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Manifold Learning

Problems with high-dimensional data

optimisation in high-d parameter space is computationally expensive and
hard to find a global optimum

Good news: in many cases, the intrinsic dimensionality is actually low

datapoints are sampled from a low-dimensional manifold embedded in a
high-dimensional space
example: swiss roll

Adapted from Roweis & Saul, Science, 2000

Manifold learning : attempts to uncover the manifold structure

Non-probabilistic prior work

idea: preserve geometric properties of local neighbourhoods

limits:

sensitive to noise due to lack of explicit model
heuristic methods to evaluate manifold dimensionality
no measure of uncertainties in the estimates
out-of-sample extension requires extra approximations

Gaussian process latent variable model (GP-LVM)

idea: define a functional mapping from latent space to data space using GP
[1, 2]

for data Y = [y1, . . . ,ydy] ∈ Rn×dy and latents X = [x1, . . . ,xdx] ∈ Rn×dx,

p(Y|X) =

dy∏
k=1

N (yk|0,Knn + β−1In),

where the i, jth element of the covariance matrix is

k(xi,xj) = σ2f exp

−1
2

dx∑
q=1

αq(xi,q − xj,q)2
 ,

where αq’s determine dimensionality of latent space.

limits:

no intuitive preservation of local neighbourhood properties
smoothness of manifold constrained by pre-chosen covariance function
auxiliary variable for variational inference (also restricts choice of cov
func)

Question

Can we learn a manifold in a probabilistic and possibly Bayesian way, while
preserving geometric properties of local neighbourhoods?

Our approach: LL-LVM

Key idea: there is a locally linear mapping between tangent spaces in low and high dimensional spaces

high-dimensional space low-dimension space
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yj − yi ≈ Ci(xj − xi)

given a graph G of neighbours with adjacency indicator ηij = 1 if j ∈ N(i), find the distribution over
the linear maps C = [C1, · · · ,Cn] ∈ Rdy×ndx and the latent variables x = [x1

>, · · · ,xn>]> ∈ Rndx

that best describe the data

log p(y|G) = log

∫ ∫
p(y,C,x|G)dxdC.

where
p(y,C,x|G) = p(y|C,x,G)p(C|G)p(x|G).
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prior on latents: assuming the neighbouring latent
variables are similar

−1
2

n∑
i=1

(α||xi||2 +
n∑
j=1

ηij||xi − xj||2)

=⇒ p(x|G, α) = N (0,Π)

where α controls the expected scale, Ω−1 = 2L⊗ Idx
and Π−1 = αIndx + Ω−1.

prior on linear maps: similarly

p(C|G,U) =MN (0,U,Ω),

where E[CC>] ∝ U.
likelihood: penalising the approximation error yields

−1
2

n∑
i=1

n∑
j=1

ηij((yj − yi)−Ci(xj − xi))
>V−1((yj − yi)−Ci(xj − xi))

=⇒ p(y|C,x,V,G) = N (µy,Σy)

assuming V−1 = γI and γ is a parameter.

Variational EM

maximizing log marginal likelihood is intractable, instead maximise lower bound

log p(y|G,θ) ≥
∫ ∫

q(C,x) log
p(y,C,x|G,θ)

q(C,x)
dxdC = F(q(C,x),θ),

for computational tractability, assume q(C,x) = q(x)q(C).

variational expectation maximization algorithm

expectation step for computing q(C,x) by

q(x) ∝ exp

[∫
q(C) log p(y,C,x|G,θ)dC

]
= N (x|µx,Σx),

q(C) ∝ exp

[∫
q(x) log p(y,C,x|G,θ)dx

]
= N (c|µc,Σc),

maximization step for estimating θ,

θ̂ = argmax
θ
F(q(C,x),θ).

Relation to GP-LVM

Integrating out C from likelihood yields

p(y|x,G,θ) =

∫
p(y|C,x,G,θ)p(C|G,θ)dC,

=
1

ZYy
exp

[
−1
2
y> K−1LL y

]
.

In contrast to GP-LVM, the precision matrix K−1LL depends on the Laplacian matrix.

The functional form of precision is directly determined by the graph structure given the
observations.

K−1LL = (2L⊗V−1)− (W ⊗V−1) Λ (W> ⊗V−1),

where W is a function in x and L and Λ is a function in x>x and L.

Illustration

Mitigating short-circuiting problems

samples from swiss roll (3D) 2D representation Adjacency matricesA B C
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Figure : Two datapoints seem close to each other (A) but actually far in 2D space (B). Short-circuiting
the two datapoints lower the lower bound (C)

Finding the optimal number of neighbours using variational lower bound

samples from 3D Gaussian LLE 

posterior mean of xposterior mean of C
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Figure : A: 400 samples drawn from 3D Gaussian. B: LLE. C:GP-LVM. D (Left): The posterior mean of
C. D (Middle): posterior mean of x. D (Right): Normalized variational lower bound.

Conclusion

A new probabilistic approach to manifold learning preserving local geometries in data and

equipped with straightforward variational inference for learning the manifold.
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