)

k : bounded, continuous ⇒
µ : (P(D),B(τw )) → (H ,B(H)) measurable.
µ measurable, X ∈ B(H) ⇒ ρ on X × Y : well-defined.

If (*) := D is compact metric, k is universal, then

µ is continuous, and
X ∈ B(H).
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Universal kernel

Def.: k : D×D → R kernel is universal if

it is continuous,
H(k) is dense in (C (D), ‖·‖∞).

Examples: on compact subsets of Rd

k(a, b) = e−
‖a−b‖22

2σ2 , (σ > 0)

k(a, b) = e−σ‖a−b‖1 , (σ > 0)

k(a, b) = eβ〈a,b〉, (β > 0), or more generally

k(a, b) = f (〈a, b〉), f (x) =

∞∑

n=0

anx
n (∀an > 0)
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Demo-1: supervised entropy learning

Problem: learn the entropy of the 1st coo. of (rotated)
Gaussians.

Baseline: kernel smoothing based distribution regression
(applying density estimation) =: DFDR.

Performance: RMSE boxplot over 25 random experiments.

Experience:

more precise than the only theoretically justified method,
by avoiding density estimation.
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Demo-2: aerosol prediction – picked kernels

Kernel definitions (p = 2, 3):

kG (a, b) = e−
‖a−b‖22

2θ2 , ke(a, b) = e−
‖a−b‖2

2θ2 , (5)

kC (a, b) =
1

1 +
‖a−b‖22

θ2

, kt(a, b) =
1

1 + ‖a− b‖θ2
, (6)

kp(a, b) = (〈a, b〉+ θ)p , kr (a, b) = 1− ‖a − b‖22
‖a − b‖22 + θ

, (7)

ki (a, b) =
1

√

‖a − b‖22 + θ2
, (8)

kM, 3
2
(a, b) =

(

1 +

√
3 ‖a − b‖2

θ

)

e−
√

3‖a−b‖2
θ , (9)

kM, 5
2
(a, b) =

(

1 +

√
5 ‖a − b‖2

θ
+

5 ‖a − b‖22
3θ2

)

e−
√

5‖a−b‖2
θ . (10)
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Existing methods: set metric based algorithms

Hausdorff metric [Edgar, 1995]:

dH(X ,Y ) = max

{

sup
x∈X

inf
y∈Y

d(x , y), sup
y∈Y

inf
x∈X

d(x , y)

}

. (11)

Metric on compact sets of metric spaces [(M , d); X ,Y ⊆ M ].
’Slight’ problem: highly sensitive to outliers.
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Weak topology on P(D)

Def.: It is the weakest topology such that the

Lh : (P(D), τw ) → R,

Lh(x) =

∫

D

h(u)dx(u)

mapping is continuous for all h ∈ Cb(D), where

Cb(D) = {(D, τ) → R bounded, continuous functions}.
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