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Problem: regression on distributions

o Given: {(x;,y/)}\_, samples H > f =7 such that f(x;) = y;.

@ Our interest:

s x;-s are distributions, but (challenge!),
o only samples are given from x;-s: {x; .} ,.
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Two-stage sampled setting = bag-of-features

Examples:
@ image = set of patches/visual descriptors,
document = bag of words/sentences/paragraphs,
molecule = different configurations/shapes,

°
°
@ group of people on a social network: bag of friendship graphs,
@ customer = his/her shopping records,

°

user = set of trial time-series.
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Distribution regression: wider context

Several problems are covered in machine learning and statistics:
@ multi-instance learning,

@ point estimation tasks without analytical formula.
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Existing methods

Idea:

@ estimate distribution similarities,

@ plug them into a learning algorithm.
Approaches:

© parametric approaches: Gaussian, MOG, exponential family
[Jebara et al., 2004, Wang et al., 2009,
Nielsen and Nock, 2012].

© kernelized Gaussian measures:
[Jebara et al., 2004, Zhou and Chellappa, 2006].
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Existing methods+

© (Positive definite) kernels: [Cuturi et al., 2005,
Martins et al., 2009, Hein and Bousquet, 2005].

© Divergence measures (KL, ...): [Pdczos et al., 2011].

© Set metric based algorithms:

©® Hausdorff metric [Edgar, 1995], and
@ its variants [Wang and Zucker, 2000, Wu et al., 2010,
Zhang and Zhou, 2009, Chen and Wu, 2012].
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Existing methods: summary

@ MIL dates back to [Haussler, 1999, Gartner et al., 2002].

@ There are several multi-instance methods, applications.
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Existing methods: summary

@ MIL dates back to [Haussler, 1999, Gartner et al., 2002].

@ There are several multi-instance methods, applications.

@ One 'small’ open question:

Does any of these techniques make sense?
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Existing methods: “exceptions”

@ APR (axis-parallel rectangles) and its variants, classification
[Auer, 1998, Long and Tan, 1998, Blum and Kalai, 1998,
Babenko et al., 2011, Zhang et al., 2013,

Sabato and Tishby, 2012]:

Yi= max(HR(x,-,l), o ,]IR(X,'7N)) S {0, 1},

where R = unknown rectangle.
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Existing methods: “exceptions”

@ APR (axis-parallel rectangles) and its variants, classification
[Auer, 1998, Long and Tan, 1998, Blum and Kalai, 1998,
Babenko et al., 2011, Zhang et al., 2013,

Sabato and Tishby, 2012]:

Yi= max(HR(x,-,l), o ,]IR(X,'7N)) S {0, 1},

where R = unknown rectangle.

@ Density based approaches, regression: KDE + kernel
smoothing [Pdczos et al., 2013, Oliva et al., 2014],
@ densities live on compact Euclidean domain,
@ density estimation: nuisance step.
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High-level goal: set kernel

@ Given (2 bags):
Bi = {xin}N; ~ x;,
N.
Bj = {Xj.m}tm=1 ~ X-

@ Similarity of the bags (set/multi-instance/ensemble-,
convolution kernel [Haussler, 1999, Gartner et al., 2002]):

k(Xi7n7 )<j7m)'
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High-level goal: consistency of set kernels

@ Are set kernels consistent, when plugged into some regression
scheme?

@ Our focus:

‘ ridge regression ‘

@ Motivation (ridge scheme):
@ simple algorithm.
© recently proved parallelizations [Zhang et al., 2014].
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JH: assumed function class to capture the (x, y) relation.
f,: true regression function (might not be in J).
fyc: “best” function from H (/ = oo, N := N; = o0).
f: estimated function from 3 based on {({x;.n}N_1,y/)}/_;.
Aim:
s High probability error guarantees (\: reg., &: risk):

e ¢ © ¢ ¢

E[f] = Elfsc] < n(l,N, ), (1)
|f = Flle < (1, N, A) + rs(richness of 7). (2)

@ Consistency: (I, N,A\) =? such that r;(/, N,A) - 0 (i =1,2).
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Distribution regression: definition, solution idea

®z= {(thl')}f:f Xj € Mf (D), yiceY.

5 N I iid.
0 2 ={({Xinthie,¥i) }iqyt Xids-- s Xin = X0
@ Goal: learn the relation between x and y based on 2.
@ ldea:

@ embed the distributions (using u defined by k),
© apply ridge regression (determined by K).

FEH(K)
e

M (D) & X C H(k) Y.
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Kernel part (k, K): RKHS

o k:DxD —= R kernel on D, if
@ Jo : D — H(ilbert space) feature map,
o k(a,b) = (p(a), p(b))y (Va,b € D).

o Kernel examples: D =R (p >0, § > 0)
o k(a,b) = ({a, b) + 6)": polynomial,
o k(a, b) = e~lla=bll2/(2"). Gaussian,
o k(a,b) = e~?la=bl2: Laplacian.

o In the H = H(k) RKHS (31): o(u) = k(-, u).

~— —
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Kernel part: example domains (D)

@ Euclidean space: D = RY.

@ Strings, time series, graphs, dynamical systems.

@ Distributions.
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Embedding step: M; (D) & X C H(k)

@ Given: kernel k: D x D — R.
@ Mean embedding of a distribution x € M{ (D):

U = /D k(-,u)dx(u) € H(k).

@ Mean embedding of the empirical distribution
5 N
% = 7 Lop—1 O, € M (D):

IR
s = [ uaR() = 5 D kCexi0) € HK)
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Objective function: X ey

@ Optimal (3{/measurable) in expected risk (&) sense:

€[ = inf €[] = jnf /X ) = yIB dolar ),
fp(ua)ZE[ylua]Z/dep(ylua) (1a € X).

@ One-stage ([ — z), two-stage difficulty (z — 2):

£ —arngln—Z\\f wa) = yily + A5, (3)
€

/

ﬂ —arngln—ZHf 15;) }/i|ﬁ/+)‘Hf”§{- (4)
fe
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Algorithmically: ridge regression = analytical solution

o Given:
e training sample: 2,
o test distribution: t.

@ Prediction:

(£ o p)(t) = [y1, -, yi](K + IA) 'k, (5)

K = [Kj] = [K(ug, 1z,)] € £(Y)™', (6)
K(quaﬂt)

k= : e L(Y). (7)
K(M)"q,#t)

o Specially: Y =R = L(Y)=R; Y =RY = £(Y) =R
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@ D: separable, topological.
@ Y': separable Hilbert.
o k:

o bounded: sup,cq k(u, u) < By € (0,00),
@ continuous.

o X = p (M{(D)) € B(H).
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Assumption-1 — continued

o K [Ky, == K(-, pa)):
© bounded:

1K, 12 = Tr (K2 Ky,) < Bk € (0,00), (Vi € X).
© Halder continuous: 3L > 0, h € (0, 1] such that
h
1Ky, — KubHL(ch) < Llpa—polly,  V(pa, mp) € X x X,

@ y is bounded: 3C < oo such that [|y|l,, < C almost surely.
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Assumption-1: remarks (before the p assumptions)

@ k: bounded, continuous =
o w: (M{(D),B(rw)) — (H,B(H)) measurable.
@ u measurable, X € B(H) = p on X x Y: well-defined.

@ If (*) := D is compact metric, k is universal, then  is
continuous and X € B(H).

o If Y =R, we get the traditional boundedness of K:

K(,Uanua) < Bk, (vﬂa € X)
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Assumption-1: linear K < set kernel

o Let Y =R and K(pta, fin) = (ta; pib) - Recall

N

1
s = Z k(-, xi,n)-

n=1

@ In this case: Bk = Bk, L =1, h=1, we get the set kernel

N
1
K(/-L)A(,-nuf(j) = </-L>A<i7:uf<j>H = m Z k(X/',”?XJ.,m)‘
n,m=1
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Assumption-1: nonlinear K examples for Y = R

In case of (*) and Y = R: Holder K-s (D: compact, metric; p:
continuous)

Kc Ke Kc
l|ea—np 12 lla—ns|| -1
e 202 " e 202 8 (1 + ||,Ua - ,UbHiI /92>
— 1 -
h=1 h=1 h=1
K: Ki

N=

o\ ! 2 2\
(1 = raollfy) (o = molly +62)
h=2(0<2) h=1
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Assumption-1 — continued: p € P(b, c)

@ Let the T : H — H covariance operator be
T | KCna)K Cm)px(n)

with eigenvalues t, (n=1,2,...).
@ Assumption: p € P(b, c) = set of distributions on X x Y
o a<nt,<B (Yn>1,a>0,8>0),
o Jg € K such that fir = T2 g with ||g||3, < R (R > 0),
where b € (1,00), ¢ € [1,2].
@ Intuition: b — effective input dimension, ¢ — smoothness of fy.
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Assumption-2: Assumption-1, but with alternative p

Let T be the extension of T from H to L,%X:

Si i H — 2

pX?
SK : sz — :H:7 (SKg)(:U‘U) = /); K(MU7/J‘t)g(Ht)de(ut)7
T=SkSk: 12 =12 .

Our assumptions on p:

@ Range space assumption: f, € Im ('NI'S> for some s > 0.

2 .
o L7 : separable.
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Assumption-2: remarks

@ Range space assumption:

o f,€lm (7’5): s captures the smoothness of f,.

° Lf,X: separable < measure space with d(A, B) = px(A A B)
is so [Thomson et al., 2008].
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Error guarantees, consistency (in human-readable format)

In case of

o Assumption-1: if / > \"51

e el < B e L1

’ = TNR3 Y
@ Assumption-2: if % <
h
log2(/ 1
‘Si?f?—fp &) 4 1\ Dy Dy,

By ™ N3As A
Dy = inf \Ifp = Skalliz,

with high probability.
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Demo-1 (Y = R): Supervised entropy learning

Problem: learn the entropy of (rotated) Gaussians.

(]

Baseline: kernel smoothing based distribution regression
(applying density estimation) =: DFDR.

Performance: RMSE boxplot over 25 random experiments.

(]

Experience:

@ more precise than the only theoretically justified method,
o by avoiding density estimation.
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Supervised entropy learning: plots

RMSE: MERR=0.75, DFDR=2.02

2 y *
f'/:“ +h-¢q.¢\g\ 4t
lt'\*+ o ] *
2 \: * w 3r -
S o \ . ] 2 '
‘q&J / —true E . '
{ MERR 2
-1 + DFDR] | '
- n
-2 . .
0 1 2 3 MERR DFDR

rotation angle ()
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Demo-2 (Y = R): Aerosol prediction from satellite images

@ Bag:= multispectral satellite image over an area.

@ Label of a bag:= AOD value of a highly accurate
ground-based instrument.

@ Performance: RMSE.

@ Experience:

@ ~ domain-specific, engineered methods,
o beating state-of-the-art Ml techniques.
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Aerosol prediction: results

@ Baseline [mixture model (EM)]: 7.5 — 8.5 (£0.1 — 0.6).
® Linear K:

@ single: 7.91 (£1.61).

s ensemble: 7.86 (+£1.71).
@ Nonlinear K:

@ Single: 7.90 (£1.63),
@ Ensemble: 7.81 (+1.64).
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@ Problem: two-stage sampled distribution regression.
@ Literature: large number of heuristics.

@ Contribution:

o error guarantees, consistency for the ridge based solution.
@ specially, set kernel is consistent in regression (15-year-old
open question).

@ Code € ITE toolbox:
https://bitbucket.org/szzoli/ite/
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Future research directions

@ Theoretical:
@ quadratic loss (£), bounded kernels (k, K), mean embedding
(1) with i.i.d. samples ({x; ,}N_,): relaxation,
s equivalent characterizations/alternative priors (p),
o lower/optimal bounds,
@ error guarantees for non-point estimates.

@ Practical: large-scale solvers, dim(Y) = oo.
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Appendix: Contents

Topological definitions.
Vector-valued RKHS.
Hausdorff metric.

Weak topology on M (D).

Universal kernel examples.
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Topological space, open sets

o Given: D # () set.
o 7 C 2P is called a topology on D if:

Qlber, Der.
@ Finite intersection: O1 €7, O €7 = 01N, € T.
© Arbitrary union: O; € 7 (i € 1) = Ui, O; € 7.

Then, (D, 7) is called a topological space; O € T: open sets.
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Topology: examples

o 7= {),D}: indiscrete topology.

o 7 =27 discrete topology.

o (D, d) metric space:
s Open ball: B.(x) ={y € D:d(x,y) < €}.
@ O C D is open if for Vx € O Je > 0 such that B.(x) C O.
@ 7:={0 C D: O is an open subset of D}.
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Closed-, compact set, closure, dense subset, separability

Given: (D,7). ACDis
@ closed if D\A € 7 (i.e., its complement is open),
@ compact if for any family (O;);c; of open sets with
A C Uje/O;, 3in, ..., ip € I with AC U7, O;,.
Closure of A C D:
A= N C. (8)

ACC closed in D

@ ACDis denseif A=D.
@ (D, ) is separable if 3 countable, dense subset of D.
Counterexample: [°°/L*°.

Vector-valued Distribution Regression: Simple, Consistent

Zoltan Szabé



The discrete space

° (D,2®): complete metric space.

@ Discrete metric (inducing the discrete topology):
0, ifx=y
dn={Y ) ©)

@ Discrete space: separable < |D| is countable.
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Vector-valued RKHS

Definition:
@ A 3 C YX Hilbert space of functions is RKHS if

Ay - F o (s F(ix))y (10)

is continuous for YV, € X,y € Y.
@ = The evaluation functional is continuous in every direction.
Riesz representation theorem =-
e 3K, € L(Y,H):

K (s pe)(y) = (Kuey)(pix), - (Vs pe € X)), or shortly
K(, ne)(y) = Kuey, (11)
H(K) =span{K,.y : pt € X,y € Y}. (12)
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Vector-valued RKHS — continued

Examples (Y = RY):
Q Ki: X x X —Rkermels (i=1,...,d). Diagonal kernel:

K(pas o) = diag(Ki(pa, f1b), - - - Ka(pas pib))- (13)
@ Combination of D; diagonal kernels [Dj(j1a, p1p) € R™*",
A; € R™4]:

K(tta tib) = Y A5 Dj(tas 1) Ay (14)
=1
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Existing methods: set metric based algorithms

@ Hausdorff metric [Edgar, 1995]:

du(X,Y) = max{sup inf d(x,y), sup inf d(x, y)} (15)
xeXYEY yey xeX

sup inf dx,y)
) eV :

TEX WS

sup mf dlx, y)
yey o

@ Metric on compact sets of metric spaces [(M, d); X,Y C M].
@ 'Slight’ problem: highly sensitive to outliers.
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Weak topology on M; (D)

Def.: It is the weakest topology such that the
Lp: (M (D), 7w) = R,
Ly(x) = / h(u)dx(u)
D
mapping is continuous for all h € Cp(D), where

Cp(D) = {(D, 7) — R bounded, continuous functions}.
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Universal kernel examples

On every compact subset of RY:

lla—bll3

k(a,b) =€ 222 | (0 >0)

k(a, b) = b (3> 0), or more generally

k(a,b) = f((a,b)), f(x)=> anx" (Va,>0)
n=0

k(a,b) = (1—(a,b))*, (a>0).
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