Nonparametric Independence Testing for Small Sample Sizes

Aaditya Ramdas, Leila Wehbe (IJCAI-2015)

Zoltán Szabó

Machine Learning Journal Club, Gatsby Unit

April 4, 2016

• Goal: nonparametric independence testing.

- Goal: nonparametric independence testing.
- Idea:
 - 1 large $cov(X, Y) \Rightarrow$ declare dependence.

- Goal: nonparametric independence testing.
- Ideas:
 - 1 large $cov(X, Y) \Rightarrow$ declare dependence.
 - ② large $\sup_{f \in \mathcal{F}, g \in \mathcal{G}} cov(f(X), g(Y)) \Rightarrow$ dependence
 - nice asymptotic results.

- Goal: nonparametric independence testing.
- Ideas:
 - 1 large $cov(X, Y) \Rightarrow$ declare dependence.
 - 2 large $\sup_{f \in \mathcal{F}, g \in \mathcal{G}} cov(f(X), g(Y)) \Rightarrow$ dependence
 - nice asymptotic results.
- Focus:
 - small sample size,
 - small false positive regime: 'avoid' false dependence detection.

- Goal: nonparametric independence testing.
- Ideas:
 - 1 large $cov(X, Y) \Rightarrow$ declare dependence.
 - 2 large $\sup_{f \in \mathcal{F}, g \in \mathcal{G}} cov(f(X), g(Y)) \Rightarrow$ dependence
 - nice asymptotic results.
- Focus:
 - small sample size,
 - small false positive regime: 'avoid' false dependence detection.
- Trick: introduce some bias to reduce variance Stein.

large
$$\operatorname{shrunk}[\sup_{f \in \mathcal{F}, g \in \mathcal{G}} \operatorname{cov}(f(X), g(Y))] \Rightarrow \operatorname{dependence}$$

Ingredients: independence testing problem

- Given: $\{(x_i, y_i)\}_{i=1}^n \stackrel{i.i.d.}{\sim} P_{XY}$.
- Marginals of P_{XY} : P_X , P_Y .
- Hypotheses:

$$H_0: P_{XY} = P_X \times P_Y, \qquad \qquad H_1: P_{XY} \neq P_X \times P_Y.$$

Ingredients: independence testing problem

- Given: $\{(x_i, y_i)\}_{i=1}^n \stackrel{i.i.d.}{\sim} P_{XY}$.
- Marginals of P_{XY} : P_X , P_Y .
- Hypotheses:

$$H_0: P_{XY} = P_X \times P_Y, \qquad H_1: P_{XY} \neq P_X \times P_Y.$$

- Aim:
 - **1** Low type-I error $= \mathbb{P}(\text{detect dependence, when there isn't any}) \leq \alpha$,

false positive

② High power = $\mathbb{P}(\text{detect dependence, when there is})$.

Ingredients: cross-covariance

• $X \in (\mathfrak{X}, k)$, $Y \in (\mathfrak{Y}, \ell)$, k, ℓ : kernels. RKHSs: \mathfrak{H}_k , \mathfrak{H}_ℓ .

Ingredients: cross-covariance

- $X \in (\mathfrak{X}, k)$, $Y \in (\mathfrak{Y}, \ell)$, k, ℓ : kernels. RKHSs: \mathfrak{H}_k , \mathfrak{H}_ℓ .
- Mean embedding and its empirical counterpart:

$$\mu_{X} = \mathbb{E}_{x \sim \mathbb{P}_{X}} \underbrace{k(\cdot, x)}_{=:\phi(x)}, \qquad \mu_{Y} = \mathbb{E}_{y \sim \mathbb{P}_{Y}} \underbrace{\ell(\cdot, y)}_{=:\psi(y)},$$

$$\hat{\mu}_{X} = \frac{1}{n} \sum_{i=1}^{n} \phi(x_{i}), \qquad \hat{\mu}_{Y} = \frac{1}{n} \sum_{i=1}^{n} \psi(y_{i}).$$

Ingredients: cross-covariance

- $X \in (\mathfrak{X}, k)$, $Y \in (\mathfrak{Y}, \ell)$, k, ℓ : kernels. RKHSs: \mathfrak{H}_k , \mathfrak{H}_ℓ .
- Mean embedding and its empirical counterpart:

$$\mu_{X} = \mathbb{E}_{x \sim \mathbb{P}_{X}} \underbrace{k(\cdot, x)}_{=:\phi(x)}, \qquad \mu_{Y} = \mathbb{E}_{y \sim \mathbb{P}_{Y}} \underbrace{\ell(\cdot, y)}_{=:\psi(y)},$$

$$\hat{\mu}_{X} = \frac{1}{n} \sum_{i=1}^{n} \phi(x_{i}), \qquad \hat{\mu}_{Y} = \frac{1}{n} \sum_{i=1}^{n} \psi(y_{i}).$$

Cross-covariance:

$$\Sigma_{XY} = \mathbb{E}_{(x,y)\sim P_{XY}} [\underbrace{\phi(x) - \mu_{X}}_{=:\tilde{\phi}(x)}] \otimes [\underbrace{\psi(y) - \mu_{Y}}_{=:\tilde{\psi}(y)}] : \mathcal{H}_{\ell} \to \mathcal{H}_{k},$$

$$S_{XY} = \frac{1}{n} \sum_{i=1}^{n} [\phi(x_{i}) - \hat{\mu}_{X}] \otimes [\psi(y_{i}) - \hat{\mu}_{Y}].$$

$$\mathsf{Known} \colon \langle f, \Sigma_{XY}g \rangle_{\mathfrak{H}_k} = cov(f(X), g(Y)), \forall g \in \mathfrak{H}_\ell, f \in \mathfrak{H}_k.$$

Are \mathcal{H}_{ℓ} and \mathcal{H}_{k} enough for the independence testing of X and Y?

Yes
$$\Rightarrow$$
 Test: $\Sigma_{XY} = 0$.

$$\mathsf{Known:}\ \langle f, \Sigma_{XY}g \rangle_{\mathfrak{H}_k} = cov(f(X), g(Y)), \forall g \in \mathfrak{H}_\ell, f \in \mathfrak{H}_k.$$

Are \mathcal{H}_{ℓ} and \mathcal{H}_{k} enough for the independence testing of X and Y?

• $C_b(\mathfrak{X})$ and $C_b(\mathfrak{Y})$ would be sufficient: Jacod and Protter 2000.

Known: $\langle f, \Sigma_{XY}g \rangle_{\mathcal{H}_k} = cov(f(X), g(Y)), \forall g \in \mathcal{H}_\ell, f \in \mathcal{H}_k.$

Are \mathcal{H}_{ℓ} and \mathcal{H}_{k} enough for the independence testing of X and Y?

- $C_b(\mathfrak{X})$ and $C_b(\mathfrak{Y})$ would be sufficient: Jacod and Protter 2000.
- Trick [Gretton et al. '05]: guarantee the denseness of \mathcal{H}_k in $C_b(\mathfrak{X})$, \mathcal{H}_ℓ in $C_b(\mathfrak{Y})$.

 $\mathsf{Known} \colon \langle f, \Sigma_{XY} g \rangle_{\mathfrak{H}_k} = cov(f(X), g(Y)), \forall g \in \mathfrak{H}_\ell, f \in \mathfrak{H}_k.$

Are \mathcal{H}_{ℓ} and \mathcal{H}_{k} enough for the independence testing of X and Y?

- $C_b(\mathfrak{X})$ and $C_b(\mathfrak{Y})$ would be sufficient: Jacod and Protter 2000.
- Trick [Gretton et al. '05]: guarantee the denseness of \mathcal{H}_k in $C_b(\mathfrak{X})$, \mathcal{H}_ℓ in $C_b(\mathfrak{Y})$.
- Space: compact metric, kernel: universal √

Known: $\langle f, \Sigma_{XY}g \rangle_{\mathcal{H}_k} = cov(f(X), g(Y)), \forall g \in \mathcal{H}_\ell, f \in \mathcal{H}_k.$

Are \mathcal{H}_{ℓ} and \mathcal{H}_{k} enough for the independence testing of X and Y?

- $C_b(\mathfrak{X})$ and $C_b(\mathfrak{Y})$ would be sufficient: Jacod and Protter 2000.
- Trick [Gretton et al. '05]: guarantee the denseness of \mathcal{H}_k in $C_b(\mathfrak{X})$, \mathcal{H}_ℓ in $C_b(\mathfrak{Y})$.
- Space: compact metric, kernel: universal √
- Examples:

$$k(\mathbf{x}, \mathbf{x}') = e^{-\gamma \|\mathbf{x} - \mathbf{x}'\|_2^2}, \qquad k(\mathbf{x}, \mathbf{x}') = e^{-\gamma \|\mathbf{x} - \mathbf{x}'\|_1}.$$

Side-note

 $\Sigma_{XY} \in HS(\mathcal{H}_{\ell}, \mathcal{H}_{k}) =: HS(\mathcal{G}, \mathcal{F})$. What does this mean? Extension of Frobenious norm.

$$\|C\|_F^2 = \sum_{i,j} C_{ij}^2$$

Side-note

 $\Sigma_{XY} \in HS(\mathcal{H}_{\ell}, \mathcal{H}_{k}) =: HS(\mathcal{G}, \mathcal{F})$. What does this mean? Extension of Frobenious norm.

$$\|C\|_F^2 = \sum_{i,j} C_{ij}^2,$$

$$\|C\|_{HS}^2 = \sum_{i,j} \langle Cg_j, f_i \rangle_{\mathfrak{F}}^2 < \infty,$$

where

- $C: \mathcal{G} \to \mathcal{F}$ bounded linear operator.
- \mathcal{G} , \mathcal{F} are separable Hilbert spaces with ONBs $\{g_j\}_j$, $\{f_i\}_i$.

HS operator example: $f \otimes g$

• Intuition:
$$\mathbf{fg}^T$$
. $(\mathbf{fg}^T)\mathbf{u} = \mathbf{f}\underbrace{(\mathbf{g}^T\mathbf{u})}_{=\langle \mathbf{g}, \mathbf{u} \rangle}$.

HS operator example: $f \otimes g$

• Intuition:
$$\mathbf{fg}^T$$
. $(\mathbf{fg}^T)\mathbf{u} = \mathbf{f}\underbrace{(\mathbf{g}^T\mathbf{u})}_{=\langle \mathbf{g}, \mathbf{u} \rangle}$.

• Outer product: $f \otimes g \ (f \in \mathcal{F}, g \in \mathcal{G})$

$$(f \otimes g)(u) = f \langle g, u \rangle_{\mathfrak{G}}, \forall u \in \mathfrak{G}.$$

HS operator example: $f \otimes g$

- Intuition: \mathbf{fg}^T . $(\mathbf{fg}^T)\mathbf{u} = \mathbf{f}\underbrace{(\mathbf{g}^T\mathbf{u})}_{=(\mathbf{g},\mathbf{u})}$.
- Outer product: $f \otimes g \ (f \in \mathcal{F}, g \in \mathcal{G})$

$$(f \otimes g)(u) = f \langle g, u \rangle_{\mathfrak{S}}, \forall u \in \mathfrak{S}.$$

• HS norm of $f \otimes g$:

$$\|f\otimes g\|_{HS}^2 = \langle f,f\rangle_{\mathfrak{F}}\langle g,g\rangle_{\mathfrak{G}}.$$

Cross-covariance: made of $f \otimes g$ -type quantities.

HSIC

It is easy to compute $\|\Sigma_{XY}\|_{HS}^2 =: HSIC$.

$$\mathsf{HSIC} = \|\Sigma_{XY}\|_{\mathit{HS}}^2 = \left\langle \frac{1}{n} \sum_{i=1}^n \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i), \frac{1}{n} \sum_{j=1}^n \tilde{\phi}(x_j) \otimes \tilde{\psi}(y_j) \right\rangle_{\mathit{HS}}$$

HSIC

It is easy to compute $\|\Sigma_{XY}\|_{HS}^2 =: HSIC$.

$$\begin{split} \mathsf{HSIC} &= \left\| \Sigma_{XY} \right\|_{\mathit{HS}}^2 = \left\langle \frac{1}{n} \sum_{i=1}^n \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i), \frac{1}{n} \sum_{j=1}^n \tilde{\phi}(x_j) \otimes \tilde{\psi}(y_j) \right\rangle_{\mathit{HS}} \\ &= \frac{1}{n^2} \sum_{i,j=1}^n \underbrace{\left\langle \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i), \tilde{\phi}(x_j) \otimes \tilde{\psi}(y_j) \right\rangle_{\mathit{HS}}}_{\left\langle \tilde{\phi}(x_i), \tilde{\phi}(x_j) \right\rangle_{\mathfrak{R}_{\ell}} \left\langle \tilde{\psi}(y_i), \tilde{\psi}(y_j) \right\rangle_{\mathfrak{R}_{\ell}} = \tilde{\kappa}_{ij} \tilde{L}_{ij} \end{split}$$

It is easy to compute $\|\Sigma_{XY}\|_{HS}^2 =: HSIC$.

$$\begin{split} \mathsf{HSIC} &= \left\| \Sigma_{XY} \right\|_{\mathit{HS}}^2 = \left\langle \frac{1}{n} \sum_{i=1}^n \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i), \frac{1}{n} \sum_{j=1}^n \tilde{\phi}(x_j) \otimes \tilde{\psi}(y_j) \right\rangle_{\mathit{HS}} \\ &= \frac{1}{n^2} \sum_{i,j=1}^n \underbrace{\left\langle \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i), \tilde{\phi}(x_j) \otimes \tilde{\psi}(y_j) \right\rangle_{\mathit{HS}}}_{\left\langle \tilde{\phi}(x_i), \tilde{\phi}(x_j) \right\rangle_{\mathfrak{R}_k} \left\langle \tilde{\psi}(y_i), \tilde{\psi}(y_j) \right\rangle_{\mathfrak{R}_\ell} = \tilde{\kappa}_{ij} \tilde{\mathbf{L}}_{ij}} \\ &= \frac{1}{n^2} \left\langle \tilde{\mathbf{K}}, \tilde{\mathbf{L}} \right\rangle_{\mathit{F}}. \end{split}$$

HSIC

It is easy to compute $\|\Sigma_{XY}\|_{HS}^2 =: HSIC$.

$$\begin{split} \mathsf{HSIC} &= \|\Sigma_{XY}\|_{\mathit{HS}}^2 = \left\langle \frac{1}{n} \sum_{i=1}^n \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i), \frac{1}{n} \sum_{j=1}^n \tilde{\phi}(x_j) \otimes \tilde{\psi}(y_j) \right\rangle_{\mathit{HS}} \\ &= \frac{1}{n^2} \sum_{i,j=1}^n \underbrace{\left\langle \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i), \tilde{\phi}(x_j) \otimes \tilde{\psi}(y_j) \right\rangle_{\mathit{HS}}}_{\left\langle \tilde{\phi}(x_i), \tilde{\phi}(x_j) \right\rangle_{\mathcal{H}_k} \left\langle \tilde{\psi}(y_i), \tilde{\psi}(y_j) \right\rangle_{\mathcal{H}_\ell} = \tilde{K}_{ij} \tilde{\mathbf{L}}_{ij}} \\ &= \frac{1}{n^2} \left\langle \tilde{\mathbf{K}}, \tilde{\mathbf{L}} \right\rangle_{\mathit{F}}. \end{split}$$

 $\tilde{K} = HKH, H = I_n - \frac{1}{n}11^T, \tilde{L} = HLH.$

Independence test using HSIC [Gretton et al. 2005]

- Given: samples and $\alpha \in (0,1)$.
- Test statistics: $T = HSIC = ||\Sigma_{XY}||_{HS}^2$.
- Simulated null distribution of T: via $\{y_1, \dots, y_n\}$ permutations $\Rightarrow t_{\alpha}$.
- Decision: reject H_0 if $t_{\alpha} < T$.

- S_{XY} is unbiased estimator of Σ_{XY} : $\mathbb{E}[S_{XY}] = \Sigma_{XY}$.
- Issue: S_{XY} can have high variance for small sample numbers.

- S_{XY} is unbiased estimator of Σ_{XY} : $\mathbb{E}[S_{XY}] = \Sigma_{XY}$.
- Issue: S_{XY} can have high variance for small sample numbers.
- Idea [Stein, 1956]: decrease the variance by adding some bias.

- S_{XY} is unbiased estimator of Σ_{XY} : $\mathbb{E}[S_{XY}] = \Sigma_{XY}$.
- Issue: S_{XY} can have high variance for small sample numbers.
- Idea [Stein, 1956]: decrease the variance by adding some bias.
- [Maundet et al. 2014]: 2 shrinkage based estimators.

- S_{XY} is unbiased estimator of Σ_{XY} : $\mathbb{E}[S_{XY}] = \Sigma_{XY}$.
- Issue: S_{XY} can have high variance for small sample numbers.
- Idea [Stein, 1956]: decrease the variance by adding some bias.
- [Maundet et al. 2014]: 2 shrinkage based estimators.

Questions

- How do they perform in independence testing?
- Optimality?

Variations: shrinking towards zero

• Recall: $S_{XY} = \frac{1}{n} \sum_{i=1}^{n} \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i) \Rightarrow$

$$S_{XY} = \mathop{\arg\min}_{Z \in \mathit{HS}(\mathcal{H}_\ell, \mathcal{H}_k)} \frac{1}{n} \sum_{i=1}^n \left\| \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i) - Z \right\|_{\mathit{HS}}^2.$$

Variations: shrinking towards zero

• Recall: $S_{XY} = \frac{1}{n} \sum_{i=1}^{n} \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i) \Rightarrow$

$$S_{XY} = \operatorname*{arg\,min}_{Z \in \mathit{HS}(\mathcal{H}_{\ell},\mathcal{H}_{k})} \frac{1}{n} \sum_{i=1}^{n} \left\| \tilde{\phi}(x_{i}) \otimes \tilde{\psi}(y_{i}) - Z \right\|_{\mathit{HS}}^{2}.$$

• SCOSE (simple covariance shrinkage estimator, $\lambda > 0$):

$$S_{XY}^{S} = \operatorname*{arg\,min}_{Z \in HS(\mathfrak{H}_{\ell}, \mathfrak{H}_{k})} \frac{1}{n} \sum_{i=1}^{n} \left\| \tilde{\phi}(x_{i}) \otimes \tilde{\psi}(y_{i}) - Z \right\|_{HS}^{2} + \lambda \left\| Z \right\|_{HS}^{2}.$$

Variations: shrinking towards zero

• Recall: $S_{XY} = \frac{1}{n} \sum_{i=1}^{n} \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i) \Rightarrow$

$$S_{XY} = \operatorname*{arg\,min}_{Z \in \mathit{HS}(\mathcal{H}_\ell,\mathcal{H}_k)} \frac{1}{n} \sum_{i=1}^n \left\| \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i) - Z \right\|_{\mathit{HS}}^2.$$

• SCOSE (simple covariance shrinkage estimator, $\lambda > 0$):

$$S_{XY}^{S} = \operatorname*{arg\,min}_{Z \in HS(\mathcal{H}_{\ell},\mathcal{H}_{k})} \frac{1}{n} \sum_{i=1}^{n} \left\| \tilde{\phi}(x_{i}) \otimes \tilde{\psi}(y_{i}) - Z \right\|_{HS}^{2} + \lambda \left\| Z \right\|_{HS}^{2}.$$

• FCOSE (flexible covariance shrinkage estimator):

$$S_{XY}^{\mathbf{F}} = \sum_{j=1}^{n} \frac{\beta_{j}}{n} \tilde{\phi}(x_{j}) \otimes \tilde{\psi}(y_{j}),$$

$$\boldsymbol{\beta} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \frac{1}{n} \sum_{i=1}^{n} \left\| \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i) - \sum_{i=1}^{n} \frac{\beta_j}{n} \tilde{\phi}(x_j) \otimes \tilde{\psi}(y_j) \right\|_{\mathcal{U}_{\boldsymbol{\alpha}}}^2 + \lambda \left\| \boldsymbol{\beta} \right\|_2^2.$$

SCOSE vs FCOSE

In both cases: λ is chosen via leave-one-out CV.

• SCOSE: analytical formula for λ_*

$$HSIC^{S} = \left\| S_{XY}^{S} \right\|_{HS}^{2} = \left(1 - \frac{\frac{1}{n} \sum_{i=1}^{n} \tilde{K}_{ii} \tilde{L}_{ii} - HSIC}{(n-2)HSIC + \frac{\frac{1}{n} \sum_{i=1}^{n} \tilde{K}_{ii} \tilde{L}_{ii}}{n}} \right)_{+}^{2} HSIC.$$

SCOSE vs FCOSE

In both cases: λ is chosen via leave-one-out CV.

• SCOSE: analytical formula for λ_*

$$HSIC^{S} = \left\| S_{XY}^{S} \right\|_{HS}^{2} = \left(1 - \frac{\frac{1}{n} \sum_{i=1}^{n} \tilde{K}_{ii} \tilde{L}_{ii} - HSIC}{(n-2)HSIC + \frac{\frac{1}{n} \sum_{i=1}^{n} \tilde{K}_{ii} \tilde{L}_{ii}}{n}} \right)_{+}^{2} HSIC.$$

• FCOSE: after SVD of $\tilde{K} \circ \tilde{L}$ [$O(n^3)$], ' $/\lambda$ ': $O(n^2)$.

SCOSE vs FCOSE

In both cases: λ is chosen via leave-one-out CV.

• SCOSE: analytical formula for λ_*

$$HSIC^{S} = \left\| S_{XY}^{S} \right\|_{HS}^{2} = \left(1 - \frac{\frac{1}{n} \sum_{i=1}^{n} \tilde{K}_{ii} \tilde{L}_{ii} - HSIC}{(n-2)HSIC + \frac{\frac{1}{n} \sum_{i=1}^{n} \tilde{K}_{ii} \tilde{L}_{ii}}{n}} \right)_{+}^{2} HSIC.$$

• FCOSE: after SVD of $\tilde{K} \circ \tilde{L}$ [$O(n^3)$], $'/\lambda'$: $O(n^2)$.

Statement

SCOSE is (essentially) the oracle linear shrinkage estimator w.r.t. the quadratic loss.

Oracle estimator: linear shrinkage, quadratic loss

Proposition

$$\begin{split} (S^*, \rho^*) &:= \mathop{\arg\min}_{Z \in HS(\mathcal{H}_{\ell}, \mathcal{H}_{k}), Z = (1 - \rho)S_{XY}, \rho \in [0, 1]} \mathbb{E} \left\| Z - \Sigma_{XY} \right\|_{HS}^{2}. \\ S^* &= (1 - \rho^*)S_{XY}, \\ \rho^* &= \frac{\mathbb{E} \left\| S_{XY} - \Sigma_{XY} \right\|_{HS}^{2}}{\mathbb{E} \left\| S_{XY} \right\|_{HS}^{2}}. \end{split}$$

Intuition: we shrink S_{XY} towards zero, optimally in quadratic sense.

Using
$$\mathbb{E}[S_{XY}] = \Sigma_{XY}$$
:

$$\mathbb{E} \|Z - \Sigma_{XY}\|_{HS}^2 = \mathbb{E} \|(1 - \rho)S_{XY} - \Sigma_{XY}\|_{HS}^2 =$$

$$= \mathbb{E} \|-\rho S_{XY} + (S_{XY} - \Sigma_{XY})\|_{HS}^2$$

Using
$$\mathbb{E}[S_{XY}] = \Sigma_{XY}$$
:

$$\begin{split} & \mathbb{E} \| Z - \Sigma_{XY} \|_{HS}^{2} = \mathbb{E} \| (1 - \rho) S_{XY} - \Sigma_{XY} \|_{HS}^{2} = \\ & = \mathbb{E} \| - \rho S_{XY} + (S_{XY} - \Sigma_{XY}) \|_{HS}^{2} \\ & = \rho^{2} \mathbb{E} \| S_{XY} \|_{HS}^{2} + \underbrace{\mathbb{E} \| S_{XY} - \Sigma_{XY} \|_{HS}^{2}}_{\mathbb{E} \| S_{XY} \|_{Le}^{2} - \| \Sigma_{XY} \|_{Le}^{2}} - 2\rho \underbrace{\mathbb{E} \langle S_{XY}, S_{XY} - \Sigma_{XY} \rangle_{HS}}_{\mathbb{E} \| S_{XY} \|_{Le}^{2} - \| \Sigma_{XY} \|_{Le}^{2}} \end{split}$$

Using
$$\mathbb{E}[S_{XY}] = \Sigma_{XY}$$
:

$$\begin{split} \mathbb{E} \left\| Z - \Sigma_{XY} \right\|_{HS}^{2} &= \mathbb{E} \left\| (1 - \rho) S_{XY} - \Sigma_{XY} \right\|_{HS}^{2} = \\ &= \mathbb{E} \left\| - \rho S_{XY} + (S_{XY} - \Sigma_{XY}) \right\|_{HS}^{2} \\ &= \rho^{2} \mathbb{E} \left\| S_{XY} \right\|_{HS}^{2} + \underbrace{\mathbb{E} \left\| S_{XY} - \Sigma_{XY} \right\|_{HS}^{2}}_{\mathbb{E} \left\| S_{XY} \right\|_{HS}^{2} - \left\| \Sigma_{XY} \right\|_{HS}^{2}} - 2\rho \underbrace{\mathbb{E} \left\langle S_{XY}, S_{XY} - \Sigma_{XY} \right\rangle_{HS}}_{\mathbb{E} \left\| S_{XY} \right\|_{HS}^{2} - \left\| \Sigma_{XY} \right\|_{HS}^{2}} \\ &= \rho^{2} \mathbb{E} \left\| S_{XY} \right\|_{HS}^{2} + (1 - 2\rho) \mathbb{E} \left\| S_{XY} - \Sigma_{XY} \right\|_{HS}^{2} =: J(\rho). \end{split}$$

Using
$$\mathbb{E}[S_{XY}] = \Sigma_{XY}$$
:

$$\begin{split} \mathbb{E} \left\| \mathbf{Z} - \mathbf{\Sigma}_{XY} \right\|_{HS}^{2} &= \mathbb{E} \left\| (1 - \rho) \mathbf{S}_{XY} - \mathbf{\Sigma}_{XY} \right\|_{HS}^{2} = \\ &= \mathbb{E} \left\| -\rho \mathbf{S}_{XY} + (\mathbf{S}_{XY} - \mathbf{\Sigma}_{XY}) \right\|_{HS}^{2} \\ &= \rho^{2} \mathbb{E} \left\| \mathbf{S}_{XY} \right\|_{HS}^{2} + \underbrace{\mathbb{E} \left\| \mathbf{S}_{XY} - \mathbf{\Sigma}_{XY} \right\|_{HS}^{2}}_{\mathbb{E} \left\| \mathbf{S}_{XY} \right\|_{HS}^{2} - 2\rho} \underbrace{\mathbb{E} \left\langle \mathbf{S}_{XY}, \mathbf{S}_{XY} - \mathbf{\Sigma}_{XY} \right\rangle_{HS}}_{\mathbb{E} \left\| \mathbf{S}_{XY} \right\|_{HS}^{2} - \left\| \mathbf{\Sigma}_{XY} \right\|_{HS}^{2}} \\ &= \rho^{2} \mathbb{E} \left\| \mathbf{S}_{XY} \right\|_{HS}^{2} + (1 - 2\rho) \mathbb{E} \left\| \mathbf{S}_{XY} - \mathbf{\Sigma}_{XY} \right\|_{HS}^{2} =: \mathbf{J}(\rho). \end{split}$$

Optimizing in ρ :

$$0 = J'(\rho) = 2\rho \mathbb{E} \|S_{XY}\|_{HS}^{2} - 2\mathbb{E} \|S_{XY} - \Sigma_{XY}\|_{HS}^{2} \Rightarrow \rho^{*} = \frac{\mathbb{E} \|S_{XY} - \Sigma_{XY}\|_{HS}^{2}}{\mathbb{E} \|S_{XY}\|_{HS}^{2}}.$$

$$\rho^* = \frac{\mathbb{E} \left\| S_{XY} - \Sigma_{XY} \right\|_{HS}^2}{\mathbb{E} \left\| S_{XY} \right\|_{HS}^2} = \frac{\beta}{\delta},$$

$$\rho^* = \frac{\mathbb{E} \left\| S_{XY} - \Sigma_{XY} \right\|_{HS}^2}{\mathbb{E} \left\| S_{XY} \right\|_{HS}^2} = \frac{\beta}{\delta}, \ \widehat{\delta} = \left\| S_{XY} \right\|_{HS}^2 = \textit{HSIC},$$

$$\rho^* = \frac{\mathbb{E} \|S_{XY} - \Sigma_{XY}\|_{HS}^2}{\mathbb{E} \|S_{XY}\|_{HS}^2} = \frac{\beta}{\delta}, \ \hat{\delta} = \|S_{XY}\|_{HS}^2 = HSIC,$$
$$\beta = \mathbb{E} \left\| \frac{1}{n} \sum_{i=1}^n \left[\tilde{\phi}(x_i) \otimes \tilde{\phi}(y_i) - \Sigma_{XY} \right] \right\|_{HS}^2 = \frac{1}{n} \mathbb{E} \left\| \tilde{\phi}(x_i) \otimes \tilde{\phi}(y_i) - \Sigma_{XY} \right\|_{HS}^2$$

$$\rho^* = \frac{\mathbb{E} \|S_{XY} - \Sigma_{XY}\|_{HS}^2}{\mathbb{E} \|S_{XY}\|_{HS}^2} = \frac{\beta}{\delta}, \ \hat{\delta} = \|S_{XY}\|_{HS}^2 = HSIC,$$

$$\beta = \mathbb{E} \left\| \frac{1}{n} \sum_{i=1}^n \left[\tilde{\phi}(x_i) \otimes \tilde{\phi}(y_i) - \Sigma_{XY} \right] \right\|_{HS}^2 = \frac{1}{n} \mathbb{E} \left\| \tilde{\phi}(x_i) \otimes \tilde{\phi}(y_i) - \Sigma_{XY} \right\|_{HS}^2$$

$$\approx \frac{1}{n^2} \sum_{i=1}^n \underbrace{\left\| \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i) - S_{XY} \right\|_{HS}^2}_{\tilde{K}_{ii}\tilde{L}_{ii} + \|S_{XY}\|_{HS}^2 - 2\langle \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i), S_{XY} \rangle_{HS}}$$

$$\rho^* = \frac{\mathbb{E} \|S_{XY} - \Sigma_{XY}\|_{HS}^2}{\mathbb{E} \|S_{XY}\|_{HS}^2} = \frac{\beta}{\delta}, \ \hat{\delta} = \|S_{XY}\|_{HS}^2 = HSIC,$$

$$\beta = \mathbb{E} \left\| \frac{1}{n} \sum_{i=1}^n \left[\tilde{\phi}(x_i) \otimes \tilde{\phi}(y_i) - \Sigma_{XY} \right] \right\|_{HS}^2 = \frac{1}{n} \mathbb{E} \left\| \tilde{\phi}(x_i) \otimes \tilde{\phi}(y_i) - \Sigma_{XY} \right\|_{HS}^2$$

$$\approx \frac{1}{n^2} \sum_{i=1}^n \underbrace{\left\| \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i) - S_{XY} \right\|_{HS}^2}_{\tilde{K}_{ii}\tilde{L}_{ii} + \|S_{XY}\|_{HS}^2 - 2\langle \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i), S_{XY} \rangle_{HS}}$$

$$= \frac{1}{n} \left[\frac{1}{n} \sum_{i=1}^n \tilde{K}_{ii} \tilde{L}_{ii} + \underbrace{\left\| S_{XY} \right\|_{HS}^2 - 2\left\| S_{XY} \right\|_{HS}^2}_{HS} \right] =: \hat{\beta},$$

$$\rho^* = \frac{\mathbb{E} \|S_{XY} - \Sigma_{XY}\|_{HS}^2}{\mathbb{E} \|S_{XY}\|_{HS}^2} = \frac{\beta}{\delta}, \ \hat{\delta} = \|S_{XY}\|_{HS}^2 = HSIC,$$

$$\beta = \mathbb{E} \left\| \frac{1}{n} \sum_{i=1}^n \left[\tilde{\phi}(x_i) \otimes \tilde{\phi}(y_i) - \Sigma_{XY} \right] \right\|_{HS}^2 = \frac{1}{n} \mathbb{E} \left\| \tilde{\phi}(x_i) \otimes \tilde{\phi}(y_i) - \Sigma_{XY} \right\|_{HS}^2$$

$$\approx \frac{1}{n^2} \sum_{i=1}^n \underbrace{\left\| \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i) - S_{XY} \right\|_{HS}^2}_{\tilde{K}_{ii}\tilde{L}_{ii} + \|S_{XY}\|_{HS}^2 - 2\langle \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i), S_{XY} \rangle_{HS}}$$

$$= \frac{1}{n} \left[\frac{1}{n} \sum_{i=1}^n \tilde{K}_{ii} \tilde{L}_{ii} + \underbrace{\left\| S_{XY} \right\|_{HS}^2 - 2\left\| S_{XY} \right\|_{HS}^2}_{-\|S_{XY}\|_{HS}^2 - HSIC} \right] =: \hat{\beta},$$

$$\Rightarrow \widehat{HSIC}^* = \left(1 - \frac{\frac{1}{n} \sum_{i=1}^n \tilde{K}_{ii} \tilde{L}_{ii} - HSIC}{nHSIC} \right)^2 HSIC.$$

Comparison

SCOSE:

$$\mathit{HSIC}^{\mathcal{S}} = \left(1 - \frac{\frac{1}{n} \sum_{i=1}^{n} \tilde{K}_{ii} \tilde{L}_{ii} - \mathit{HSIC}}{(n-2) \mathit{HSIC} + \frac{\frac{1}{n} \sum_{i=1}^{n} \tilde{K}_{ii} \tilde{L}_{ii}}{n}}\right)_{+}^{2} \mathit{HSIC}.$$

Oracle estimator with plug-in:

$$\widehat{\mathit{HSIC}^*} = \left(1 - \frac{\frac{1}{n} \sum_{i=1}^n \widetilde{K}_{ii} \widetilde{L}_{ii} - \mathit{HSIC}}{\mathit{nHSIC}}\right)^2 \mathit{HSIC}.$$

 $SCOSE \approx oracle with perturbed plug-in.$

Numerical experiments

• Shrinkage usually improves power.

Numerical experiments

- Shrinkage usually improves power.
- ullet FCOSE: often achieves better power o non-linear shrinkage?, non-quadratic loss?

Numerical experiments

- Shrinkage usually improves power.
- \bullet FCOSE: often achieves better power \to non-linear shrinkage?, non-quadratic loss?
- Soft HSIC shrinkage:

Thank you for the attention!

