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Overview

@ Review of convex optimization

@ Support vector classification, the C-SV machine
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Why we need optimization: SVM idea

Classify two clouds of points, where there exists a hyperplane which
linearly separates one cloud from the other without error.
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Classify two clouds of points, where there exists a hyperplane which
linearly separates one cloud from the other without error.

Arthur Gretton Introduction to Machine Learning: Kernels



Why we need optimization: SVM idea

Classify two clouds of points, where there exists a hyperplane which
linearly separates one cloud from the other without error.

Smallest distance from each class to the separating hyperplane
w ' x + b is called the margin.
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Why we need optimization: SVM idea

This problem can be expressed as follows:

2
r?vfax (margin) = TV?K (HW‘) or @,'? [wl|? (1)
subject to
wixi+b>1 iy =+1, 2)
wlxi+b<—1 ity =-1

This is a convex optimization problem.
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Short overview of convex optimization



Convex set

O &9 B

(Figure from Boyd and Vandenberghe)

Leftmost set is convex, remaining two are not.

Every point in the set can be seen from any other point in the set,
along a straight line that never leaves the set.

Definition

C is convex if for all x;,x € C and any 0 < # < 1 we have

Ox1+ (1 — 0)x2 € C, i.e. every point on the line between x; and x,
lies in C.
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Convex function: no local optima

(v, f(y))

(z, f(x)) =

(Figure from Boyd and Vandenberghe)

Definition (Convex function)

A function f is convex if its domain domf is a convex set and if
Vx,y € domf, and any 0 < 6 < 1,

f(Ox+(1—-0)y) <0f(x)+(1—0)f(y).

The function is strictly convex if the inequality is strict for x # y.
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Optimization and the Lagrangian

Optimization problem on x € R”,
minimize fy(x)
subject to fi(x) <0 i=1,....,m (3)
0

h,'(X): iZl,...p.

e p* the optimal value of (3), D assumed nonempty, where...

o D = ﬂ:n:O domf; N mf):]_ domh, (dom f; =subset of R” where f; defined).
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Optimization and the Lagrangian

Optimization problem on x € R”,

minimize fy(x)
subject to fi(x) <0 i=1,....,m (3)
hi(x) =0 i=1,...p

e p* the optimal value of (3), D assumed nonempty, where...
e D= ﬂ:n:O domf; N mf):]_ domh, (dom f; =subset of R” where f; defined).

Ideally we would want an unconstrained problem
P
minimize fy(x) + Z I— (fi(x)) + Z lo (hi(x
i=1

<0
where I_(u) = v= and Ip(u) is the indicator of 0.
0o u>

Why is this hard to solve?
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Lower bound interpretation of Lagrangian

The Lagrangian L : R” x R™ x RP — R is an (easier to optimize)
lower bound on the original problem:

P
L(x, A\, v) := fo(x —1—2 )\,f, + Z I/,h,
Lo <m0
and has domain domlL ;=D x R™ x RP. The vectors A and v are

called lagrange multipliers or dual variables.
To ensure a lower bound, we require A = 0.
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Lower bound interpretation of Lagrangian

The Lagrangian L : R" x R™ x RP — R is an (easier to optimize)
lower bound on the original problem:

m p
L(x,\,v) :== fo(x —|—Z )\,, +ZV,h,(X
=) = ki)

and has domain domL ;= D x R™ x RP. The vectors \ and v are
called lagrange multipliers or dual variables.

Why bother?
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Lower bound interpretation of Lagrangian

The Lagrangian L : R" x R™ x RP — R is an (easier to optimize)
lower bound on the original problem:

m p
L(x,\,v) :== fo(x —|—Z )\,, +ZV,h,(X
=) = ki)

and has domain domL ;= D x R™ x RP. The vectors \ and v are
called lagrange multipliers or dual variables.

Why bother?

@ The original problem was very hard to solve (constraints).
Minimizing the lower bound is easier (and can easily find the
closest lower bound).

@ Under "some conditions", the closest lower bound is tight:
here minimum of L(x, \,v) at true x* corresponding to p*.
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Lagrange dual: lower bound on optimum p*

The Lagrange dual function: minimize Lagrangian
When A = 0 and f;(x) < 0, Lagrange dual function is

g\ v) = ;2;‘) L(x, A, v). (4)

A dual feasible pair (X, v) is a pair for which A = 0 and
(A, v) € dom(g).
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Lagrange dual: lower bound on optimum p*

The Lagrange dual function: minimize Lagrangian
When A = 0 and f;(x) < 0, Lagrange dual function is

g\, v) = inf L(x, A v). (4)
A dual feasible pair (X, v) is a pair for which A = 0 and

(A, v) € dom(g).
We will show: (next slides) for any A\ = 0 and v,

g\, v) < fo(x)

wherever

(including at fo(x*) = p*).
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Lagrange dual: lower bound on optimum p*

Simplest example: minimize over x the function
L(x, ) = fo(x) + M (x)

(Figure from Boyd and Vandenberghe)

fo+ Af1
A

(=

Reminders:
4
* . .
3 D | @ fp is function to
) be minimized.
9 —>fo .
N @ 1<0is
1 ) | inequality
constraint
—>f1 .
0 @ )\ >0 is Lagrange
multiplier
-1
@ p* is minimum fy
_9 J
-1 —0.5 0 0.5 1 in constraint set

—> f1 <0

Arthur Gretton Introduction to Machine Learning: Kernels



Lagrange dual: lower bound on optimum p*

Simplest example:minimize over x the function
L(x, ) = fo(x) + M (x)

(Figure from Boyd and Vandenberghe)

penalized fo+ Afi
1 |
Reminders:
4
3 @ fp is function to
be minimized.
2 @ 1 <0is
1 | inequality
constraint
—>f1 !
0 @ )\ >0 is Lagrange
multiplier
-1
@ p* is minimum fy
_9 J
-1 —0.5 0 0.5 1 in constraint set

—> f1 <0
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Lagrange dual: lower bound on optimum p*

Simplest example: minimize over x the function
L(x, ) = fo(x) + M (x)

(Figure from Boyd and Vandenberghe)

rewarded fo+ Afi
N Reminders:
4
3 | @ fp is function to
) be minimized.
2 > fO .
2 @ 1 <0is
1 | inequality
constraint
—>f1 !
0 @ )\ >0 is Lagrange
multiplier
-1
@ p* is minimum fy
_9 J
-1 —0.5 0 0.5 1 in constraint set
—> f1 <0
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Lagrange dual is lower bound on p* (proof)

We now give a formal proof that Lagrange dual function g(\, v)
lower bounds p*.
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Lagrange dual is lower bound on p* (proof)

We now give a formal proof that Lagrange dual function g(\, v)
lower bounds p*.

Proof: Define X as “some point” that is feasible, i.e. f;(X) <0,
hi(x) =0, x € D, A = 0. Then

m

D Xifi(%) + Ep: vihi(%) <0

i=1
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Lagrange dual is lower bound on p* (proof)

We now give a formal proof that Lagrange dual function g(\, v)
lower bounds p*.

Proof: Define X as “some point” that is feasible, i.e. f;(X) <0,
hi(x) =0, x € D, A\ = 0. Then

m

D Xifi(%) + Ep: vihi(%) <0

i=1

Thus

g\v) = inf (@(XHZA,ﬁ(XHZwm(X))
i=1

xeD
i=1

m p
< R(R) D NR) + D vihi(%)
i1 i—1
< fo(x).

This holds for every feasible X, hence lower bound holds.
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Best lower bound: maximize the dual

Closest (i.e. biggest) lower bound g(\, ) on the optimal solution
p* of original problem: Lagrange dual problem

maximize  g(\,v)
subject to A= 0. (5)
Dual feasible: (A, v) with A = 0 and g(\,v) > —oc.

Dual optimal: solutions (A*, v*) maximizing dual, d* is optimal
value (dual always easy to maximize: next slide).
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Best lower bound: maximize the dual

Closest (i.e. biggest) lower bound g(\, ) on the optimal solution
p* of original problem: Lagrange dual problem

maximize  g(\,v)
subject to A= 0. (5)

Dual feasible: (A, v) with A = 0 and g(\,v) > —oc.
Dual optimal: solutions (A*, v*) maximizing dual, d* is optimal
value (dual always easy to maximize: next slide).
Weak duality always holds:
d* < p*.

...but what is the point of finding a biggest lower bound on a
minimization problem?

Arthur Gretton Introduction to Machine Learning: Kernels



Best lower bound: maximize the dual

Best (i.e. biggest) lower bound g(\,v) on the optimal solution p*
of original problem: Lagrange dual problem

maximize  g(\,v)
subject to A= 0. (6)

Dual feasible: (A, v) with A = 0 and g(\,v) > —oc.

Dual optimal: solutions (\*,v*) to the dual problem, d* is
optimal value (dual always easy to maximize: next slide).
Weak duality always holds:

d* < p*.
Strong duality: (does not always hold, conditions given later):
d* = p".

If S.D. holds: solve the easy (concave) dual problem to find p*.
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Maximizing the dual is always easy
The Lagrange dual function: minimize Lagrangian (lower bound)
A\ v) = inf L(x, \,v).
g(A,v) = inf L(x,Av)

Dual function is a pointwise infimum of affine functions of (A, v),
hence concave in (A, v) with convex constraint set A > 0.

Example:
9N
One inequality constraint,

L(x,A) = fo(x) + M1 (x),

and assume there are only four

A possible values for x. Each line

represents a different x.
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How do we know if strong duality holds?

Conditions under which strong duality holds are called constraint
qualifications (they are sufficient, but not necessary)

(Probably) best known sufficient condition: Strong duality
holds if

@ Primal problem is convex, i.e. of the form

minimize fy(x)
subject to  fi(x) <0 i=1,...,n
b

Ax =

for convex fy, affine f1,..., fm.
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A consequence of strong duality...

Assume primal is equal to the dual. What are the consequences?

@ x* solution of original problem (minimum of fy under
constraints),

e (\*,v*) solutions to dual

fo(x") = g(\",v7)

(assumed)

m p
(g definition) xlgg (fo(x) - ; A fi(x) + IZ:; Vi hi(X)>

m P
< fo(x*) + D XHR(x*) + > vihi(x")
(inf definition) i—1 i=1

< fo(x),

(4)

(4): (x*, \*,v*) satisfies \* = 0, f;i(x*) <0, and h;(x*) = 0.
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...Is complementary slackness

From previous slide,
m
D Nfi(x*) =0, (7)
i=1

which is the condition of complementary slackness. This means

Ai>0 = fi(x*)=0,
filx') <0 = X =0.

From J;, read off which inequality constraints are strict.
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KKT conditions for global optimum
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KKT conditions for global optimum

Assume functions f;, h; are differentiable and strong duality. Since
x* minimizes L(x, \*,*), derivative at x* is zero,

Vio(x +Z>\*Vf +Zu Vhi(x
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KKT conditions for global optimum

Assume functions f;, h; are differentiable and strong duality. Since
x* minimizes L(x, \*,*), derivative at x* is zero,

Vio(x +Z>\*Vf +Zu Vhi(x

KKT conditions definition: we are at global optimum,
(x, \,v) = (x*, \*, v*) when (a) strong duality holds, and (b)

filx) < 0,i=1,...,m
hi(x) = 0,i=1,....p

Al > 0,i=1,...,m
Aifi(x) = 0,i=1,...,m

Vi(x Z)\ 'V i(x Zu,Vh -0
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KKT conditions for global optimum

In summary: if
@ primal problem convex and
@ inequality constraints affine

then strong duality holds. If in addition
@ functions f;, h; differentiable

then KKT conditions necessary and sufficient for optimality.

Arthur Gretton Introduction to Machine Learning: Kernels



Support vector classification



Reminder: linearly separable points

Classify two clouds of points, where there exists a hyperplane which
linearly separates one cloud from the other without error.

Smallest distance from each class to the separating hyperplane
w ' x + b is called the margin.
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Maximum margin classifier, linearly separable case

This problem can be expressed as follows:

2
max (margin) = max < ) (8)
w, w,b HWH
subject to
wixi+b>1 iy =41, )
wixi+b<—1 iy =-1

The resulting classifier is

y = sign(w ' x + b),
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Maximum margin classifier, linearly separable case

This problem can be expressed as follows:

2
max (margin) = max <> (8)
w,b w,b \||w||
subject to
wixi+b>1 iy =41, )
wixi+b<—1 iy =-1
The resulting classifier is
y = sign(w ' x + b),
We can rewrite to obtain
1
max —— or min||w|?
w,b ||WH w,b
subject to
yi(w'x; + b) > 1. (10)
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Maximum margin classifier: with errors allowed

Allow “errors™: points within the margin, or even on the wrong side
of the decision boundary. Ideally:

(1 .
min <2||W|2 + c;ﬂ[y,- (WTX, + b) < o1> ,
=
where C controls the tradeoff between maximum margin and loss.

...but this is too hard! (Why?)
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Maximum margin classifier: with errors allowed

Allow “errors™: points within the margin, or even on the wrong side
of the decision boudary. Ideally:

rpvig (;Hle + CZ]I[y,— (WTX,' + b) < 0]) ,
’ i=1

where C controls the tradeoff between maximum margin and loss.
Replace with convex upper bound:

g (3100 €0 (T 8)) ).

with hinge loss,

6(0) = (1 - a)s =

0 otherwise.

{l—a l1—-a>0
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Hinge loss:
0(a) =(1-a)y = {(1) o cl)t;efwisg.
(1—a)y A
I(a < 0)
9
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Support vector classification
Substituting in the hinge loss, we get
min 1HWH2 + Ci& (y,- (WTX,' + b)) .
wb \ 2 |

How do you implement hinge loss with simple inequality
constraints (i.e. for convex optimization)?
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Support vector classification

Substituting in the hinge loss, we get

i (S €320 o (w7 8)) ).
’ i=1

How do you implement hinge loss with simple inequality
constraints (i.e. for convex optimization)?

(1 "
min (2||WH +c;£,) (11)

subject to?
£ >0 yi(WTX;er)Zl—&

'Either y; (w'x; + b) > 1 and & = 0 as before, or y; (w'x; + b) < 1, and
then & > 0 takes the value satisfying y; (w' x; + b) =1 —&.
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Support vector classification
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Support vector classification
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Support vector classification

@ Convex optimization problem over the variables w, b, &:

minimize fo(w, b, &) := %HWH2 + CZ&;
i=1

subject to  fi(w,b,&) :=1—& —y; (WTX,-+b) <0 i=1,...,n
Ax = b (absent)

(each of fo, f1,...,f, are convex).
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Support vector classification

@ Convex optimization problem over the variables w, b, &:

minimize fo(w, b, &) := %HWH2 + CZ&;
i=1

subject to  fi(w,b,&) :=1—& —y; (WTX,-+b) <0 i=1,...,n
Ax = b (absent)

(each of fo, f1,...,f, are convex).

Strong duality holds, and the problem is differentiable, hence the
KKT conditions hold at the global optimum.
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Support vector classification: Lagrangian

The Lagrangian: L(w, b,§, a, A)
1 2 n n T n
= EHW” +C;§i+; a;j (1 —Yi (W X + b) - §i>+; Ai(=&)
with dual variable constraints
a; >0, Ai > 0.

Minimize wrt the primal variables w, b, and £.
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Support vector classification: Lagrangian

The Lagrangian: L(w, b,§, a, A)

n

= ;HW”2+CZH:§/'+Z": aj (1 — Vi (WTX,' + b) - fi) +Z Ai(=&i)
-1 =1

i=1
with dual variable constraints
a; >0, Ai > 0.

Minimize wrt the primal variables w, b, and £.
Derivative wrt w:

L g -
gw =w — iZ_;a,’in,' =0 w = IZ:; Q;yiX;. (12)

Derivative wrt b: oL
9 Zy,-oz,- =0. (13)
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Support vector classification: Lagrangian

Derivative wrt &;:
L
ggi:Ca;)\;zo Oz,':C*)\,'. (14)
Noting that A; > 0,
aj < C.
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Support vector classification: Lagrangian

Derivative wrt &;:
L
ggi:Ca;)\;zo Oz,':C*)\,'. (14)
Noting that A; > 0,
ai < C.

Now use complementary slackness:
Non-margin SVs: a; = C # 0:

@ We immediately have 1 — & = y; (WTX,' + b).

@ Also, from condition oj = C — \;, we have \; = 0, hence

possibly & > 0.
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Support vector classification: Lagrangian

Derivative wrt &;:

g;:Ca,-)\,-zo Oz,':C*)\,'. (14)
Noting that A; > 0,
aj < C.

Now use complementary slackness:
Non-margin SVs: «; = C # 0:

@ We immediately have 1 — & = y; (WTX,' + b).

@ Also, from condition oj = C — \;, we have \; = 0, hence

possibly & > 0.

Margin SVs: 0 < o; < C:

@ We again have 1 — & = ; (WTX,' + b)

@ This time, from a; = C — \;, we have \; # 0, hence & = 0.
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Support vector classification: Lagrangian

Derivative wrt &;:

g;:Ca,-)\,-zo Oz,':C*)\,'. (14)
Noting that A; > 0,
ai < C.

Now use complementary slackness:
Non-margin SVs: «; = C # 0:
@ We immediately have 1 — & = y; (WTX,' + b).
@ Also, from condition oj = C — \;, we have \; = 0, hence
possibly & > 0.
Margin SVs: 0 < o; < C:
@ We again have 1 — & = ; (WTX,' + b)
@ This time, from a; = C — \;, we have \; # 0, hence & = 0.
Non-SVs: a; =0
@ We can allow: y; (WTX,' + b) >1-¢;
@ From a; = C — A;, we have \; # 0, hence &; = 0.
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The support vectors

We observe:

@ The solution is sparse: points which are not on the margin, or
“margin errors”, have a; =0

@ The support vectors: only those points on the decision
boundary, or which are margin errors, contribute.

© Influence of the non-margin SVs is bounded, since their weight
cannot exceed C.
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Support vector classification: dual function

Thus, our goal is to maximize the dual,

gla,)) = %HWH2 + Cznjg,- + zn:oz,- (1 —y; (WTX,- +b) - 5,-)
i=1 i=1

—l—Z)\i(—
= fZZany,yJX XJ+CZ§: ZZany,yJX Xj

i=1 j=1 i= 1] 1
_bZQIYI+Za/ ZO‘&_Z _ai)fi
i=1
0
= Za,—fZZany,ij X;.
i=1 j=1
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Support vector classification: dual function

Maximize the dual,

s0)= Yo ZZ& YV %
i=1 i=1 j=1
subject to the constraints

n
0<a; <C, ZYiOéiZO
i—1

This is a quadratic program.

Offset b: for the margin SVs, we have 1 = y; (WTX,' + b). Obtain b
from any of these, or take an average.
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Support vector classification: kernel version

Maximum margin classifier in RKHS: write the hinge loss
formulation

min Cuw(-)u% FCY 0y <w(-),¢(x,-)>m>

i=1
for the RKHS H with kernel k(x,-). Use the result of the
representer theorem,

w() =Y Bid(x).
i=1

Maximizing the margin equivalent to minimizing ||w(-)|3,: for
many RKHSs a smoothness constraint (e.g. Gaussian kernel).
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Support vector classification: kernel version

Substituting and introducing the &; variables, get
rgjg (;BT KB+ C Z; 5,-) (15)
i—
where the matrix K has i, jth entry Kjj = k(x;, X;), subject to
£ >0 )/izn:ﬁjk(xl',xj')zlffi
j=1

Convex in 3, & since K is positive definite.
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Support vector classification: kernel version

Substituting and introducing the &; variables, get
1 n
min <2BTKB+ CZS;) (15)
' i=1
where the matrix K has i, jth entry Kjj = k(x;, X;), subject to

§& =0 .yIZBJ XHXJ =&

Convex in 3, & since K is positive definite.

Dual:
ZO« - *ZZ& ajyiyik(i, %),
i=1 j=1
subject to the constraints 0 < «; < C, and
n
= Zy,-a,-qb(x,-).
i=1
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Representer theorem



Learning problem: setting

Given a set of paired observations (x1, y1), ... (Xn, ¥n) (regression or
classification).
Find the function * in the RKHS A which satisfies

J(F*) = min J(F). (16)

where
JE) = L(FGa), - FOa)) + 2 (1)
Q is non-decreasing, and y is the vector of y;.
o Classification: L, (f(x1),...,f(xn)) = >2i1 Lr(x)<0
o Regression: L,(f(x1),...,f(xn)) = > (yi — f(x))?
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Representer theorem

The representer theorem: solution to

min [Ly(f(xl), o F(xn) + Q (\|f||§l)}

takes the form .
=" aig(x).
i=1

If Q is strictly increasing, all solutions have this form.
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Representer theorem: proof

Proof: Denote f; projection of f onto the subspace

span {¢p(x;) : 1 <i<n}, (17)
such that
f=»f+f7,
where fs =37 1 aik(x;, ).
Regularizer:
113 = IFell3, + Il > 1515
then

Q (I712) > 2 (I1513).

so this term is minimized for f = £.
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Representer theorem: proof

Proof (cont.): Individual terms f(x;) in the loss:

SO

Hence

@ Loss L(...) only depends on the component of f in the data
subspace,

@ Regularizer Q(...) minimized when f = f;.

o If Q is strictly non-decreasing, then ||f,|,, = 0 is required at
the minimum.
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Support vector classification: the v-SVM

Hard to interpret C. Modify the formulation to get a more intuitive
parameter v.
Again, we drop b for simplicity. Solve

1 1 ¢
o (G107 4 236
=

w,p,§
subject to
p > 0
& > 0
-
yiw xi > p—=¢,

(now directly adjust margin width p).
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The v-SVM: Lagrangian

|!2 Zﬁz V/H-Zoz, (p y,w X; — §,>+Zﬁ, —£)+v(=p)

for dual varlables o > 0, [3; >0, and v > 0.

Arthur Gretton Introduction to Machine Learning: Kernels



The v-SVM: Lagrangian

|!2 Zﬁz V/H-Zoz, (p y,w X; — §,>+Zﬁ, —£)+v(=p)

for dual varlables aj > 0, 6,- >0,and v > 0.
Differentiating and setting to zero for each of the primal variables

w, &, p,
n
wo= ) aiyix;
i=1
1
aitpio= -
n
v = Za;—’y (19)
i=1

From f3; > 0, equation (18) implies

(18)

Oga,-gnfl
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Complementary slackness (1)

Complementary slackness conditions:
Assume p > 0 at the global solution, hence v =0, and

Z aj = v. (20)
i=1

Arthur Gretton Introduction to Machine Learning: Kernels



Complementary slackness (1)

Complementary slackness conditions:
Assume p > 0 at the global solution, hence v =0, and

Z aj = v. (20)
i=1

Case of & > 0: complementary slackness states 3; = 0, hence from
(18) we have a; = n!. Denote this set as N(a). Then

n
Z %: Z aiézai:%
i=1

ieN(a) ieN(a)

so
[N(a)]

n

<v

)

and v is an upper bound on the number of non-margin SVs.
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Complementary slackness (2)

Case of ¢ = 0: aj < n~. Denote by M(«) the set of points
1> a; > 0. Then from (20),

n
V:ZCX/:Z*+ZQI_ Z %7
i=1

ieN(a) ieM(a) ieM(a)UN(c)

thus
_ IN(@)|+ M()

n

)

and v is a lower bound on the number of support vectors with
non-zero weight (both on the margin, and “margin errors”).
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Dual for v-SVM

Substituting into the Lagrangian, we get

m
3 Z Z Qioyyiyix; X+~ Z& pv = Z D gy

Il_/]. i=1 j=1

+Za/p Zalé-l Z<_O‘>§i_p<zai_V>
i=1 i=1
== %Z Z Qi yiyx;' X

i=1 j=1
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Dual for v-SVM

Substituting into the Lagrangian, we get

m
3 Z Z Qioyyiyix; X+~ Z& pv = Z D gy

Il_/]. i=1 j=1

+Za/p Zalé-l Z<_O‘>§i_p<zai_V>
i=1 i=1
== %Z Z Qi yiyx;' X

i=1 j=1

Maximize:
m m

1
gla)=—3 DD aiagyivix' X,
i=1 j=1
subject to
’ 1
Yoaizv 0<a<-
; n
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