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Overview

Review of convex optimization
Support vector classification, the C -SV machine
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Why we need optimization: SVM idea

Classify two clouds of points, where there exists a hyperplane which
linearly separates one cloud from the other without error.
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Why we need optimization: SVM idea

Classify two clouds of points, where there exists a hyperplane which
linearly separates one cloud from the other without error.

Smallest distance from each class to the separating hyperplane
w>x + b is called the margin.
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Why we need optimization: SVM idea

This problem can be expressed as follows:

max
w ,b

(margin) = max
w ,b

(
2
‖w‖

)
or min

w ,b
‖w‖2 (1)

subject to {
w>xi + b ≥ 1 i : yi = +1,
w>xi + b ≤ −1 i : yi = −1.

(2)

This is a convex optimization problem.
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Short overview of convex optimization



Convex set

(Figure from Boyd and Vandenberghe)

Leftmost set is convex, remaining two are not.
Every point in the set can be seen from any other point in the set,
along a straight line that never leaves the set.

Definition
C is convex if for all x1, x2 ∈ C and any 0 ≤ θ ≤ 1 we have
θx1 + (1− θ)x2 ∈ C , i.e. every point on the line between x1 and x2
lies in C .
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Convex function: no local optima

(Figure from Boyd and Vandenberghe)

Definition (Convex function)

A function f is convex if its domain domf is a convex set and if
∀x , y ∈ domf , and any 0 ≤ θ ≤ 1,

f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y).

The function is strictly convex if the inequality is strict for x 6= y .
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Optimization and the Lagrangian

Optimization problem on x ∈ Rn,

minimize f0(x)

subject to fi (x) ≤ 0 i = 1, . . . ,m (3)
hi (x) = 0 i = 1, . . . p.

p∗ the optimal value of (3), D assumed nonempty, where...
D :=

⋂m
i=0 domfi ∩

⋂p
i=1 domhi (dom fi =subset of Rn where fi defined).

Ideally we would want an unconstrained problem

minimize f0(x) +
m∑

i=1

I− (fi (x)) +

p∑
i=1

I0 (hi (x)) ,

where I−(u) =

{
0 u ≤ 0
∞ u > 0

and I0(u) is the indicator of 0.

Why is this hard to solve?
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Lower bound interpretation of Lagrangian

The Lagrangian L : Rn ×Rm ×Rp → R is an (easier to optimize)
lower bound on the original problem:

L(x , λ, ν) := f0(x) +
m∑

i=1

λi fi (x)︸ ︷︷ ︸
≤I−(fi (x))

+

p∑
i=1

νihi (x)︸ ︷︷ ︸
≤I0(hi (x))

,

and has domain domL := D × Rm × Rp. The vectors λ and ν are
called lagrange multipliers or dual variables.
To ensure a lower bound, we require λ � 0.
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The Lagrangian L : Rn ×Rm ×Rp → R is an (easier to optimize)
lower bound on the original problem:

L(x , λ, ν) := f0(x) +
m∑

i=1

λi fi (x)︸ ︷︷ ︸
≤I−(fi (x))

+

p∑
i=1

νihi (x)︸ ︷︷ ︸
≤I0(hi (x))

,

and has domain domL := D × Rm × Rp. The vectors λ and ν are
called lagrange multipliers or dual variables.

Why bother?

The original problem was very hard to solve (constraints).
Minimizing the lower bound is easier (and can easily find the
closest lower bound).
Under "some conditions", the closest lower bound is tight:
here minimum of L(x , λ, ν) at true x∗ corresponding to p∗.
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Lagrange dual: lower bound on optimum p∗

The Lagrange dual function: minimize Lagrangian
When λ � 0 and fi (x) ≤ 0, Lagrange dual function is

g(λ, ν) := inf
x∈D

L(x , λ, ν). (4)

A dual feasible pair (λ, ν) is a pair for which λ � 0 and
(λ, ν) ∈ dom(g).
We will show: (next slides) for any λ � 0 and ν,

g(λ, ν) ≤ f0(x)

wherever
fi (x) ≤ 0
gi (x) = 0

(including at f0(x∗) = p∗).
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Lagrange dual: lower bound on optimum p∗

Simplest example: minimize over x the function
L(x , λ) = f0(x) + λf1(x)
(Figure from Boyd and Vandenberghe)

Reminders:

f0 is function to
be minimized.

f1 ≤ 0 is
inequality
constraint

λ ≥ 0 is Lagrange
multiplier

p∗ is minimum f0

in constraint set
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Lagrange dual is lower bound on p∗ (proof)

We now give a formal proof that Lagrange dual function g(λ, ν)
lower bounds p∗.
Proof: Define x̃ as “some point” that is feasible, i.e. fi (x̃) ≤ 0,
hi (x̃) = 0, x̃ ∈ D, λ � 0. Then

m∑
i=1

λi fi (x̃) +

p∑
i=1

νihi (x̃) ≤ 0

Thus

g(λ, ν) := inf
x∈D

(
f0(x) +

m∑
i=1

λi fi (x) +

p∑
i=1

νihi (x)

)

≤ f0(x̃) +
m∑

i=1

λi fi (x̃) +

p∑
i=1

νihi (x̃)

≤ f0(x̃).

This holds for every feasible x̃ , hence lower bound holds.
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Best lower bound: maximize the dual

Closest (i.e. biggest) lower bound g(λ, ν) on the optimal solution
p∗ of original problem: Lagrange dual problem

maximize g(λ, ν)

subject to λ � 0. (5)

Dual feasible: (λ, ν) with λ � 0 and g(λ, ν) > −∞.
Dual optimal: solutions (λ∗, ν∗) maximizing dual, d∗ is optimal
value (dual always easy to maximize: next slide).
Weak duality always holds:

d∗ ≤ p∗.

...but what is the point of finding a biggest lower bound on a
minimization problem?
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Best lower bound: maximize the dual

Best (i.e. biggest) lower bound g(λ, ν) on the optimal solution p∗

of original problem: Lagrange dual problem

maximize g(λ, ν)

subject to λ � 0. (6)

Dual feasible: (λ, ν) with λ � 0 and g(λ, ν) > −∞.
Dual optimal: solutions (λ∗, ν∗) to the dual problem, d∗ is
optimal value (dual always easy to maximize: next slide).
Weak duality always holds:

d∗ ≤ p∗.

Strong duality: (does not always hold, conditions given later):

d∗ = p∗.

If S.D. holds: solve the easy (concave) dual problem to find p∗.
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Maximizing the dual is always easy

The Lagrange dual function: minimize Lagrangian (lower bound)

g(λ, ν) = inf
x∈D

L(x , λ, ν).

Dual function is a pointwise infimum of affine functions of (λ, ν),
hence concave in (λ, ν) with convex constraint set λ � 0.

Example:

One inequality constraint,

L(x , λ) = f0(x) + λf1(x),

and assume there are only four

possible values for x . Each line

represents a different x .
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How do we know if strong duality holds?

Conditions under which strong duality holds are called constraint
qualifications (they are sufficient, but not necessary)

(Probably) best known sufficient condition: Strong duality
holds if

Primal problem is convex, i.e. of the form

minimize f0(x)

subject to fi (x) ≤ 0 i = 1, . . . , n
Ax = b

for convex f0, affine f1, . . . , fm.
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A consequence of strong duality...

Assume primal is equal to the dual. What are the consequences?
x∗ solution of original problem (minimum of f0 under
constraints),
(λ∗, ν∗) solutions to dual

f0(x∗) =
(assumed)

g(λ∗, ν∗)

=
(g definition)

inf
x∈D

(
f0(x) +

m∑
i=1

λ∗i fi (x) +

p∑
i=1

ν∗i hi (x)

)

≤
(inf definition)

f0(x∗) +
m∑

i=1

λ∗i fi (x
∗) +

p∑
i=1

ν∗i hi (x∗)

≤
(4)

f0(x∗),

(4): (x∗, λ∗, ν∗) satisfies λ∗ � 0, fi (x∗) ≤ 0, and hi (x∗) = 0.
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...is complementary slackness

From previous slide,
m∑

i=1

λ∗i fi (x
∗) = 0, (7)

which is the condition of complementary slackness. This means

λ∗i > 0 =⇒ fi (x∗) = 0,
fi (x∗) < 0 =⇒ λ∗i = 0.

From λi , read off which inequality constraints are strict.
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KKT conditions for global optimum

Assume functions fi , hi are differentiable and strong duality. Since
x∗ minimizes L(x , λ∗, ν∗), derivative at x∗ is zero,

∇f0(x∗) +
m∑

i=1

λ∗i∇fi (x∗) +

p∑
i=1

ν∗i ∇hi (x∗) = 0.

KKT conditions definition: we are at global optimum,
(x , λ, ν) = (x∗, λ∗, ν∗) when (a) strong duality holds, and (b)

fi (x) ≤ 0, i = 1, . . . ,m
hi (x) = 0, i = 1, . . . , p
λi ≥ 0, i = 1, . . . ,m

λi fi (x) = 0, i = 1, . . . ,m

∇f0(x) +
m∑

i=1

λi∇fi (x) +

p∑
i=1

νi∇hi (x) = 0
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KKT conditions for global optimum

In summary: if
primal problem convex and
inequality constraints affine

then strong duality holds. If in addition
functions fi , hi differentiable

then KKT conditions necessary and sufficient for optimality.
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Support vector classification



Reminder: linearly separable points

Classify two clouds of points, where there exists a hyperplane which
linearly separates one cloud from the other without error.

Smallest distance from each class to the separating hyperplane
w>x + b is called the margin.
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Maximum margin classifier, linearly separable case

This problem can be expressed as follows:

max
w ,b

(margin) = max
w ,b

(
2
‖w‖

)
(8)

subject to {
w>xi + b ≥ 1 i : yi = +1,
w>xi + b ≤ −1 i : yi = −1.

(9)

The resulting classifier is

y = sign(w>x + b),

We can rewrite to obtain

max
w ,b

1
‖w‖

or min
w ,b
‖w‖2

subject to
yi (w>xi + b) ≥ 1. (10)
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Maximum margin classifier: with errors allowed

Allow “errors”: points within the margin, or even on the wrong side
of the decision boundary. Ideally:

min
w ,b

(
1
2
‖w‖2 + C

n∑
i=1

I[yi

(
w>xi + b

)
< 0]

)
,

where C controls the tradeoff between maximum margin and loss.

...but this is too hard! (Why?)
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Maximum margin classifier: with errors allowed

Allow “errors”: points within the margin, or even on the wrong side
of the decision boudary. Ideally:

min
w ,b

(
1
2
‖w‖2 + C

n∑
i=1

I[yi

(
w>xi + b

)
< 0]

)
,

where C controls the tradeoff between maximum margin and loss.
Replace with convex upper bound:

min
w ,b

(
1
2
‖w‖2 + C

n∑
i=1

θ
(
yi

(
w>xi + b

)))
.

with hinge loss,

θ(α) = (1− α)+ =

{
1− α 1− α > 0
0 otherwise.
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Hinge loss

Hinge loss:

θ(α) = (1− α)+ =

{
1− α 1− α > 0
0 otherwise.
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Support vector classification

Substituting in the hinge loss, we get

min
w ,b

(
1
2
‖w‖2 + C

n∑
i=1

θ
(
yi

(
w>xi + b

)))
.

How do you implement hinge loss with simple inequality
constraints (i.e. for convex optimization)?

min
w ,b,ξ

(
1
2
‖w‖2 + C

n∑
i=1

ξi

)
(11)

subject to1

ξi ≥ 0 yi

(
w>xi + b

)
≥ 1− ξi

1Either yi
(
w>xi + b

)
≥ 1 and ξi = 0 as before, or yi

(
w>xi + b

)
< 1, and

then ξi > 0 takes the value satisfying yi
(
w>xi + b

)
= 1 − ξi .
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Support vector classification
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Support vector classification

1 Convex optimization problem over the variables w , b, ξ:

minimize f0(w , b, ξ) :=
1
2
‖w‖2 + C

n∑
i=1

ξi

subject to fi (w , b, ξ) := 1− ξi − yi

(
w>xi + b

)
≤ 0 i = 1, . . . , n

Ax = b (absent)

(each of f0, f1, . . . , fn are convex).

Strong duality holds, and the problem is differentiable, hence the
KKT conditions hold at the global optimum.
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Support vector classification: Lagrangian

The Lagrangian: L(w , b, ξ, α, λ)

=
1
2
‖w‖2+C

n∑
i=1

ξi+
n∑

i=1

αi

(
1− yi

(
w>xi + b

)
− ξi

)
+

n∑
i=1

λi (−ξi )

with dual variable constraints

αi ≥ 0, λi ≥ 0.

Minimize wrt the primal variables w , b, and ξ.
Derivative wrt w :

∂L
∂w

= w −
n∑

i=1

αiyixi = 0 w =
n∑

i=1

αiyixi . (12)

Derivative wrt b:
∂L
∂b

=
∑

i

yiαi = 0. (13)
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Support vector classification: Lagrangian

Derivative wrt ξi :
∂L
∂ξi

= C − αi − λi = 0 αi = C − λi . (14)

Noting that λi ≥ 0,
αi ≤ C .

Now use complementary slackness:
Non-margin SVs: αi = C 6= 0:

1 We immediately have 1− ξi = yi
(
w>xi + b

)
.

2 Also, from condition αi = C − λi , we have λi = 0, hence
possibly ξi > 0.

Margin SVs: 0 < αi < C :
1 We again have 1− ξi = yi

(
w>xi + b

)
2 This time, from αi = C − λi , we have λi 6= 0, hence ξi = 0.

Non-SVs: αi = 0
1 We can allow: yi

(
w>xi + b

)
> 1− ξi

2 From αi = C − λi , we have λi 6= 0, hence ξi = 0.
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The support vectors

We observe:
1 The solution is sparse: points which are not on the margin, or

“margin errors”, have αi = 0
2 The support vectors: only those points on the decision

boundary, or which are margin errors, contribute.
3 Influence of the non-margin SVs is bounded, since their weight

cannot exceed C .

Arthur Gretton Introduction to Machine Learning: Kernels



Support vector classification: dual function

Thus, our goal is to maximize the dual,

g(α, λ) =
1
2
‖w‖2 + C

n∑
i=1

ξi +
n∑

i=1

αi

(
1− yi

(
w>xi + b

)
− ξi

)
+

n∑
i=1

λi (−ξi )

=
1
2

m∑
i=1

m∑
j=1

αiαjyiyjx>i xj + C
m∑

i=1

ξi −
m∑

i=1

m∑
j=1

αiαjyiyjx>i xj

−b
m∑

i=1

αiyi︸ ︷︷ ︸
0

+
m∑

i=1

αi −
m∑

i=1

αiξi −
m∑

i=1

(C − αi )ξi

=
m∑

i=1

αi −
1
2

m∑
i=1

m∑
j=1

αiαjyiyjx>i xj .
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Support vector classification: dual function

Maximize the dual,

g(α) =
m∑

i=1

αi −
1
2

m∑
i=1

m∑
j=1

αiαjyiyjx>i xj ,

subject to the constraints

0 ≤ αi ≤ C ,
n∑

i=1

yiαi = 0

This is a quadratic program.
Offset b: for the margin SVs, we have 1 = yi

(
w>xi + b

)
. Obtain b

from any of these, or take an average.
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Support vector classification: kernel version
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Figure 7.9 Toy problem (task: separate circles from disks) solved using -SV classification,
with parameter values ranging from 0 1 (top left) to 0 8 (bottom right). The larger
we make , the more points are allowed to lie inside the margin (depicted by dotted lines).
Results are shown for a Gaussian kernel, k(x x ) exp( x x 2).

Table 7.1 Fractions of errors and SVs, along with the margins of class separation, for the
toy example in Figure 7.9.
Note that upper bounds the fraction of errors and lower bounds the fraction of SVs, and
that increasing , i.e., allowing more errors, increases the margin.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

fraction of errors 0.00 0.07 0.25 0.32 0.39 0.50 0.61 0.71

fraction of SVs 0.29 0.36 0.43 0.46 0.57 0.68 0.79 0.86

margin w 0.005 0.018 0.115 0.156 0.364 0.419 0.461 0.546

at a toy example illustrating the influence of (Figure 7.9). The corresponding
fractions of SVs and margin errors are listed in table 7.1.
The derivation of the -SVC dual is similar to the above SVC formulations, onlyDerivation of the

Dual slightly more complicated. We consider the Lagrangian

L(w b )
1

2
w 2 1

m

m

!
i 1

i

m

!
i 1

( i(yi( xi w b) i) i i) (7.44)

using multipliers i i 0. This function has to be minimized with respect to
the primal variables w b , and maximized with respect to the dual variables

. To eliminate the former, we compute the corresponding partial derivatives

Taken from Schoelkopf and Smola (2002)
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Support vector classification: kernel version

Maximum margin classifier in RKHS: write the hinge loss
formulation

min
w

(
1
2
‖w(·)‖2H + C

n∑
i=1

θ (yi 〈w(·), φ(xi )〉H)

)
for the RKHS H with kernel k(x , ·). Use the result of the
representer theorem,

w(·) =
n∑

i=1

βiφ(xi ).

Maximizing the margin equivalent to minimizing ‖w(·)‖2H: for
many RKHSs a smoothness constraint (e.g. Gaussian kernel).
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Support vector classification: kernel version

Substituting and introducing the ξi variables, get

min
β,ξ

(
1
2
β>Kβ + C

n∑
i=1

ξi

)
(15)

where the matrix K has i , jth entry Kij = k(xi , xj), subject to

ξi ≥ 0 yi

n∑
j=1

βjk(xi , xj) ≥ 1− ξi

Convex in β, ξ since K is positive definite.
Dual:

g(α) =
m∑

i=1

αi −
1
2

m∑
i=1

m∑
j=1

αiαjyiyjk(xi , xj),

subject to the constraints 0 ≤ αi ≤ C , and

w(·) =
n∑

i=1

yiαiφ(xi ).
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Questions?
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Representer theorem



Learning problem: setting

Given a set of paired observations (x1, y1), . . . (xn, yn) (regression or
classification).
Find the function f ∗ in the RKHS H which satisfies

J(f ∗) = min
f ∈H

J(f ), (16)

where
J(f ) = Ly (f (x1), . . . , f (xn)) + Ω

(
‖f ‖2H

)
,

Ω is non-decreasing, and y is the vector of yi .
Classification: Ly (f (x1), . . . , f (xn)) =

∑n
i=1 Iyi f (xi )≤0

Regression: Ly (f (x1), . . . , f (xn)) =
∑n

i=1(yi − f (xi ))2
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Representer theorem

The representer theorem: solution to

min
f ∈H

[
Ly (f (x1), . . . , f (xn)) + Ω

(
‖f ‖2H

)]
takes the form

f ∗ =
n∑

i=1

αiφ(xi ).

If Ω is strictly increasing, all solutions have this form.
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Representer theorem: proof

Proof: Denote fs projection of f onto the subspace

span {φ(xi ) : 1 ≤ i ≤ n} , (17)

such that
f = fs + f⊥,

where fs =
∑n

i=1 αik(xi , ·).
Regularizer:

‖f ‖2H = ‖fs‖2H + ‖f⊥‖2H ≥ ‖fs‖
2
H ,

then
Ω
(
‖f ‖2H

)
≥ Ω

(
‖fs‖2H

)
,

so this term is minimized for f = fs .

Arthur Gretton Introduction to Machine Learning: Kernels



Representer theorem: proof

Proof (cont.): Individual terms f (xi ) in the loss:

f (xi ) = 〈f , φ(xi )〉H = 〈fs + f⊥, φ(xi )〉H = 〈fs , φ(xi )〉H ,

so
Ly (f (x1), . . . , f (xn)) = Ly (fs(x1), . . . , fs(xn)).

Hence
Loss L(. . .) only depends on the component of f in the data
subspace,
Regularizer Ω(. . .) minimized when f = fs .
If Ω is strictly non-decreasing, then ‖f⊥‖H = 0 is required at
the minimum.
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Support vector classification: the ν-SVM

Hard to interpret C . Modify the formulation to get a more intuitive
parameter ν.
Again, we drop b for simplicity. Solve

min
w ,ρ,ξ

(
1
2
‖w‖2 − νρ+

1
n

n∑
i=1

ξi

)

subject to

ρ ≥ 0
ξi ≥ 0

yiw>xi ≥ ρ− ξi ,

(now directly adjust margin width ρ).
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The ν-SVM: Lagrangian

1
2
‖w‖2+

1
n

n∑
i=1

ξi−νρ+
n∑

i=1

αi

(
ρ− yiw>xi − ξi

)
+

n∑
i=1

βi (−ξi )+γ(−ρ)

for dual variables αi ≥ 0, βi ≥ 0, and γ ≥ 0.
Differentiating and setting to zero for each of the primal variables
w , ξ, ρ,

w =
n∑

i=1

αiyixi

αi + βi =
1
n

(18)

ν =
n∑

i=1

αi − γ (19)

From βi ≥ 0, equation (18) implies

0 ≤ αi ≤ n−1.

From γ ≥ 0 and (19), we get

ν ≤
n∑

i=1

αi .
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The ν-SVM: Lagrangian
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Complementary slackness (1)

Complementary slackness conditions:
Assume ρ > 0 at the global solution, hence γ = 0, and

n∑
i=1

αi = ν. (20)

Case of ξi > 0: complementary slackness states βi = 0, hence from
(18) we have αi = n−1. Denote this set as N(α). Then

∑
i∈N(α)

1
n

=
∑

i∈N(α)

αi ≤
n∑

i=1

αi = ν,

so
|N(α)|

n
≤ ν,

and ν is an upper bound on the number of non-margin SVs.
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Complementary slackness (2)

Case of ξi = 0: αi < n−1. Denote by M(α) the set of points
n−1 > αi > 0. Then from (20),

ν =
n∑

i=1

αi =
∑

i∈N(α)

1
n

+
∑

i∈M(α)

αi ≤
∑

i∈M(α)∪N(α)

1
n
,

thus
ν ≤ |N(α)|+ |M(α)|

n
,

and ν is a lower bound on the number of support vectors with
non-zero weight (both on the margin, and “margin errors”).
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Dual for ν-SVM

Substituting into the Lagrangian, we get

1
2

m∑
i=1

m∑
j=1

αiαjyiyjx>i xj +
1
n

n∑
i=1

ξi − ρν −
m∑

i=1

m∑
j=1

αiαjyiyjx>i xj

+
n∑

i=1

αiρ−
n∑

i=1

αiξi −
n∑

i=1

(
1
n
− αi

)
ξi − ρ

(
n∑

i=1

αi − ν

)

=− 1
2

m∑
i=1

m∑
j=1

αiαjyiyjx>i xj

Maximize:

g(α) = −1
2

m∑
i=1

m∑
j=1

αiαjyiyjx>i xj ,

subject to
n∑

i=1

αi ≥ ν 0 ≤ αi ≤
1
n
.
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Dual for ν-SVM
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1
n
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