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Motivation: detecting differences in AM signals

@ Amplitude modulation:
o simple technique to transmit voice over radio.
@ in the example: 2 songs.

@ Fragments from song; ~ Py, song, ~ Py.
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Motivation: detecting differences in AM signals

@ Amplitude modulation:
o simple technique to transmit voice over radio.
@ in the example: 2 songs.

@ Fragments from song; ~ Py, song, ~ Py.

Question: P, =P, 7 J
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Motivation: domain - 2-sample testing

@ How do we compare distributions?

@ Given: 2 sets of text fragments (fisheries, agriculture).

x1: Now disturbing reports out of
Newfoundland show that the fragile snow
crab industry is in serious decline. First the
west coast salmon, the east coast salmon
and the cod, and now the snow crabs off
Newfoundland.

x2: To my pleasant surprise he responded
that he had personally visited those
wharves and that he had already
announced money to fix them. What
wharves did the minister visit in my riding
and how much additional funding is he
going to provide for Delaps Cove,
Hampton, Port Lorne, ...

y1: Honourable senators, | have a question
for the Leader of the Government in the
Senate with regard to the support funding
to farmers that has been announced. Most
farmers have not received any money yet.

y2: On the grain transportation system we
have had the Estey report and the Kroeger
report. We could go on and on. Recently
programs have been announced over and
over by the government such as money for
the disaster in agriculture on the prairies
and across Canada.
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Motivation: domain - 2-sample testing

@ How do we compare distributions?

@ Given: 2 sets of text fragments (fisheries, agriculture).

x1: Now disturbing reports out of
Newfoundland show that the fragile snow
crab industry is in serious decline. First the
west coast salmon, the east coast salmon
and the cod, and now the snow crabs off
Newfoundland.

x2: To my pleasant surprise he responded
that he had personally visited those
wharves and that he had already
announced money to fix them. What
wharves did the minister visit in my riding
and how much additional funding is he
going to provide for Delaps Cove,
Hampton, Port Lorne, ...

y1: Honourable senators, | have a question
for the Leader of the Government in the
Senate with regard to the support funding
to farmers that has been announced. Most
farmers have not received any money yet.

y2: On the grain transportation system we
have had the Estey report and the Kroeger
report. We could go on and on. Recently
programs have been announced over and
over by the government such as money for
the disaster in agriculture on the prairies
and across Canada.

Do {x;} and {y;} come from the same distribution, i.e. P, =P,? |
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Motivation:

domain - independence testing

@ How do we detect dependency? (paired samples)

x1: Honourable senators, | have a question
for the Leader of the Government in the
Senate with regard to the support funding
to farmers that has been announced. Most
farmers have not received any money yet.

x2: No doubt there is great pressure on
provincial and municipal governments in
relation to the issue of child care, but the
reality is that there have been no cuts to
child care funding from the federal
government to the provinces. In fact, we
have increased federal investments for early
childhood development.

y1: Honorables sénateurs, ma question
s'adresse au leader du gouvernement au
Sénat et concerne |'aide financiére qu'on a
annoncée pour les agriculteurs. La plupart
des agriculteurs n’ont encore rien reu de
cet argent.

yo: |l est évident que les ordres de
gouvernements provinciaux et municipaux
subissent de fortes pressions en ce qui
concerne les services de garde, mais le
gouvernement n’a pas réduit le
financement qu'il verse aux provinces pour
les services de garde. Au contraire, nous
avons augmenté le financement fédéral
pour le développement des jeunes enfants.
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Motivation: domain - independence testing

@ How do we detect dependency? (paired samples)

x1: Honourable senators, | have a question
for the Leader of the Government in the
Senate with regard to the support funding
to farmers that has been announced. Most
farmers have not received any money yet.

x2: No doubt there is great pressure on
provincial and municipal governments in
relation to the issue of child care, but the
reality is that there have been no cuts to
child care funding from the federal
government to the provinces. In fact, we
have increased federal investments for early
childhood development.

y1: Honorables sénateurs, ma question
s'adresse au leader du gouvernement au
Sénat et concerne |'aide financiére qu'on a
annoncée pour les agriculteurs. La plupart
des agriculteurs n’ont encore rien reu de
cet argent.

yo: |l est évident que les ordres de
gouvernements provinciaux et municipaux
subissent de fortes pressions en ce qui
concerne les services de garde, mais le
gouvernement n’a pas réduit le
financement qu'il verse aux provinces pour
les services de garde. Au contraire, nous
avons augmenté le financement fédéral
pour le développement des jeunes enfants.

Are the French paragraphs translations of the English ones, or have
nothing to do with it, i.e. Pxy = PxPy?
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© RKHS based metric on probability distributions.
© 2-sample testing:

@ Nonparametric.

¢ Distance between distribution representations.
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© RKHS based metric on probability distributions.
© 2-sample testing:

@ Nonparametric.

¢ Distance between distribution representations.

© Independence testing:

@ Dependency detection.
@ Distance between joint (Pxy) and product of marginals
(PxPy).
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Kernels
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Kernels on numerous data types

Kernels exist on essentially any data type:

@ images, texts, graphs, time series, dynamical systems, ...

= distribution representation, hypothesis testing: on all these
domains.
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Towards representations of distributions:

@ Given: 2 Gaussians with different means.

@ Solution: t-test.

Two Gaussians with different means
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Towards representations of distributions:

@ Setup: 2 Gaussians; same means, different variances.
@ ldea: look at the 2nd-order features of RVs.

Two Gaussians with different variances

Prob. density
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Towards representations of distributions:

@ Setup: 2 Gaussians; same means, different variances.
@ ldea: look at the 2nd-order features of RVs.
@ o, = x> = difference in EX2.

Two Gaussians with different variances Densities of feature X2
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Towards representations of distributions:

@ Setup: a Gaussian and a Laplacian distribution.
@ Challenge: their means and variances are the same.
@ ldea: look at higher-order features.

Gaussian and Laplace densities

0.7

Prob. density

Let us consider feature representations! )
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Kernel: similarity between features

@ Given: x and x’ € X objects (images, texts, ... ).
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Kernel: similarity between features

@ Given: x and x’ € X objects (images, texts, ... ).

@ Question: how similar they are?
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Kernel: similarity between features

@ Given: x and x’ € X objects (images, texts, ... ).
@ Question: how similar they are?

@ Define features of the objects:

©x . features of x,

o : features of x'.

@ Kernel: inner product of these features

k(x,x") = (Ox, Px' ) g -
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Kernel examples

o X = RY:

ko(x,y) = ((x,¥) +7)P, ke(x,y) = e_’YHX—Y\\%’
1

ke(X’y) = e_’YHX_yHQ) kC(X)y) =1+ . 2
v Ix = yl3
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Kernel examples

e X =R

ko(x,y) = ((x,¥) +7)P, ke(x,y) = e_’YHX—Y\\%’
P 1
ke(x,y) = e M=yl ke(x,y) =14+ ——.
Ylx =yl

@ X = texts, strings:
¢ bag-of-word kernel,
@ r-spectrum kernel: # of common < r-substrings.
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Kernel examples

e X =R

ko(x,y) = ((x,¥) +7)P, ke(x,y) = e_’YHX—Y\\%’
P 1
ke(x,y) = e M=yl ke(x,y) =14+ ——.
Ylx =yl

@ X = texts, strings:
¢ bag-of-word kernel,
@ r-spectrum kernel: # of common < r-substrings.

@ X = time-series: dynamic time-warping.
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Two-sample testing
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Ingredient: maximum mean discrepancy
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Ingredient: maximum mean discrepancy

@.“, Tt W

k(doga, dog,) k(dog;, fish;)
H
V=,

k(fish,, dog; ) k (fish;, fish,

2 W " L
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Ingredient: maximum mean discrepancy
Pyut, ™ H

9.(‘
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Ingredient: maximum mean discrepancy
»’.“, " H
<

k(doga, dogJ)
H

k(dog;, fish;)

V=,
k(fish;, dog;) k(fishy, fish, Q"
«f

3

V2, M

MMD2(P,Q) = Kpp + Koo — 2Kp.o (without diagonals in Kp.p, Ko.0)
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From to

@ Recall:

o ¢, € J: feature of x € X.
o Kernel: k(x,x") = (¢x, 0x )¢
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From to

@ Recall:
oy € H: feature of x € X.
o Kernel: k(x,x") = (¢x, 0x )¢
@ Mean embedding:
o Feature of P: up := Ey p[px] € H(k).
o Inner product: (i, /1g) 5 = Exwp v ~ok(x,x").
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From to

@ Recall:
oy € H: feature of x € X.
o Kernel: k(x,x") = (¢x, 0x )¢
@ Mean embedding:
o Feature of P: up := Ey p[px] € H(k).
o Inner product: (i, /1g) 5 = Exwp v ~ok(x,x").

o up: well-defined for all distributions (bounded k).
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Maximum mean discrepancy

Squared difference between feature means:

MMD?(P, Q) = [up — pgl5; = (p — 1o, e — k@)
= (up, pp) g + (B0, 1Q)gc — 2 (1P, HQ) g
= Eppk(x,x") + Eqok(y,y') — 2Epgk(x,y).
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Maximum mean discrepancy

Squared difference between feature means:

MMD?(P, Q) = [up — pgl5; = (p — 1o, e — k@)
= (up, pp) g + (B0, 1Q)gc — 2 (1P, HQ) g
= Eppk(x,x") + Eqok(y,y') — 2Epgk(x,y).

Unbiased empirical estimate for {x;}[_; ~ P, {y;}]_; ~ Q:

MMD2(P, Q) = Ke» + Koo — 2K 0.
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Two-sample test using MMD

@ Two hypotheses:
s Hp (null hypothesis): P = Q.
@ H; (alternative hypothesis): P # Q.
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Two-sample test using MMD

@ Two hypotheses:
s Hp (null hypothesis): P = Q.
@ H; (alternative hypothesis): P # Q.

o Observation: {x}]_; ~ P, {y;}"_; ~ Q.
@ Decision: if I\M%IP’,Q) is 'far from 0" = reject Hp.
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Two-sample test using MMD

@ Two hypotheses:
s Hp (null hypothesis): P = Q.
@ H; (alternative hypothesis): P # Q.

o Observation: {x}]_; ~ P, {y;}"_; ~ Q.
@ Decision: if I\M%IP’,Q) is 'far from 0" = reject Hp.

@ Threshold = 7 222", asymptotic distribution of MMD?2.
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Two-sample test using MMD: H;

Under H; (P # Q): asymptotic distribution of MMD? is Gaussian.

Prob. density

MMD dlstnbUtlon and Gausslan flt Under H1 Two Laplace distributions with different variances
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Two-sample test using MMD: H,

Under Hy (P = Q): asymptotic distribution is
nMMD?2(P, ) ~ 2/\ 22 - 2),

where z; ~ N(0,2) i.i.d.,

Lk<x Wi () AP(x) = Avi(x'), k(x,X') = (ox — fps 00 — 1B 3e

MMD density under HO

07
_f sum

08 [l Erpirical PDF
05

=

2 04

(]

=l

Sos

<3

a

o
[

0.1

2
< MMD?

Zoltdn Szabé Hypothesis Testing with Kernels



Two-sample test using MMD: threshold

To the decision:
@ given that P = Q,
2
@ we want threshold T such that P(nMMD > T) < 0.05 =: «.

MMD density under HO and H1
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Two-sample test using MMD: threshold

Task: P(n/\/II\/ID > T) a. Solutions:

@ permutation test: below,
@ kernel eigenspectrum estimate: ;.
@ moment matching: Gamma approximation.
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Demo: amplitude modulated signals

Question: P, =P, 7?
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Results: AM signals (120kHz)

n = 10,000. Average over 4124 trials. Gaussian noise: added.
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Independence testing
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Independence testing

@ Given:
o 2 kernel-endowed domain: (X, k), (Y,¢),
o paired samples: {(x;,y:)}"_; ~ Pxy.

@ Hypotheses: Hy : Pxy = PxPy, H;i : Pxy # PxPy.



Independence testing

o Given:

o 2 kernel-endowed domain: (X, k), (Y,¢),
o paired samples: {(x;,y:)}"_; ~ Pxy.

@ Hypotheses: Hy : Pxy = PxPy, H;i : Pxy # PxPy.

o Statistics:

HSIC = MMD*(Pxy,PxPy) = [byey — ipxpy | et »
k((x,y), (X)) = k(X )y, ).
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HSIC in terms of expectations

HS/C(PX\/, Pxpy) = EXyEX/y’[k(X7 x')f(y, y/)]
+ EXEX’[k(X7X/)]EYEY/[K(y’y/)]
— 2Ex’y/ [Exk(X, X/)Eye(y7 .y/)]

Let us consider an example!
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Text from dogtime.com and petfinder.com

Zoltan Szabé

Their noses guide them through life, and
they're never happier than when following
an interesting scent. They need plenty of
exercise, about an hour a day if possible.

A large animal who slings slobber, exudes a
distinctive houndy odor, and wants nothing more
than to follow his nose. They need a significant
amount of exercise and mental stimulation.

Known for their curiosity, intelligence, and
excellent communication skills, the Javanese
breed is perfect if you want a responsive,
interactive pet, one that will blow in your ear
and follow you everywhere.
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HSIC intuition: Gram matrices

- %
‘ J Their noses guide them through life, and

they're never happier than when following
K an interesting scent. They need plenty of L
exercise, about an hour a day if possible.

A large animal who slings slol
distinctive houndy odor, and
than to follow his nose. They
e amount of exercise and ment|

o
EE Known for their curiosity, intelligence, and
excellent communication skills, the Javanese
breed is perfect if you want a responsive,
] interactive pet, one that will blow in your ear
and follow you everywhere.
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HSIC intuition: Gram

matrices

Empirical estimate:

Their noses guide them through life, and
they're never happier than when following
an interesting scent. They need plenty of

exercise, about an hour a day if possible.

A large animal who slings slol
distinctive houndy odor, and
than to follow his nose. They
amount of exercise and ment|

Known for their curiosity, intelligence, and
excellent communication skills, the Javanese
breed is perfect if you want a responsive,
interactive pet, one that will blow in your ear
and follow you everywhere.

— 1
HSIC(Pxy,PxPy) = —(HKHo HLH) 4y, H =1~ n~1117.

Zoltan Szabé
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Independence testing: decision

@ Under Hp: nHSIC — oo-sum of weighted x?...
@ Permutation test:

Q@ Compute HSIC for {x;, yx(i}]—; with many 7-s.
@ Estimate the (1 — a)-quantile from the empirical CDF.
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Demo: translation example

@ 5-line extracts.
@ kernel: bag-of-words, r-spectrum (r = 5)
@ sample size: n = 10. repetitions: 300.

Results:
@ r-spectrum: average Type-ll error = 0 (o = 0.05),
@ bag-of-words: 0.18.
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Summary

@ Kernels on images, texts, graphs, time series, ...

@ RKHS based metric on probability distributions.
@ Applications:

¢ 2-sample testing: MMD.
@ independence testing: HSIC.

@ No density estimation.
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AM signals.

Kernel examples.

Universal kernel: definition, examples.
MMD: IPM representation.

HSIC: Where 'HS' is coming from?

e © ¢ ¢ ¢
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AM signals

e s;: ith song.

@ observation (s — y):
y(t) = cos(wct)(As(t) + oc) + n(t),

where n(t): Gaussian noise.
@ The AM signals were sampled at 120kHz.
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Kernel examples

_le=bi3 ~ la=bly
kG(a, b) =e 207 | ke(a, b) —e 207 |
L 1
ke(a,b) = ———— . ke(a,b)= ————
cla.b) = 4 Lot t(2.5) 1+ Ja—b|]
la— bl

k avb = a,b +9P,k,«a,b :1_7’
p(a,b) = ({a,b) +0)", ki(a,b) P

1

la = blj5 + 62

3Ja—-b V3la—
kp.3(a, b) = <1 i w> e_%bug’

V5a—bl,  5la—b|3) _va-s,
ka%(a’ b) = <1+ 9 + 302 e o .

k,-(a, b) =

NIw
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Universal kernel: definition

Assume
@ X: compact, metric,
@ k:X x X — R kernel is continuous.
Then
@ Def-1: k is universal if H(k) is dense in (C(X),||[|,)-
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Universal kernel: definition

Assume
@ X: compact, metric,
@ k:X x X — R kernel is continuous.
Then
@ Def-1: k is universal if H(k) is dense in (C(X),||[|,)-
o Def-2: kis
o characteristic, if 1 : M () — H(k) is injective.
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Universal kernel: definition

Assume
@ X: compact, metric,
@ k:X x X — R kernel is continuous.
Then
@ Def-1: k is universal if H(k) is dense in (C(X),||[|,)-
o Def-2: kis

o characteristic, if 1 : M () — H(k) is injective.
¢ universal, if p is injective on the finite signed measures of X.
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Universal kernel: examples

On compact subsets of RY (3 > 0):

k(a,b) = e—ﬁl\a—b\\g’
k(a’ b) — e_ﬁ”a_bHI’
k(a, b) = €*P) (3> 0), or more generally

k(a,b) = f({a, b)), f(x)= i apnx"  (Va, > 0).
n=0

Universal = characteristic.
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MMD: IPM represenation

Let I := {f € H(k) : |f|4 < 1} be the unit ball in H{. Then

MMD(P,Q; F) := sup[Ex~pf(x) — E,~qf (y)],

feF

= sup[(f, up) g — (. pa)gc = sup[(F, up — pQ)gc
feF fegF

= |up — polly -
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HSIC: Where 'HS’ is coming from?

Players: (X, k), (Y,€), Pxy, Px, Py; Cxy : H(¢) — H(k).

Cxy = Exy[(x — tpy) ® (@y — ppy)];
(f, Cxv8)ac() = Exv[f(x) — Exf(x)][g(y) — Evg(y)], Vf. g,
HSIC = || Cxy |75 -
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