Two-Stage Sampled Distribution Regression on Separable
Topological Domains™

Problem

- Distribution regression, with two-stage sampling [1]:

= Input = distribution, output € R, or more generally separable Hilbert space.

= Challenge: we only have samples from the input distributions.

« Covered machine learning tasks include:
- multiple instance learning (MIL),
- point estimates of statistics (e.g., entropy or a hyperparameter).

« Existing methods: heuristics, or require density estimation (which typically

scale poorly in dimension).

Contribution

« We study an alternative, simple method: embed the distributions to a RKHS

(k), then apply ridge regression (K).
= Results:

= Consistency, convergence rate

specially: Y =R, K: hnear\

= Set kernels |2, 3] are consistent in regression (15-year-old open problem).

Introduction

Eixisting heuristics:

« parametric model fitting; kernelized Gaussian divergences; kernels on distributions;

Kullback-Leibler-, Rényi-, Tsallis divergence; set (semi)metric.

= issues: parameterization may fail to hold; metric/kernel? consistent estimation?

consistency in learning tasks?
Theoretically justified methods [1, 4]:

= require density estimation (often poor scaling).

= assume density, compact Euclidean domain.

Distribution Regression

= D(X) distributions on domain X.
cz = {(z;, ;) Yo ”'d' M: (x,y;) € D(X) x Y.

- Given: Z = {({azm}n Ly Yoy, where g, .., Ty N @

« Goal: learn the relation between (x,y) given Z.

= Idea:
FEH=T(K)

D(X) 5 X(C H) > Y,

i.e., embed the distributions to a H = H(k) RKHS on X, then X — Y ridge

regression.

« Notations: Y is a Separable Hilbert space. k is a kernel on X, mean embedding

/ k(. = By [k(-,u)], X = u(D(X)).

Pz, y) = p y\uaz pX(:“:I:) regression function of p, ||-[| ;

folita) = [ oyl LI = [ 1F ()l dpx (i),
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H = H(K) = Y-valued RKHS of X — Y functions with kernel
K: X xX — L(Y)={Y — Y bounded linear operators}.

Objective Function, Algorithm

- Cost function (of MERR)'

£ = wgmin g Z 1 f(z) — willy + M fllae (A >0),
1=1

where Z; = % SN S 7., 18 the @* " empirical distribution.
= Analytical solution: prediction on a new distribution ¢
(fom)(t) = [y, .,y (K + X)) 7'k,
K = [K(p3,, p12,)] € £(Y)™,
k = [K(pay, pe); -5 K (s, )] € LY

« Examples:

SIfY = RthenL(Y) R.
-If Y = RY, then £(Y) = RIX¢

Intuitive Assumption

The regression function (f,) is “sufficiently smooth” in L%X.

Remarks (Y = R)

= For linear K (pa, o) = (tas o) i, We get the set kernel:

1
K(/Lam,ux]) N2 Z k 'IZ??,)'I]m)

n,m=1

= On compact metric X and for “rich” H(k), the following K functions are Holder

continuous (h) kernels:
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Applications

Supervised entropy learning:

« Label = entropy of the distribution represented by a bag.

- MERR is more precise than the only theoretically justified method [1] (DFDR; by
avoiding density estimation).

RMSE Values: MERR=0.11, DFDR=0.285
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Aerosol prediction:

« Bag = multispectral satellite image over an area.

« Label = aerosol value (highly accurate, expensive ground-based instrument).

= Performance:

Method 100x RMSE 4std
Baseline mixture model (EM)| 7.5 -85 =£0.1 —0.6
MERR: linear K, single 7.91 +1.61
MERR: linear K, ensemble 7.86 +1.71
MERR: nonlinear K, single 7.90 +1.63
MERR: nonlinear K, ensemble 7.81 +1.64

« MERR compares favourably to domain-specific, engineered methods (beating
state-of-the art MIL techniques).

Code: in the ITE toolbox (https://bitbucket.org/szzoli/ite/).
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Error Guarantee, Consistency

If [ is “not too small” compared to A (AL [), then with high probability

- prp < B(I, N, \) + Dy,

h
where B(l, N, \) = og?Ul) 4 L Dy = infyeac || fp — ¢

Hp’

Interpretation:

= Dg: approximation error of f, from H; it H is dense in L?)X, then Dy = 0.

= For suitable (I, N, A) choice B(l, N, \) converges to 0. Example:
« (I, N) trade-off: let [ = N% with %h <a<h.

h
= Regularization: A =1 {10%[)} — 0.

In this case B(l, N, \) N%_hi e > 0.
0g
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