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@ Motivation: (structured) sparse coding.
@ Proximal operators, FISTA.
@ Solution: dual norm + smooth approximation.
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Motivation: least squares, sparse coding

@ Given: x € R%, D ¢ R%*da,
@ Least squares problem:

1 .
J(e) =3 x ~ Dol — min . (1)

acRda
@ Sparse coding (JPEG; convex relaxation, Lasso, w > 0):

1

J(a):§|

X — D5 +w ||lal; - min . )
acRIa
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Motivation: structured sparse coding

@ Group Lasso (G partition = non-overlapping, blocks):

1 2 .
J(a) = > X = Da|5 +w Z lagll, — a@ﬂ'& )
Ge§

@ Overlapping G:
@ hierarchy, grid, total variation, graphs.
@ many successful application: gene analysis, face
expression recognition, . ..
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Non-overlapping group Lasso

@ FISTA objective:

J(a) =f(a) +9(ax) = min . 4)

acRda

@ Assumptions:

o f,g: convex,
o f is 'smooth’ (Lipschitz continuous gradient, L).

@ Fast convergence:

t2

Ja) = @) =0 (). )
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FISTA

@ Ingredients:

@ Gradient of the smooth term: Vf.
@ Lipschitz constant of Vf: L.
@ Proximal operator of the non-smooth term (p > 0):

. 1
proxen(v) = argmin |a(y) + oo Iy ~VIE|. @
y p
° Example: f(a) = 3 ||x — Da||3, g(@) =W Y a2,

Vi(a) =D (Da — x), L= Amax (DT D) )

proxg: analytical (for partition G). 8)
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@ Obijective (A > 0; wg > 0, VG € 9):

J(a) =f(a) + Qa) + Aex]|; = fg{!&[}aa 9)
Qa) = we [lagl,. (10)
Ge§

@ Assumption:

o f: convex (FISTA assumptions).
@ §G: non-overlapping = no analytical formula for proxpg.
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@ The />-norm is self-dual:

all,= max bTa. 11
lall, e (11)
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@ The />-norm is self-dual:

all,= max bTa. 11
lall, e (11)

@ We rewrite Q (ag — Bg € RICI: auxiliary variable):

B =[(Bs)geq) € R ees |Gl (12)
Qo) =) welacll, =) we max Bgag  (13)
Geg Ges Be:1Bs <
T T
= max W, ag =: maxs' Ca, 14
ﬁeQGze;3 cheae ﬂeQﬁ (14)

Q={B:Bsll, <1,VG € G} (product of unit balls).
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Solution - continued

@ Smooth approximation to Q(a) (u > 0):

T ~ T .
Qa) = rgggﬁ Ca ~ max (A7 Ca — uS(8) ) =: ()

s(B) =5 HBHZ > 0. (15)

@ Maximum gap is uM:

_ i
M = rgggs(ﬁ) = (16)
Qo) — uM < Q(a) < Q) (17)
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Solution: FISTA on the smooth approximation

@ Original objective (A > 0):

Ia) = (@) + Q) + A, — min . (18)

@ Smooth approximation (x> 0, A > 0):

Ju(a) =f(a) + Qu(a) + A |||y = min . (19)
—— N acRda
FISTA: f g
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Result (=FISTA can be applied)

@ Q,(a): convex with Lipschitz continuous gradient

VQ,(a) =CT 3%, (20)
B* = argmax (ﬁT Ca — us(ﬂ)) (21)
BeQ

Jmez=),) e

@ Lipschitz constant: L, = < |[C|3.
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Proof (intuition)

@ Convexity, smoothness of Q,,:

() = max (67 Cor - s(6)) = nmax (7<% —(5) )

BeQ BeQ v
= pd* (C—O‘) : (23)
ol
@ Gradient VQ,,: Danskin’s theorem with
h(a) = max o(B,a), (24)
BeK:compact
Vh(a) = Vap(8, a). (25)

@ Lipschitz constant L,,: Nesterov '05.

Zoltan Szabhd Smoothing Proximal Gradient Method



Convergence rate: O (1)

@ Given: € (precision).
@ We want

J(at) —I(a”) <e. (26)

@ Set y = o, Wwhere M = ‘—g‘
@ Sufficient number of iterations:

1 4l — oygl|? 2M ||C||2
. ()J o — a2 [Amax(DTDH i3]

€ € €

@ Note (subgradient descent is much slower): O (%).

€
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@ Task: non-overlapping group Lasso.
o Difficulty: non-overlapping = non-separability.
@ Proposed solution:

o |||l = ||lz- Smooth approximation.

@ |G| independent subproblems, analytical expressions to
FISTA.

e convergence rate: O ().
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Thank you for the attention!
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Analytical solution for 3*

B = argmax (87 Ca — £ |81 (27)
BeQ
2

= «'slrgerg'slxez69 (wGﬂGae -5 IIﬂellz) (28)
=arg m|n |ﬂ WGaG (29)

BEQ Geg 2

Thus

(8% =M (%) . (30)
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Combination of Lipschitz constants

@ LetL; (Lg) be a Lipschitz constant of Vf (VQ).
® ThenLs 4 <Lt +Lg, since

[(VE+Vag)(x) — (VF+Vag)(y)ll, (31)
< [VE(x) + Vg (x)] = [VE(y) + Vay)lll, (32)
< VX)) = VEW)I2 +[IValy) = Vay)ll,  (33)
=Le[x =yl +Lg X =Yl (34)
< (L +Lg) lIx —=yll2- (35)
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Rate of convergence for SPG

J(w) = J(a”) (36)
= [Ien) = Jula)] + Ppu(en) = Ju(a)] + Pu(a’) = I(a”)]

%12
2L, [leo — |3
12

2 _*2 C2
S;MM«+—JEH%§filb-<Amw((DTD)-+U7¥2). (38)

< uM + +0 (37)

Plug-in p = 55, and solve for t:

2 |lao — a*|3 2M |[Cf5
L 2leo — o’ (AmaX<DTD>+ || ||2)<6.

J(ar) —I(a™) < > . <

€
2
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Proximal operator

o f:RY — RU{co}: closed proper convex function, i.e.,

epi(f) = {(y,t) e R x R : f(y) <t} (39)

is nonempty closed convex.
@ Proximal operator of f:

. 1
proxg(v) = argmin |f(y) + 5 |y ~vI3|.  (40)

@ Strictly convex r.h.s. of (40) = prox;: exists, unique.
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Proximal operator = generalization of projection

@ C: closed convex set.
@ f = I indicator function of G

le(y) = {SO z Z gj (41)

@ Then, prox; = Euclidean projection onto C:

proxi.(v) = Me(v) = argmin v —y/[,. (42)
y
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Conjugate function

o f:RY - R, not necessarily convex.
@ Conjugate of f:

f*(v) = sup [va — f(y)} . (43)
y
@ Notes:
@ f*: convex < pointwise sup of convex functions.

o if f is convex, closed: (f*)* =f.
o if f is differentiable: f* = Legendre transform of f.
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Conjugate function: properties

@ If f = indicator function of a unit ball, i.e.,
f=le, C=B={yeR:|y|<1}, (44
then f* is the dual norm

f*(v)=|v|*= max v'y. (45)
yeR®:[ly||<1

o Dual norm of [|-||, (p > 1) is ||-[|, with 2 + & = 1.
@ Similarly (G: partition):

lull=>"lually, " = maxjuglly - (46)
Ges
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