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Motivation: application + theory.
Problem formulation.
Results: computational & statistical tradeoffs.

Numerical examples.
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@ Samples: {(x;,yi)}¢_;. Find f € H such that f(x;) = y;.
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@ Distribution regression:
@ Xx;-s are distributions,

¢ available only through samples: {x,-7,,} labelled bags.

n=1"
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@ Samples: {(x;,yi)}¢_;. Find f € H such that f(x;) = y;.
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@ Distribution regression:

@ Xx;-s are distributions,
o available only through samples: {x; ,}"", labelled bags.

@ Goal: computational & statistical tradeoffs implied by N := N; (Vi).
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Motivation (application): aerosol prediction

Bag := pixels of a multispectral satellite image over an area.
Label of a bag := aerosol value.

©

Relevance: climate research, sustainability.
Engineered methods [Wang et al., 2012]: 100 x RMSE = 7.5 — 8.5.
Using distribution regression?

e ¢
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Wider context

o Context:

@ machine learning: multi-instance learning,
o statistics: point estimation tasks (without analytical formula).

@ Applications:
@ computer vision: image = collection of patch vectors,
o network analysis: group of people = bag of friendship graphs,
o natural language processing: corpus = bag of documents,
o time-series modelling: user = set of trial time-series.
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Several algorithmic approaches

@ Parametric fit: Gaussian, MOG, exp. family
[Jebara et al., 2004, Wang et al., 2009, Nielsen and Nock, 2012].

@ Kernelized Gaussian measures:
[Jebara et al., 2004, Zhou and Chellappa, 2006].

© (Positive definite) kernels:
[Cuturi et al., 2005, Martins et al., 2009, Hein and Bousquet, 2005].

© Divergence measures (KL, Rényi, Tsallis, ... ):
[Péczos et al., 2011, Kandasamy et al., 2015].

© Set metrics: Hausdorff metric [Edgar, 1995]; variants
[Wang and Zucker, 2000, Wu et al., 2010, Zhang and Zhou, 2009,
Chen and Wu, 2012].
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Motivation: theory

@ MIL dates back to [Haussler, 1999, Gartner et al., 2002].

S

@ Sensible methods in regression: require density estimation
[Pdczos et al., 2013, Oliva et al., 2014, Reddi and Pdczos, 2014,
Sutherland et al., 2015] + assumptions:
© compact Euclidean domain.
© output = R ([Oliva et al., 2013, Oliva et al., 2015]: distribution/function).
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Input-output requirements

@ Input: distributions on 'structured’ D domains (kernels).
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Input-output requirements

@ Input: distributions on 'structured’ D domains (kernels).
o Output:
o simplest case: Y =R, but
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Input-output requirements

@ Input: distributions on 'structured’ D domains (kernels).
o Output:

o simplest case: Y =R, but
o dependencies might matter: Y = R9 (or separable Hilbert).
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Kernel, RKHS

@ k:DxD — R kernel on D, if

@ Jdp: D — H(ilbert space) feature map,
° k(a,b) = (¢p(a), p(b))y (Va, b € D).
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Kernel, RKHS

@ k:DxD — R kernel on D, if
@ Jo : D — H(ilbert space) feature map,
° k(a,b) = (¢(a), p(b))y (Va,b € D).

o Kernel examples: D =R9 (p >0, 6 > 0)
o k(a,b) = ({a, b) + 6)": polynomial,
o k(a,b) = e~ lla=bl2/(26%). Gaussian,
o k(a,b) = e ?12=bli: Laplacian.

@ In the H = H(k) RKHS (3!): ¢(u) = k(-, u).

~— —
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RKHS: evaluation point of view

o Let H C R? be a Hilbert space.
@ Consider for fixed x € D the 6, : f € H— f(x) € R map.

@ The evaluation functional is linear:

5x(af + /Bg) = a(sx(f) + ﬂéx(g)
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RKHS: evaluation point of view

o Let H C R? be a Hilbert space.
@ Consider for fixed x € D the 6, : f € H— f(x) € R map.

@ The evaluation functional is linear:
Ox(af + Bg) = adx(f) + Bix(g).

@ Def.: H is called RKHS if 6, is continuous for Vx € D.
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RKHS: reproducing point of view

o Let H C R? be a Hilbert space.

@ k:D xD —is called a reproducing kernel of H if for
VxeD,feH

Q k(,x)€H,
Q (f,k(-,x))y = f(x) (reproducing property).
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RKHS: reproducing point of view

o Let H C R? be a Hilbert space.

@ k:D xD —is called a reproducing kernel of H if for
VxeD,feH
Q k(,x)€H,
Q (f,k(-,x))y = f(x) (reproducing property).
Specifically, Vx,y € D

k(x,y) = k(s x) k(Y ) -
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RKHS: positive-definite point of view

@ Let us given a k: D x D — R symmetric function.

o k is called positive definite if Yn > 1, VY(ay,...,a,) € R",
(X1y...,xn) € D"

n
Z a;ajk(x,-,xJ-) —a'Ga> 0,
=1

where G = [k(x;, x;)]} j=1-
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Kernel: example domains (D)

o Euclidean space (D = RY), graphs, texts, time series,
dynamical systems, distributions!
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Problem formulation (Y = R)

@ Given:

o labelled bags 2 = {(%;,yi)}'_,.

o i bag: % = {Xit,- o xin} il x;i € P(D), yi € R.
@ Task: find a P (D) — R mapping based on 2.
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Problem formulation (Y = R)

o Given:

o labelled bags 2 = {(%;,yi)}"_ .

o i"bag: %= {xi1,...,xin}' N'x,-EfP( )
@ Task: find a P (D) — R mapping based on 2

@ Construction: mean embedding ()

(k)

P (D) X C H = H(K)

:tvvo—stage sampling

Zoltdn Szabé Learning Theory for Vector-Valued Distribution Regression



Problem formulation (Y = R)

@ Given:

o labelled bags 2 = {(%,yi)}'_,,

o i bag: % = {Xit,- o xin} il x;i € P(D), yi € R.
@ Task: find a P (D) — R mapping based on 2.

@ Construction: mean embedding (px) + ridge regression

P (D) "N x ¢ H= HK) TR

:two-stage sampling :Hilbert — R regression
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: Hilbert — R regression, well-specified case

@ Regression function, expected risk (assume for a moment: f, € H):

f1x) = /R ydprli), R = By Fu) — I
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: Hilbert — R regression, well-specified case

@ Regression function, expected risk (assume for a moment: f, € H):

f1x) = /R ydprli), R = By Fu) — I

@ Ridge estimator:
)4

£ —argmln—Z\qu, y,-|2+)\Hf||§_f, (A>0).
feX
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: Hilbert — R regression, well-specified case

@ Regression function, expected risk (assume for a moment: f, € H):

f1x) = /R ydprli), R = By Fu) — I

@ Ridge estimator:

J4
£ —argmln—Z\f fsx; ) y,-|2+)\Hf||§_f, (A>0).
feX
@ Excess risk:

g(f}’ fp) = R[fz/\] - R[fp]'
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: Hilbert — R regression

@ Known [Caponnetto and De Vito, 2007]: if p(ux,y) € P(b,c),
then the best/achieved rate

E(R)f,) = Op (e*ﬁ) (1< b,ce(1,2)).
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: Hilbert — R regression

@ Known [Caponnetto and De Vito, 2007]: if p(ux,y) € P(b,c),
then the best/achieved rate

E(£),6) = Op (e*ﬁ) (1< b,ce(1,2]).
@ p e P(b,c):

T= / K('vua)K*('>ua)de(,ua) DI = I
X

o Eigenvalues of T decay as A\, = O(n’b). f,€lm (T%l)
o Intuition: 1/b — effective input dimension, ¢ — smoothness of f,.
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bc
Can we reach this O, (FTH) minimax rate? N =7

)4
1
;' = argmin 7 Z () = yil* + A5
fex L4

f —argmm— f(pix;) y-2+)\ fl12, .
gm Z\ %) = Yil 1115
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: mean embedding, p, — ps,

@ k:D x D — R kernel; canonical feature map: ¢(u) = k(-, u).
@ Mean embedding of a distribution x, X; € P(D):

i :/Dk(-,u)dx(u) € H(k),

) = L3 ko
s, :/Dk(~,u)dx,(u)— N;k(,x,m).
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: mean embedding, p, — ps,

@ k:D x D — R kernel; canonical feature map: ¢(u) = k(-, u).
@ Mean embedding of a distribution x, X; € P(D):

i :/Dk(-,u)dx(u) € H(k),

) = L3 ko
s, :/Dk(~,u)dx,(u)— N;k(,x,m).

@ Linear K = set kernel:

K(/’L)A(,-a,uf(j) = </’L>A<i7M)A<j>H = 0 Z k(X/',”’XJ.,m)'
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: mean embedding, p, — ps,

@ k:D x D — R kernel; canonical feature map: ¢(u) = k(-, u).
@ Mean embedding of a distribution x, X; € P(D):

fx = /D k(-, u)dx(u) € H(k),

N
s, :/Dk(',u)dx,-(u):N;k(-,x,-m).

@ Nonlinear K example:

2
llpeg; — g Iy

K(ps; M)”g) =e 27
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. ridge regression = analytical solution

@ Given:
@ training sample: 2,
o test distribution: t.

@ Prediction on t:

(£ 0 u)(t) = k(K + £AL) " yai - vl (1)
K = [K (s, 1)) € B, @
k= [K(pszys pt), - -, K(Mf%v pe)] € R (3)

= K1 pixr) = (K(-, 1), K(-,u;)>%(K) matter.
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: Why can we get consistency? — intuition

@ Convergence of the mean embedding:
[ 11x — M§<||H(k) =Y ﬁ .
@ Holder property of K (0 < L, 0 < h <1):

1Ky 1) = Ko ) lsgey < Ll = ey

° f;‘ depends 'nicely’ on us.
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By decomposing the excess risk, concentration, on P(b, c) we get

log" (¢ 1 1 1 1
E(fi*,f,))gog()<—+1+—l>+/\+—+€A — 0,

NAXx \ 222 I 25
:two—stage sampling = H — R regression
log (¢
st ot > 1,080
Ah
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By decomposing the excess risk, concentration, on P(b, c) we get

log" (¢ 1 1 1 1
E(f;,fp)gog()<—+1+—l>+/\+—+w\ — 0,

NAXx \ 222 I 25
:two—stage sampling = H — R regression
st A > 1, '°g§f) < N.
Ah

o Let N =/(h log(¢) = 1st term + constraints simplify.
@ a > 0: needed, i.e. N > log(?).
@ Bias-variance trick with constraint-checking =
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Computational & statistical tradeoff (W)

If
b(C—l- 1) _ _ac_ . __a_
°a< W, then £ (£,1,) = O (£737) with A = (7777,
b(c+1 _ ke . __b_
°a>- " then € (f;, fp) =0, (e bc+1) with \ = ¢~ BT,
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Computational & statistical tradeoff (W)

If
b(C+1) _ ac_ . __a_
°a< ﬁ, then £ (£,1,) = O (£737) with A = (7777,
b(c+1 _ ke . __b_
®a> -~ then 5(;,;;) =0, (e bc+1) with \ = ¢~ BT,

Meaning (a-dependence, N = £ log(()):
@ 'Smaller ' = computational saving, but reduced statistical
efficiency.
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Computational & statistical tradeoff (W)

@
W
| /\

[
L
| \/

15 i 1) thené’(f;\,fp) =0, (E_ca_fl) with )\:g—c%_l'
bc+1) )
bc

then & (f;, fp) =0, (4—%&) with A = ¢~

Meaning (a-dependence, N = £ log(()):
@ 'Smaller ' = computational saving, but reduced statistical

efficiency.
b(c+1)

< 2:
bc+1

@ Sensible choice: a <

N sub-quadratic in ¢ achieves one-
stage sampled minimax rate! ('=")
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Computational & statistical tradeoff (W)

LJFI) then £ (f), fp) =0p (E_CQTCI) with \ = €<,

(
b
°a> y then £ (£,,) = Op (£751 ) with A = ¢~ 571,

Meaning (h-dependence, N = (7 log(()):
@ smoother K kernel is rewarding = bag-size reduction; see
smoothness of f,.
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Computational & statistical tradeoff (W)

If
b(C+1) _ ac . __a
°a< ﬁ’ then & (f;, fp) ~0, (e c+1) with \ = £~
b(c+1 _bc . b
°a>-—Cthen (f;, fp) =0, (e bc+1) with \ = £~ ket

Meaning (c-dependence):

b 1
@ c— M decreasing: smaller bags are enough for easier
bc+1
problems.
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Misspecified setting

@ Relevant case: f, € L,%X\f}f.
o f,: difficulty parameter = s € (0,1], larger s = easier problem.
@ Proof idea:

@ 00-D exponential family fitting [Sriperumbudur et al., 2014],
& ridge solution.
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Computational & statistical tradeoff (M)

Let N = (% log(¢) (a > 0). If

1 sa a
0 a< ::2 then & (f;, fp> ~0, (6—%) with A = ¢~
1 .
°a> :tz then & (f;, fp> =0, (rﬁ) with A = ¢~ 512
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Computational & statistical tradeoff (M)

Let N = (% log(¢) (a > 0). If

1 sa a
0 a< ::2 then & (f;, fp> ~0, (6—%) with A = ¢~
1 .
°a> :tz then & (f;, fp> =0, (rﬁ) with A = ¢~ 512

Meaning (a-dependence):
@ 'Smaller a' = computational saving, but reduced statistical

efficiency.
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Computational & statistical tradeoff (M)

Let N = (% log(¢) (a > 0). If

1 sa a
0 a< ::2 then & (f;, fp> ~0, (6—%) with A = ¢~
1 .
°a> :tz then & (f;, fp> =0, (rﬁ) with A = ¢~ 512

Meaning (a-dependence):
@ 'Smaller a' = computational saving, but reduced statistical

efficiency.
1 4
@ Sensible choice: a < st> <-=2a< =<2l
s+2 3 3

N can be sub-quadratic in £ again ('=")! ‘
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Computational & statistical tradeoff (M)

2a
Let N = ¢h log(¢) (a > 0). If
s+1 _ 2sa . __a
°a< o then & (£.6) = 0p (£757) with A = £751,

02> thene (£.6) = 0p (£7572) with A = £7572,
s+2

Meaning (h-dependence):

2a
o h— s is decreasing: smoother K kernel is rewarding.
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Computational & statistical tradeoff (M)

2a
Let N = ¢+ log(¢) (a > 0). If
s+1 _ 25 . _a
°a< o then & (£.6) = 0p (£757) with A = £751,

- Op (£7577) with A = £z,

1
02> then¢ (ﬁ’\,fp)
s+2

Meaning (s-dependence): s — is increasing, i.e easier task

s+
= better rate,
@ s — 0: arbitrary slow rate.

2
@ s=1: /73 rate.
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Optimality of the rate (M)

@ Our rate: r(¢) = e - range space assumption (s).
@ One-stage sampled optimal rate: r,(¢) = (=h [Steinwart et al., 2009],

@ range-space assumption + eigendecay constraint,
o D: compact metric, Y = R.

0.8
0.6 : e
T 0.4 s
"'
4
02 '/ - - -~log[r (N]=2s/(2s+1)
—-log|[r(h]=2s/(s+2)
,
0
0 0.2 0.4 0.6 0.8 1

Smoothness (s)
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Blanket assumptions: both settings

@ D: separable, topological domain.
o k:

o bounded: sup,cq k(u, u) < By € (0,00),
@ continuous.

@ K: bounded; Holder continuous: 3L > 0, h € (0, 1] such that

1K (s ta) — K (o i)llge < Lllia — pnllfy -

@ y: bounded.
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Holder K examples (other than the linear K when h=1)

In case of compact metric D, universal k:

Ke Ke Kc
lisa =513 liea s -1
e 202 " e 202 8 (1 + ||,Ua - ,UbHiI /92>
K: Ki
P -1 2 2 _%
(1o = molls) (e = ol + 62)
h=19(0<2) h=1

Functions of ||ua — pl|y = computation: similar to set kernel.
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Vector-valued output: similarly

o K(pa, p) € L(Y).
@ Prediction on a new test distribution (t):

(£ o p)(t) = k(K + E\) " y1; ... vl (4)
= [K(N&-aﬂ%)] e L(Y), (5)
k = [K(ugy, pe)s - - - K(psg,, 1e)] € L(Y)E|(6)

Specifically: Y =R = L£(Y)=R; Y =RY = £(Y) = R9*?,
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Demo

@ Supervised entropy learning:
RMSE: MERR=0.75, DFDR=2.02

L e
v{:m N 4
&

. 7 T
0 \ '/ —true E . '
{ MERR 2 B
1 + DFDR
i =
3

1 2
rotation angle (B)
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Demo

@ Supervised entropy learning:

RMSE: MERR=0.75, DFDR=2.02
]

g
v{:ﬁ. N 4
&

1R, .
2 |\ s w3 -
S o \ . 2 :
e \ / —true E . '
[ " 2
MERR
1 + DFDR :
= <
-2
0 1 2 3 MERR DFDR

rotation angle (B)

@ Aerosol prediction from satellite images:
@ State-of-the-art baseline: 7.5 — 8.5 (+£0.1 — 0.6).
o MERR: 7.81 (£1.64).
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@ Problem: distribution regression (k).

@ Contribution:
e computational & statistical tradeoff analysis,
o specifically, the set kernel is consistent: 16-year-old open question,
@ minimax optimal rate is achievable: sub-quadratic bag size.
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@ Problem: distribution regression (k).

@ Contribution:
e computational & statistical tradeoff analysis,
o specifically, the set kernel is consistent: 16-year-old open question,
@ minimax optimal rate is achievable: sub-quadratic bag size.

@ Code in ITE, analysis submitted to JMLR:

https://bitbucket.org/szzoli/ite/
http://arxiv.org/abs/1411.2066.
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https://bitbucket.org/szzoli/ite/
http://arxiv.org/abs/1411.2066

Thank you for the attention!
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