# Nonparametric Independence Testing for Small Sample Sizes

Aaditya Ramdas, Leila Wehbe (IJCAI-2015)

Zoltán Szabó

Machine Learning Journal Club, Gatsby Unit

April 4, 2016

• Goal: nonparametric independence testing.

- Goal: nonparametric independence testing.
- Idea:
  - 1 large  $cov(X, Y) \Rightarrow$  declare dependence.

- Goal: nonparametric independence testing.
- Ideas:
  - 1 large  $cov(X, Y) \Rightarrow$  declare dependence.
  - ② large  $\sup_{f \in \mathcal{F}, g \in \mathcal{G}} cov(f(X), g(Y)) \Rightarrow$  dependence
    - nice asymptotic results.

- Goal: nonparametric independence testing.
- Ideas:
  - 1 large  $cov(X, Y) \Rightarrow$  declare dependence.
  - 2 large  $\sup_{f \in \mathcal{F}, g \in \mathcal{G}} cov(f(X), g(Y)) \Rightarrow$  dependence
    - nice asymptotic results.
- Focus:
  - small sample size,
  - small false positive regime: 'avoid' false dependence detection.

- Goal: nonparametric independence testing.
- Ideas:
  - 1 large  $cov(X, Y) \Rightarrow$  declare dependence.
  - 2 large  $\sup_{f \in \mathcal{F}, g \in \mathcal{G}} cov(f(X), g(Y)) \Rightarrow$  dependence
    - nice asymptotic results.
- Focus:
  - small sample size,
  - small false positive regime: 'avoid' false dependence detection.
- Trick: introduce some bias to reduce variance Stein.

large 
$$\operatorname{shrunk}[\sup_{f \in \mathcal{F}, g \in \mathcal{G}} \operatorname{cov}(f(X), g(Y))] \Rightarrow \operatorname{dependence}$$

## Ingredients: independence testing problem

- Given:  $\{(x_i, y_i)\}_{i=1}^n \stackrel{i.i.d.}{\sim} P_{XY}$ .
- Marginals of  $P_{XY}$ :  $P_X$ ,  $P_Y$ .
- Hypotheses:

$$H_0: P_{XY} = P_X \times P_Y, \qquad \qquad H_1: P_{XY} \neq P_X \times P_Y.$$

## Ingredients: independence testing problem

- Given:  $\{(x_i, y_i)\}_{i=1}^n \stackrel{i.i.d.}{\sim} P_{XY}$ .
- Marginals of  $P_{XY}$ :  $P_X$ ,  $P_Y$ .
- Hypotheses:

$$H_0: P_{XY} = P_X \times P_Y, \qquad H_1: P_{XY} \neq P_X \times P_Y.$$

- Aim:
  - **1** Low type-I error  $= \mathbb{P}(\text{detect dependence, when there isn't any}) \leq \alpha$ ,

false positive

② High power =  $\mathbb{P}(\text{detect dependence, when there is})$ .

#### Ingredients: cross-covariance

•  $X \in (\mathfrak{X}, k)$ ,  $Y \in (\mathfrak{Y}, \ell)$ ,  $k, \ell$ : kernels. RKHSs:  $\mathfrak{H}_k$ ,  $\mathfrak{H}_\ell$ .

#### Ingredients: cross-covariance

- $X \in (\mathfrak{X}, k)$ ,  $Y \in (\mathfrak{Y}, \ell)$ ,  $k, \ell$ : kernels. RKHSs:  $\mathfrak{H}_k$ ,  $\mathfrak{H}_\ell$ .
- Mean embedding and its empirical counterpart:

$$\mu_{X} = \mathbb{E}_{x \sim \mathbb{P}_{X}} \underbrace{k(\cdot, x)}_{=:\phi(x)}, \qquad \mu_{Y} = \mathbb{E}_{y \sim \mathbb{P}_{Y}} \underbrace{\ell(\cdot, y)}_{=:\psi(y)},$$

$$\hat{\mu}_{X} = \frac{1}{n} \sum_{i=1}^{n} \phi(x_{i}), \qquad \hat{\mu}_{Y} = \frac{1}{n} \sum_{i=1}^{n} \psi(y_{i}).$$

## Ingredients: cross-covariance

- $X \in (\mathfrak{X}, k)$ ,  $Y \in (\mathfrak{Y}, \ell)$ ,  $k, \ell$ : kernels. RKHSs:  $\mathfrak{H}_k$ ,  $\mathfrak{H}_\ell$ .
- Mean embedding and its empirical counterpart:

$$\mu_{X} = \mathbb{E}_{x \sim \mathbb{P}_{X}} \underbrace{k(\cdot, x)}_{=:\phi(x)}, \qquad \mu_{Y} = \mathbb{E}_{y \sim \mathbb{P}_{Y}} \underbrace{\ell(\cdot, y)}_{=:\psi(y)},$$

$$\hat{\mu}_{X} = \frac{1}{n} \sum_{i=1}^{n} \phi(x_{i}), \qquad \hat{\mu}_{Y} = \frac{1}{n} \sum_{i=1}^{n} \psi(y_{i}).$$

Cross-covariance:

$$\Sigma_{XY} = \mathbb{E}_{(x,y)\sim P_{XY}} [\underbrace{\phi(x) - \mu_{X}}_{=:\tilde{\phi}(x)}] \otimes [\underbrace{\psi(y) - \mu_{Y}}_{=:\tilde{\psi}(y)}] : \mathcal{H}_{\ell} \to \mathcal{H}_{k},$$

$$S_{XY} = \frac{1}{n} \sum_{i=1}^{n} [\phi(x_{i}) - \hat{\mu}_{X}] \otimes [\psi(y_{i}) - \hat{\mu}_{Y}].$$

$$\mathsf{Known} \colon \langle f, \Sigma_{XY}g \rangle_{\mathfrak{H}_k} = cov(f(X), g(Y)), \forall g \in \mathfrak{H}_\ell, f \in \mathfrak{H}_k.$$

Are  $\mathcal{H}_{\ell}$  and  $\mathcal{H}_{k}$  enough for the independence testing of X and Y?

Yes 
$$\Rightarrow$$
 Test:  $\Sigma_{XY} = 0$ .

$$\mathsf{Known:}\ \langle f, \Sigma_{XY}g \rangle_{\mathfrak{H}_k} = cov(f(X), g(Y)), \forall g \in \mathfrak{H}_\ell, f \in \mathfrak{H}_k.$$

Are  $\mathcal{H}_{\ell}$  and  $\mathcal{H}_{k}$  enough for the independence testing of X and Y?

•  $C_b(\mathfrak{X})$  and  $C_b(\mathfrak{Y})$  would be sufficient: Jacod and Protter 2000.

Known:  $\langle f, \Sigma_{XY}g \rangle_{\mathcal{H}_k} = cov(f(X), g(Y)), \forall g \in \mathcal{H}_\ell, f \in \mathcal{H}_k.$ 

Are  $\mathcal{H}_{\ell}$  and  $\mathcal{H}_{k}$  enough for the independence testing of X and Y?

- $C_b(\mathfrak{X})$  and  $C_b(\mathfrak{Y})$  would be sufficient: Jacod and Protter 2000.
- Trick [Gretton et al. '05]: guarantee the denseness of  $\mathcal{H}_k$  in  $C_b(\mathfrak{X})$ ,  $\mathcal{H}_\ell$  in  $C_b(\mathfrak{Y})$ .

 $\mathsf{Known} \colon \langle f, \Sigma_{XY} g \rangle_{\mathfrak{H}_k} = cov(f(X), g(Y)), \forall g \in \mathfrak{H}_\ell, f \in \mathfrak{H}_k.$ 

Are  $\mathcal{H}_{\ell}$  and  $\mathcal{H}_{k}$  enough for the independence testing of X and Y?

- $C_b(\mathfrak{X})$  and  $C_b(\mathfrak{Y})$  would be sufficient: Jacod and Protter 2000.
- Trick [Gretton et al. '05]: guarantee the denseness of  $\mathcal{H}_k$  in  $C_b(\mathfrak{X})$ ,  $\mathcal{H}_\ell$  in  $C_b(\mathfrak{Y})$ .
- Space: compact metric, kernel: universal √

Known:  $\langle f, \Sigma_{XY}g \rangle_{\mathcal{H}_k} = cov(f(X), g(Y)), \forall g \in \mathcal{H}_\ell, f \in \mathcal{H}_k.$ 

Are  $\mathcal{H}_{\ell}$  and  $\mathcal{H}_{k}$  enough for the independence testing of X and Y?

- $C_b(\mathfrak{X})$  and  $C_b(\mathfrak{Y})$  would be sufficient: Jacod and Protter 2000.
- Trick [Gretton et al. '05]: guarantee the denseness of  $\mathcal{H}_k$  in  $C_b(\mathfrak{X})$ ,  $\mathcal{H}_\ell$  in  $C_b(\mathfrak{Y})$ .
- Space: compact metric, kernel: universal √
- Examples:

$$k(\mathbf{x}, \mathbf{x}') = e^{-\gamma \|\mathbf{x} - \mathbf{x}'\|_2^2}, \qquad k(\mathbf{x}, \mathbf{x}') = e^{-\gamma \|\mathbf{x} - \mathbf{x}'\|_1}.$$

#### Side-note

 $\Sigma_{XY} \in HS(\mathcal{H}_{\ell}, \mathcal{H}_{k}) =: HS(\mathcal{G}, \mathcal{F})$ . What does this mean? Extension of Frobenious norm.

$$\|C\|_F^2 = \sum_{i,j} C_{ij}^2$$

#### Side-note

 $\Sigma_{XY} \in HS(\mathcal{H}_{\ell}, \mathcal{H}_{k}) =: HS(\mathcal{G}, \mathcal{F})$ . What does this mean? Extension of Frobenious norm.

$$\|C\|_F^2 = \sum_{i,j} C_{ij}^2,$$
  
$$\|C\|_{HS}^2 = \sum_{i,j} \langle Cg_j, f_i \rangle_{\mathfrak{F}}^2 < \infty,$$

#### where

- $C: \mathcal{G} \to \mathcal{F}$  bounded linear operator.
- $\mathcal{G}$ ,  $\mathcal{F}$  are separable Hilbert spaces with ONBs  $\{g_j\}_j$ ,  $\{f_i\}_i$ .

## HS operator example: $f \otimes g$

• Intuition: 
$$\mathbf{fg}^T$$
.  $(\mathbf{fg}^T)\mathbf{u} = \mathbf{f}\underbrace{(\mathbf{g}^T\mathbf{u})}_{=\langle \mathbf{g}, \mathbf{u} \rangle}$ .

## HS operator example: $f \otimes g$

• Intuition: 
$$\mathbf{fg}^T$$
.  $(\mathbf{fg}^T)\mathbf{u} = \mathbf{f}\underbrace{(\mathbf{g}^T\mathbf{u})}_{=\langle \mathbf{g}, \mathbf{u} \rangle}$ .

• Outer product:  $f \otimes g \ (f \in \mathcal{F}, g \in \mathcal{G})$ 

$$(f \otimes g)(u) = f \langle g, u \rangle_{\mathfrak{G}}, \forall u \in \mathfrak{G}.$$

# HS operator example: $f \otimes g$

- Intuition:  $\mathbf{fg}^T$ .  $(\mathbf{fg}^T)\mathbf{u} = \mathbf{f}\underbrace{(\mathbf{g}^T\mathbf{u})}_{=(\mathbf{g},\mathbf{u})}$ .
- Outer product:  $f \otimes g \ (f \in \mathcal{F}, g \in \mathcal{G})$

$$(f \otimes g)(u) = f \langle g, u \rangle_{\mathfrak{S}}, \forall u \in \mathfrak{S}.$$

• HS norm of  $f \otimes g$ :

$$\|f\otimes g\|_{HS}^2 = \langle f,f\rangle_{\mathfrak{F}}\langle g,g\rangle_{\mathfrak{G}}.$$

Cross-covariance: made of  $f \otimes g$ -type quantities.

#### **HSIC**

It is easy to compute  $\|\Sigma_{XY}\|_{HS}^2 =: HSIC$ .

$$\mathsf{HSIC} = \|\Sigma_{XY}\|_{\mathit{HS}}^2 = \left\langle \frac{1}{n} \sum_{i=1}^n \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i), \frac{1}{n} \sum_{j=1}^n \tilde{\phi}(x_j) \otimes \tilde{\psi}(y_j) \right\rangle_{\mathit{HS}}$$

#### **HSIC**

It is easy to compute  $\|\Sigma_{XY}\|_{HS}^2 =: HSIC$ .

$$\begin{split} \mathsf{HSIC} &= \left\| \Sigma_{XY} \right\|_{\mathit{HS}}^2 = \left\langle \frac{1}{n} \sum_{i=1}^n \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i), \frac{1}{n} \sum_{j=1}^n \tilde{\phi}(x_j) \otimes \tilde{\psi}(y_j) \right\rangle_{\mathit{HS}} \\ &= \frac{1}{n^2} \sum_{i,j=1}^n \underbrace{\left\langle \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i), \tilde{\phi}(x_j) \otimes \tilde{\psi}(y_j) \right\rangle_{\mathit{HS}}}_{\left\langle \tilde{\phi}(x_i), \tilde{\phi}(x_j) \right\rangle_{\mathfrak{R}_{\ell}} \left\langle \tilde{\psi}(y_i), \tilde{\psi}(y_j) \right\rangle_{\mathfrak{R}_{\ell}} = \tilde{\kappa}_{ij} \tilde{L}_{ij} \end{split}$$

It is easy to compute  $\|\Sigma_{XY}\|_{HS}^2 =: HSIC$ .

$$\begin{split} \mathsf{HSIC} &= \left\| \Sigma_{XY} \right\|_{\mathit{HS}}^2 = \left\langle \frac{1}{n} \sum_{i=1}^n \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i), \frac{1}{n} \sum_{j=1}^n \tilde{\phi}(x_j) \otimes \tilde{\psi}(y_j) \right\rangle_{\mathit{HS}} \\ &= \frac{1}{n^2} \sum_{i,j=1}^n \underbrace{\left\langle \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i), \tilde{\phi}(x_j) \otimes \tilde{\psi}(y_j) \right\rangle_{\mathit{HS}}}_{\left\langle \tilde{\phi}(x_i), \tilde{\phi}(x_j) \right\rangle_{\mathfrak{R}_k} \left\langle \tilde{\psi}(y_i), \tilde{\psi}(y_j) \right\rangle_{\mathfrak{R}_\ell} = \tilde{\kappa}_{ij} \tilde{\mathbf{L}}_{ij}} \\ &= \frac{1}{n^2} \left\langle \tilde{\mathbf{K}}, \tilde{\mathbf{L}} \right\rangle_{\mathit{F}}. \end{split}$$

#### **HSIC**

It is easy to compute  $\|\Sigma_{XY}\|_{HS}^2 =: HSIC$ .

$$\begin{split} \mathsf{HSIC} &= \|\Sigma_{XY}\|_{\mathit{HS}}^2 = \left\langle \frac{1}{n} \sum_{i=1}^n \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i), \frac{1}{n} \sum_{j=1}^n \tilde{\phi}(x_j) \otimes \tilde{\psi}(y_j) \right\rangle_{\mathit{HS}} \\ &= \frac{1}{n^2} \sum_{i,j=1}^n \underbrace{\left\langle \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i), \tilde{\phi}(x_j) \otimes \tilde{\psi}(y_j) \right\rangle_{\mathit{HS}}}_{\left\langle \tilde{\phi}(x_i), \tilde{\phi}(x_j) \right\rangle_{\mathcal{H}_k} \left\langle \tilde{\psi}(y_i), \tilde{\psi}(y_j) \right\rangle_{\mathcal{H}_\ell} = \tilde{K}_{ij} \tilde{\mathbf{L}}_{ij}} \\ &= \frac{1}{n^2} \left\langle \tilde{\mathbf{K}}, \tilde{\mathbf{L}} \right\rangle_{\mathit{F}}. \end{split}$$

 $\tilde{K} = HKH, H = I_n - \frac{1}{n}11^T, \tilde{L} = HLH.$ 

# Independence test using HSIC [Gretton et al. 2005]

- Given: samples and  $\alpha \in (0,1)$ .
- Test statistics:  $T = HSIC = ||\Sigma_{XY}||_{HS}^2$ .
- Simulated null distribution of T: via  $\{y_1, \dots, y_n\}$  permutations  $\Rightarrow t_{\alpha}$ .
- Decision: reject  $H_0$  if  $t_{\alpha} < T$ .

- $S_{XY}$  is unbiased estimator of  $\Sigma_{XY}$ :  $\mathbb{E}[S_{XY}] = \Sigma_{XY}$ .
- Issue:  $S_{XY}$  can have high variance for small sample numbers.

- $S_{XY}$  is unbiased estimator of  $\Sigma_{XY}$ :  $\mathbb{E}[S_{XY}] = \Sigma_{XY}$ .
- Issue:  $S_{XY}$  can have high variance for small sample numbers.
- Idea [Stein, 1956]: decrease the variance by adding some bias.

- $S_{XY}$  is unbiased estimator of  $\Sigma_{XY}$ :  $\mathbb{E}[S_{XY}] = \Sigma_{XY}$ .
- Issue:  $S_{XY}$  can have high variance for small sample numbers.
- Idea [Stein, 1956]: decrease the variance by adding some bias.
- [Maundet et al. 2014]: 2 shrinkage based estimators.

- $S_{XY}$  is unbiased estimator of  $\Sigma_{XY}$ :  $\mathbb{E}[S_{XY}] = \Sigma_{XY}$ .
- Issue:  $S_{XY}$  can have high variance for small sample numbers.
- Idea [Stein, 1956]: decrease the variance by adding some bias.
- [Maundet et al. 2014]: 2 shrinkage based estimators.

#### Questions

- How do they perform in independence testing?
- Optimality?

## Variations: shrinking towards zero

• Recall:  $S_{XY} = \frac{1}{n} \sum_{i=1}^{n} \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i) \Rightarrow$ 

$$S_{XY} = \mathop{\arg\min}_{Z \in \mathit{HS}(\mathcal{H}_\ell, \mathcal{H}_k)} \frac{1}{n} \sum_{i=1}^n \left\| \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i) - Z \right\|_{\mathit{HS}}^2.$$

## Variations: shrinking towards zero

• Recall:  $S_{XY} = \frac{1}{n} \sum_{i=1}^{n} \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i) \Rightarrow$ 

$$S_{XY} = \operatorname*{arg\,min}_{Z \in \mathit{HS}(\mathcal{H}_{\ell},\mathcal{H}_{k})} \frac{1}{n} \sum_{i=1}^{n} \left\| \tilde{\phi}(x_{i}) \otimes \tilde{\psi}(y_{i}) - Z \right\|_{\mathit{HS}}^{2}.$$

• SCOSE (simple covariance shrinkage estimator,  $\lambda > 0$ ):

$$S_{XY}^{S} = \operatorname*{arg\,min}_{Z \in HS(\mathfrak{H}_{\ell}, \mathfrak{H}_{k})} \frac{1}{n} \sum_{i=1}^{n} \left\| \tilde{\phi}(x_{i}) \otimes \tilde{\psi}(y_{i}) - Z \right\|_{HS}^{2} + \lambda \left\| Z \right\|_{HS}^{2}.$$

## Variations: shrinking towards zero

• Recall:  $S_{XY} = \frac{1}{n} \sum_{i=1}^{n} \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i) \Rightarrow$ 

$$S_{XY} = \operatorname*{arg\,min}_{Z \in \mathit{HS}(\mathcal{H}_\ell,\mathcal{H}_k)} \frac{1}{n} \sum_{i=1}^n \left\| \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i) - Z \right\|_{\mathit{HS}}^2.$$

• SCOSE (simple covariance shrinkage estimator,  $\lambda > 0$ ):

$$S_{XY}^{S} = \operatorname*{arg\,min}_{Z \in HS(\mathcal{H}_{\ell},\mathcal{H}_{k})} \frac{1}{n} \sum_{i=1}^{n} \left\| \tilde{\phi}(x_{i}) \otimes \tilde{\psi}(y_{i}) - Z \right\|_{HS}^{2} + \lambda \left\| Z \right\|_{HS}^{2}.$$

• FCOSE (flexible covariance shrinkage estimator):

$$S_{XY}^{\mathbf{F}} = \sum_{j=1}^{n} \frac{\beta_{j}}{n} \tilde{\phi}(x_{j}) \otimes \tilde{\psi}(y_{j}),$$

$$\boldsymbol{\beta} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \frac{1}{n} \sum_{i=1}^{n} \left\| \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i) - \sum_{i=1}^{n} \frac{\beta_j}{n} \tilde{\phi}(x_j) \otimes \tilde{\psi}(y_j) \right\|_{\mathcal{U}_{\boldsymbol{\alpha}}}^2 + \lambda \left\| \boldsymbol{\beta} \right\|_2^2.$$

#### SCOSE vs FCOSE

In both cases:  $\lambda$  is chosen via leave-one-out CV.

• SCOSE: analytical formula for  $\lambda_*$ 

$$HSIC^{S} = \left\| S_{XY}^{S} \right\|_{HS}^{2} = \left( 1 - \frac{\frac{1}{n} \sum_{i=1}^{n} \tilde{K}_{ii} \tilde{L}_{ii} - HSIC}{(n-2)HSIC + \frac{\frac{1}{n} \sum_{i=1}^{n} \tilde{K}_{ii} \tilde{L}_{ii}}{n}} \right)_{+}^{2} HSIC.$$

#### SCOSE vs FCOSE

In both cases:  $\lambda$  is chosen via leave-one-out CV.

• SCOSE: analytical formula for  $\lambda_*$ 

$$HSIC^{S} = \left\| S_{XY}^{S} \right\|_{HS}^{2} = \left( 1 - \frac{\frac{1}{n} \sum_{i=1}^{n} \tilde{K}_{ii} \tilde{L}_{ii} - HSIC}{(n-2)HSIC + \frac{\frac{1}{n} \sum_{i=1}^{n} \tilde{K}_{ii} \tilde{L}_{ii}}{n}} \right)_{+}^{2} HSIC.$$

• FCOSE: after SVD of  $\tilde{K} \circ \tilde{L}$  [ $O(n^3)$ ], ' $/\lambda$ ':  $O(n^2)$ .

#### SCOSE vs FCOSE

In both cases:  $\lambda$  is chosen via leave-one-out CV.

• SCOSE: analytical formula for  $\lambda_*$ 

$$HSIC^{S} = \left\| S_{XY}^{S} \right\|_{HS}^{2} = \left( 1 - \frac{\frac{1}{n} \sum_{i=1}^{n} \tilde{K}_{ii} \tilde{L}_{ii} - HSIC}{(n-2)HSIC + \frac{\frac{1}{n} \sum_{i=1}^{n} \tilde{K}_{ii} \tilde{L}_{ii}}{n}} \right)_{+}^{2} HSIC.$$

• FCOSE: after SVD of  $\tilde{K} \circ \tilde{L}$  [ $O(n^3)$ ],  $'/\lambda'$ :  $O(n^2)$ .

#### Statement

SCOSE is (essentially) the oracle linear shrinkage estimator w.r.t. the quadratic loss.

### Oracle estimator: linear shrinkage, quadratic loss

#### **Proposition**

$$\begin{split} (S^*, \rho^*) &:= \mathop{\arg\min}_{Z \in HS(\mathcal{H}_{\ell}, \mathcal{H}_{k}), Z = (1 - \rho)S_{XY}, \rho \in [0, 1]} \mathbb{E} \left\| Z - \Sigma_{XY} \right\|_{HS}^{2}. \\ S^* &= (1 - \rho^*)S_{XY}, \\ \rho^* &= \frac{\mathbb{E} \left\| S_{XY} - \Sigma_{XY} \right\|_{HS}^{2}}{\mathbb{E} \left\| S_{XY} \right\|_{HS}^{2}}. \end{split}$$

Intuition: we shrink  $S_{XY}$  towards zero, optimally in quadratic sense.

Using 
$$\mathbb{E}[S_{XY}] = \Sigma_{XY}$$
:

$$\mathbb{E} \|Z - \Sigma_{XY}\|_{HS}^2 = \mathbb{E} \|(1 - \rho)S_{XY} - \Sigma_{XY}\|_{HS}^2 =$$

$$= \mathbb{E} \|-\rho S_{XY} + (S_{XY} - \Sigma_{XY})\|_{HS}^2$$

Using 
$$\mathbb{E}[S_{XY}] = \Sigma_{XY}$$
:

$$\begin{split} & \mathbb{E} \| Z - \Sigma_{XY} \|_{HS}^{2} = \mathbb{E} \| (1 - \rho) S_{XY} - \Sigma_{XY} \|_{HS}^{2} = \\ & = \mathbb{E} \| - \rho S_{XY} + (S_{XY} - \Sigma_{XY}) \|_{HS}^{2} \\ & = \rho^{2} \mathbb{E} \| S_{XY} \|_{HS}^{2} + \underbrace{\mathbb{E} \| S_{XY} - \Sigma_{XY} \|_{HS}^{2}}_{\mathbb{E} \| S_{XY} \|_{Le}^{2} - \| \Sigma_{XY} \|_{Le}^{2}} - 2\rho \underbrace{\mathbb{E} \langle S_{XY}, S_{XY} - \Sigma_{XY} \rangle_{HS}}_{\mathbb{E} \| S_{XY} \|_{Le}^{2} - \| \Sigma_{XY} \|_{Le}^{2}} \end{split}$$

Using 
$$\mathbb{E}[S_{XY}] = \Sigma_{XY}$$
:

$$\begin{split} \mathbb{E} \left\| Z - \Sigma_{XY} \right\|_{HS}^{2} &= \mathbb{E} \left\| (1 - \rho) S_{XY} - \Sigma_{XY} \right\|_{HS}^{2} = \\ &= \mathbb{E} \left\| - \rho S_{XY} + (S_{XY} - \Sigma_{XY}) \right\|_{HS}^{2} \\ &= \rho^{2} \mathbb{E} \left\| S_{XY} \right\|_{HS}^{2} + \underbrace{\mathbb{E} \left\| S_{XY} - \Sigma_{XY} \right\|_{HS}^{2}}_{\mathbb{E} \left\| S_{XY} \right\|_{HS}^{2} - \left\| \Sigma_{XY} \right\|_{HS}^{2}} - 2\rho \underbrace{\mathbb{E} \left\langle S_{XY}, S_{XY} - \Sigma_{XY} \right\rangle_{HS}}_{\mathbb{E} \left\| S_{XY} \right\|_{HS}^{2} - \left\| \Sigma_{XY} \right\|_{HS}^{2}} \\ &= \rho^{2} \mathbb{E} \left\| S_{XY} \right\|_{HS}^{2} + (1 - 2\rho) \mathbb{E} \left\| S_{XY} - \Sigma_{XY} \right\|_{HS}^{2} =: J(\rho). \end{split}$$

Using 
$$\mathbb{E}[S_{XY}] = \Sigma_{XY}$$
:

$$\begin{split} \mathbb{E} \left\| \mathbf{Z} - \mathbf{\Sigma}_{XY} \right\|_{HS}^{2} &= \mathbb{E} \left\| (1 - \rho) \mathbf{S}_{XY} - \mathbf{\Sigma}_{XY} \right\|_{HS}^{2} = \\ &= \mathbb{E} \left\| -\rho \mathbf{S}_{XY} + (\mathbf{S}_{XY} - \mathbf{\Sigma}_{XY}) \right\|_{HS}^{2} \\ &= \rho^{2} \mathbb{E} \left\| \mathbf{S}_{XY} \right\|_{HS}^{2} + \underbrace{\mathbb{E} \left\| \mathbf{S}_{XY} - \mathbf{\Sigma}_{XY} \right\|_{HS}^{2}}_{\mathbb{E} \left\| \mathbf{S}_{XY} \right\|_{HS}^{2} - 2\rho} \underbrace{\mathbb{E} \left\langle \mathbf{S}_{XY}, \mathbf{S}_{XY} - \mathbf{\Sigma}_{XY} \right\rangle_{HS}}_{\mathbb{E} \left\| \mathbf{S}_{XY} \right\|_{HS}^{2} - \left\| \mathbf{\Sigma}_{XY} \right\|_{HS}^{2}} \\ &= \rho^{2} \mathbb{E} \left\| \mathbf{S}_{XY} \right\|_{HS}^{2} + (1 - 2\rho) \mathbb{E} \left\| \mathbf{S}_{XY} - \mathbf{\Sigma}_{XY} \right\|_{HS}^{2} =: \mathbf{J}(\rho). \end{split}$$

Optimizing in  $\rho$ :

$$0 = J'(\rho) = 2\rho \mathbb{E} \|S_{XY}\|_{HS}^{2} - 2\mathbb{E} \|S_{XY} - \Sigma_{XY}\|_{HS}^{2} \Rightarrow \rho^{*} = \frac{\mathbb{E} \|S_{XY} - \Sigma_{XY}\|_{HS}^{2}}{\mathbb{E} \|S_{XY}\|_{HS}^{2}}.$$

$$\rho^* = \frac{\mathbb{E} \left\| S_{XY} - \Sigma_{XY} \right\|_{HS}^2}{\mathbb{E} \left\| S_{XY} \right\|_{HS}^2} = \frac{\beta}{\delta},$$

$$\rho^* = \frac{\mathbb{E} \left\| S_{XY} - \Sigma_{XY} \right\|_{HS}^2}{\mathbb{E} \left\| S_{XY} \right\|_{HS}^2} = \frac{\beta}{\delta}, \ \widehat{\delta} = \left\| S_{XY} \right\|_{HS}^2 = \textit{HSIC},$$

$$\rho^* = \frac{\mathbb{E} \|S_{XY} - \Sigma_{XY}\|_{HS}^2}{\mathbb{E} \|S_{XY}\|_{HS}^2} = \frac{\beta}{\delta}, \ \hat{\delta} = \|S_{XY}\|_{HS}^2 = HSIC,$$
$$\beta = \mathbb{E} \left\| \frac{1}{n} \sum_{i=1}^n \left[ \tilde{\phi}(x_i) \otimes \tilde{\phi}(y_i) - \Sigma_{XY} \right] \right\|_{HS}^2 = \frac{1}{n} \mathbb{E} \left\| \tilde{\phi}(x_i) \otimes \tilde{\phi}(y_i) - \Sigma_{XY} \right\|_{HS}^2$$

$$\rho^* = \frac{\mathbb{E} \|S_{XY} - \Sigma_{XY}\|_{HS}^2}{\mathbb{E} \|S_{XY}\|_{HS}^2} = \frac{\beta}{\delta}, \ \hat{\delta} = \|S_{XY}\|_{HS}^2 = HSIC,$$

$$\beta = \mathbb{E} \left\| \frac{1}{n} \sum_{i=1}^n \left[ \tilde{\phi}(x_i) \otimes \tilde{\phi}(y_i) - \Sigma_{XY} \right] \right\|_{HS}^2 = \frac{1}{n} \mathbb{E} \left\| \tilde{\phi}(x_i) \otimes \tilde{\phi}(y_i) - \Sigma_{XY} \right\|_{HS}^2$$

$$\approx \frac{1}{n^2} \sum_{i=1}^n \underbrace{\left\| \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i) - S_{XY} \right\|_{HS}^2}_{\tilde{K}_{ii}\tilde{L}_{ii} + \|S_{XY}\|_{HS}^2 - 2\langle \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i), S_{XY} \rangle_{HS}}$$

$$\rho^* = \frac{\mathbb{E} \|S_{XY} - \Sigma_{XY}\|_{HS}^2}{\mathbb{E} \|S_{XY}\|_{HS}^2} = \frac{\beta}{\delta}, \ \hat{\delta} = \|S_{XY}\|_{HS}^2 = HSIC,$$

$$\beta = \mathbb{E} \left\| \frac{1}{n} \sum_{i=1}^n \left[ \tilde{\phi}(x_i) \otimes \tilde{\phi}(y_i) - \Sigma_{XY} \right] \right\|_{HS}^2 = \frac{1}{n} \mathbb{E} \left\| \tilde{\phi}(x_i) \otimes \tilde{\phi}(y_i) - \Sigma_{XY} \right\|_{HS}^2$$

$$\approx \frac{1}{n^2} \sum_{i=1}^n \underbrace{\left\| \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i) - S_{XY} \right\|_{HS}^2}_{\tilde{K}_{ii}\tilde{L}_{ii} + \|S_{XY}\|_{HS}^2 - 2\langle \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i), S_{XY} \rangle_{HS}}$$

$$= \frac{1}{n} \left[ \frac{1}{n} \sum_{i=1}^n \tilde{K}_{ii} \tilde{L}_{ii} + \underbrace{\left\| S_{XY} \right\|_{HS}^2 - 2\left\| S_{XY} \right\|_{HS}^2}_{HS} \right] =: \hat{\beta},$$

$$\rho^* = \frac{\mathbb{E} \|S_{XY} - \Sigma_{XY}\|_{HS}^2}{\mathbb{E} \|S_{XY}\|_{HS}^2} = \frac{\beta}{\delta}, \ \hat{\delta} = \|S_{XY}\|_{HS}^2 = HSIC,$$

$$\beta = \mathbb{E} \left\| \frac{1}{n} \sum_{i=1}^n \left[ \tilde{\phi}(x_i) \otimes \tilde{\phi}(y_i) - \Sigma_{XY} \right] \right\|_{HS}^2 = \frac{1}{n} \mathbb{E} \left\| \tilde{\phi}(x_i) \otimes \tilde{\phi}(y_i) - \Sigma_{XY} \right\|_{HS}^2$$

$$\approx \frac{1}{n^2} \sum_{i=1}^n \underbrace{\left\| \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i) - S_{XY} \right\|_{HS}^2}_{\tilde{K}_{ii}\tilde{L}_{ii} + \|S_{XY}\|_{HS}^2 - 2\langle \tilde{\phi}(x_i) \otimes \tilde{\psi}(y_i), S_{XY} \rangle_{HS}}$$

$$= \frac{1}{n} \left[ \frac{1}{n} \sum_{i=1}^n \tilde{K}_{ii} \tilde{L}_{ii} + \underbrace{\left\| S_{XY} \right\|_{HS}^2 - 2\left\| S_{XY} \right\|_{HS}^2}_{-\|S_{XY}\|_{HS}^2 - HSIC} \right] =: \hat{\beta},$$

$$\Rightarrow \widehat{HSIC}^* = \left( 1 - \frac{\frac{1}{n} \sum_{i=1}^n \tilde{K}_{ii} \tilde{L}_{ii} - HSIC}{nHSIC} \right)^2 HSIC.$$

### Comparison

SCOSE:

$$\mathit{HSIC}^{\mathcal{S}} = \left(1 - \frac{\frac{1}{n} \sum_{i=1}^{n} \tilde{K}_{ii} \tilde{L}_{ii} - \mathit{HSIC}}{(n-2) \mathit{HSIC} + \frac{\frac{1}{n} \sum_{i=1}^{n} \tilde{K}_{ii} \tilde{L}_{ii}}{n}}\right)_{+}^{2} \mathit{HSIC}.$$

Oracle estimator with plug-in:

$$\widehat{\mathit{HSIC}^*} = \left(1 - \frac{\frac{1}{n} \sum_{i=1}^n \widetilde{K}_{ii} \widetilde{L}_{ii} - \mathit{HSIC}}{\mathit{nHSIC}}\right)^2 \mathit{HSIC}.$$

 $SCOSE \approx oracle with perturbed plug-in.$ 

### Numerical experiments

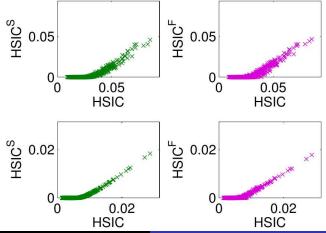
• Shrinkage usually improves power.

#### Numerical experiments

- Shrinkage usually improves power.
- ullet FCOSE: often achieves better power o non-linear shrinkage?, non-quadratic loss?

#### Numerical experiments

- Shrinkage usually improves power.
- $\bullet$  FCOSE: often achieves better power  $\to$  non-linear shrinkage?, non-quadratic loss?
- Soft HSIC shrinkage:



Thank you for the attention!

