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Problem

• Distribution regression, with two-stage sampling [1]:
• Input = distribution, output ∈ R, or more generally separable Hilbert space.
• Challenge: we only have samples from the input distributions.

• Covered machine learning tasks include:
• multiple instance learning (MIL),
• point estimates of statistics (e.g., entropy or a hyperparameter).

• Existing methods: heuristics, or require density estimation (which typically
scale poorly in dimension).

Contribution

• We study an alternative, simple method: embed the distributions to a RKHS
(k), then apply ridge regression (K).

• Results:
• Consistency, convergence rate

specially: Y = R, K: linear−−−−−−−−−−−−−−−−−→
• Set kernels [2, 3] are consistent in regression (15-year-old open problem).

Introduction

Existing heuristics:

• parametric model fitting; kernelized Gaussian divergences; kernels on distributions;
Kullback-Leibler-, Rényi-, Tsallis divergence; set (semi)metric.

• issues: parameterization may fail to hold; metric/kernel? consistent estimation?
consistency in learning tasks?

Theoretically justified methods [1, 4]:

• require density estimation (often poor scaling).

• assume density, compact Euclidean domain.

Distribution Regression

• D(X) distributions on domain X.

• z = {(xi, yi)}l
i=1

i.i.d.∼ M: (xi, yi) ∈ D(X) × Y .

• Given: ẑ = {({xi,n}N
n=1, yi)}l

i=1, where xi,1, . . . , xi,N
i.i.d.∼ xi.

• Goal: learn the relation between (x, y) given ẑ.

• Idea:

D(X)
µ−→ X(⊆ H)

f∈H=H(K)−−−−−−→ Y,

i.e., embed the distributions to a H = H(k) RKHS on X, then X → Y ridge
regression.

• Notations: Y is a separable Hilbert space. k is a kernel on X, mean embedding

µx =
∫

X

k(·, u)dx(u) = Eu∼x[k(·, u)], X = µ (D(X)) .

ρ(µx, y) = ρ(y|µx)ρX(µx); regression function of ρ, ‖·‖ρ:

fρ(µa) =
∫

Y
ydρ(y|µa), ‖f‖2

ρ =
∫

X
‖f(µa)‖2

Y dρX(µa),

H = H(K) = Y -valued RKHS of X → Y functions with kernel
K : X × X → L(Y ) = {Y → Y bounded linear operators}.

Objective Function, Algorithm

• Cost function (of MERR):

fλ
ẑ = arg min

f∈H

1

l

l
∑

i=1

‖f(µx̂i
) − yi‖2

Y + λ ‖f‖2
H

(λ > 0),

where x̂i = 1
N

∑N
n=1 δxi,n

is the ith empirical distribution.

• Analytical solution: prediction on a new distribution t

(fλ
ẑ ◦ µ)(t) = [y1, . . . , yl](K + lλIl)

−1k,

K = [K(µx̂i
, µx̂j

)] ∈ L(Y )l×l,

k = [K(µx̂1
, µt); . . . ; K(µx̂l

, µt)] ∈ L(Y )l.

• Examples:
• If Y = R, then L(Y ) = R.
• If Y = R

d, then L(Y ) = R
d×d.

Intuitive Assumption

The regression function (fρ) is “sufficiently smooth” in L2
ρX

.

Remarks (Y = R)

• For linear K(µa, µb) = 〈µa, µb〉H, we get the set kernel:

K(µx̂i
, µx̂j

) =
1

N 2

N
∑

n,m=1

k(xi,n, xj,m).

• On compact metric X and for “rich” H(k), the following K functions are Hölder
continuous (h) kernels:

KG Ke KC Kt Ki

e−‖µa−µb‖2

H
2θ2 e−‖µa−µb‖H

2θ2

(

1 + ‖µa − µb‖2
H /θ2

)−1(

1 + ‖µa − µb‖θ
H

)−1(‖µa − µb‖2
H + θ2

)−1

2

h = 1 h = 1
2 h = 1 h = θ

2 (θ ≤ 2) h = 1

Error Guarantee, Consistency

If l is “not too small” compared to λ ( 1
λ2 ≤ l), then with high probability

∥

∥

∥fλ
ẑ − fρ

∥

∥

∥

ρ
≤ B(l, N, λ) + DH,

where B(l, N, λ) = log
h
2(l)

N
h
2λ

3
2

+ 1
λ

√
l
, DH = infq∈H ‖fρ − q‖ρ.

Interpretation:

• DH: approximation error of fρ from H; if H is dense in L2
ρX

, then DH = 0.

• For suitable (l, N, λ) choice B(l, N, λ) converges to 0. Example:
• (l, N ) trade-off: let l = Na with 2

3h ≤ a < h.

• Regularization: λ = l
[

log(l)
N

]h
→ 0.

In this case B(l, N, λ) = 1

N
3a
2

−h logh(N)
→ 0.

Applications

Supervised entropy learning:

• Label = entropy of the distribution represented by a bag.

• MERR is more precise than the only theoretically justified method [1] (DFDR; by
avoiding density estimation).
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Aerosol prediction:

• Bag = multispectral satellite image over an area.

• Label = aerosol value (highly accurate, expensive ground-based instrument).

• Performance:

Method 100×RMSE ±std

Baseline [mixture model (EM)] 7.5 − 8.5 ±0.1 − 0.6
MERR: linear K, single 7.91 ±1.61
MERR: linear K, ensemble 7.86 ±1.71
MERR: nonlinear K, single 7.90 ±1.63
MERR: nonlinear K, ensemble 7.81 ±1.64

• MERR compares favourably to domain-specific, engineered methods (beating
state-of-the art MIL techniques).

Code: in the ITE toolbox (https://bitbucket.org/szzoli/ite/).

Acknowledgements

This work was supported by the Gatsby Charitable Foundation, and by NSF grants
IIS1247658 and IIS1250350. The work was carried out while Bharath K. Sriperum-
budur was a research fellow in the Statistical Laboratory, Department of Pure Math-
ematics and Mathematical Statistics at the University of Cambridge, UK.

References

[1] Barnabás Póczos, Alessandro Rinaldo, Aarti Singh, and Larry Wasserman.
Distribution-free distribution regression. AISTATS; JMLR W&CP, 31:507–515,
2013.

[2] David Haussler. Convolution kernels on discrete structures. Technical report,
Department of Computer Science, University of California at Santa Cruz, 1999.

[3] Thomas Gärtner, Peter A. Flach, Adam Kowalczyk, and Alexander Smola.
Multi-instance kernels. In ICML, pages 179–186, 2002.

[4] Junier B. Oliva, Willie Neiswanger, Barnabás Póczos, Jeff Schneider, and Eric
Xing. Fast distribution to real regression. AISTATS; JMLR W&CP, 33:706–714,
2014.

∗Gatsby External Review, London, UK, 29 October 2014. The ordering of the second through fourth authors is alphabetical.

https://bitbucket.org/szzoli/ite/

