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Overview

@ Concepts from functional analysis:
@ normed-, inner product space,
@ convergent-, Cauchy sequence,
@ complete spaces: Banach-, Hilbert space,
@ continuous/bounded linear operators.
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Overview

© RKHS:
o different views:

@ continuous evaluation functional,
@ reproducing kernel,

O positive definite function,

© feature view (kernel).

@ equivalence, explicit construction.
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We define the ’length’ of a vector. |

F: vector space over R. ||-|| : F — [0,00) is norm on F, if
@ |[f| = 0iff. f =0 (norm separates points),
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We define the ’length’ of a vector. |

F: vector space over R. ||-|| : F — [0,00) is norm on F, if
@ |[f| = 0iff. f =0 (norm separates points),
Q ||\ || = || ||f|| YA € R, Vf € F (positive homogenity),
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We define the ’length’ of a vector. |

F: vector space over R. ||-|| : F — [0,00) is norm on F, if
@ |[f| = 0iff. f =0 (norm separates points),
Q ||M | = [N ||f]| VA € R,Vf € F (positive homogenity),
Q |If + gl < |Ifll + llg|l Vf, g € F (triangle inequality).
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We define the ’length’ of a vector. |

F: vector space over R. ||-|| : F — [0,00) is norm on F, if
@ |[f| = 0iff. f =0 (norm separates points),
Q ||M | = [N ||f]| VA € R,Vf € F (positive homogenity),
Q |If + gl < |Ifll + llg|l Vf, g € F (triangle inequality).
Note:
@ norm = metric: d(f,g9) = ||f — 9| =
@ study continuity, convergence.
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Normed space: examples

° (R> | ’ |)’
o (R Ixl, = [¥; x1P). 1 < p.
o p=1:|x|, =>_; x| (Manhattan),
o p=2: x|, = />, x? (Euclidean),
@ p=oo: |X||,, = max; |x;| (maximum norm).

o (clablfl, = [2f0rad ). 1 <p.
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Inner product space

F: vector space over R. (-,-) : F x F — R is an inner product
on Fif for Va;j € R, fi,f,g € F

Q (aifi + ash,g) = aq (f1,9) + a2 (£, g) (linearity),
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Inner product space

F: vector space over R. (-,-) : F x F — R is an inner product
on Fif for Va;j € R, fi,f,g € F

Q (wifi +azfr,g) = aq (f1,9) + az (f, g) (linearity),
Q (f,g) = (9. ) (symmetry),
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Inner product space

F: vector space over R. (-,-) : F x F — R is an inner product
on Fif for Va;j € R, fi,f,g € F

Q (aifi + azl,g) = a1 (£, 9) + az (f2, g) (linearity),

Q (f,g9) = (g.f) (symmetry),

Q (f,f)>0;(f =0« f=0.
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Inner product space

F: vector space over R. (-,-) : F x F — R is an inner product
on F if forVa; e R, fi,f,g € F
Q (wifi +azfr,g) = aq (f1,9) + az (f, g) (linearity),
Q (f.9) = (g.) (symmetry),
Q (f,f)>0;(f =0« f=0.
Notes:
@ 1, 2 = bilinearity.
@ inner product = norm: ||f|| = \/(f,f).
@ 1,2,3' ((f,f) > 0) is called semi-inner product.
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Inner product space: examples

o (R, (x,y) = 3 xii).
o (Rd1><dz (A,B) :tr(ATB)ZZ/infBif)'

o (Cla.bL. (1. g) = J2 f(x)g(x)dx).

Zoltan Szabo Foundations of RKHS-s — Advanced Topics in ML



Norm vs inner product

Relations:
o [(f.9) [ <Ifl-lgll (CBS),
@ 4(f.g)=|f+gl?>—|If—9gl?® (polarization identity),
o |f+gl?+If—gl*=2|f|*+2]g|* (parallelogram law).

Zoltan Szabo Foundations of RKHS-s — Advanced Topics in ML



Norm vs inner product

Relations:

o [(f.g)| <IIfll-llgll (CBS),

@ 4(f.g)=|f+gl?>—|If—9gl?® (polarization identity),

o [If+gl?+f—gl®=2|f|?+2|g|* (parallelogram law).
Notes:

@ CBS holds for semi-inner products.

@ parallelogram law = characterization of ’||-|| < (-, -)".
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Convergent-, Cauchy sequence

F: normed space, {fp}o C F,f € F,

@ Convergent sequence: f, Z» f if Ve > 0 N = N(e) € N, s.t.
vn> N, ||f, —f|r <e.
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Convergent-, Cauchy sequence

F: normed space, {fp}o C F,f € F,
@ Convergent sequence: f, Z» f if Ve > 0 N = N(e) € N, s.t.
vn> N, ||f, —f|r <e.

@ Cauchy sequence: {fy}- is a Cauchy sequence if Ve > 0
IN=N()eN,st.Vnm> N, ||fy — fm| = < e.
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Convergent-, Cauchy sequence

F: normed space, {fp}o C F,f € F,
@ Convergent sequence: f, Z» f if Ve > 0 N = N(e) € N, s.t.
vn> N, ||f, —f|r <e.

@ Cauchy sequence: {fy}- is a Cauchy sequence if Ve > 0
IN=N()eN,st.Vnm> N, ||fy — fm| = < e.

Note:
@ convergent = Cauchy: ||y — fnl| £ < [[fa — || 2 + |f — Tm]| £
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Not every Cauchy sequence converges

Examples:
© 1,1.4,1.41,1.414,1.4142, ... Cauchy in Q, but v2 ¢ Q.

° (C[0,1]7H'HL2[0,11):

But a Cauchy sequence is bounded.
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Banach space, Hilbert space

@ Complete space: V Cauchy sequence converges.
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Banach space, Hilbert space

@ Complete space: V Cauchy sequence converges.
@ Banach space = complete normed space, e.g.

Q Letpe[l,00), LP(X, A, p) =
1/p
{f : (X, A) — R measurable : |f]|, = [/X |f(x)|de(x)] < oo} .

O (Cla,b], [Ifll. = maxxefan [f(X)]).

Zoltan Szabo Foundations of RKHS-s — Advanced Topics in ML



Banach space, Hilbert space

@ Complete space: V Cauchy sequence converges.
@ Banach space = complete normed space, e.g.

Q Letpe[l,00), LP(X, A, p) =
1/p
{f : (X, A) — R measurable : |f]|, = [/X |f(x)|de(x)] < oo} .

O (Cla,b], [Ifll. = maxxefan [f(X)]).
@ Hilbert space = complete inner product space; L2(X, A, 11).
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Linear-, bounded operator

F, G: normed spaces. A : F — G is called
@ linear operator:
@ A(af) = a(Af) Va € R, f € F, (homogeneity),
Q A(f+g) = Af+ Ag Vf,g € F (additivity).
G = R: linear functional.
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Linear-, bounded operator

F, G: normed spaces. A : F — G is called
@ linear operator:
@ A(af) = a(Af) Va € R, f € F, (homogeneity),
Q A(f+g) = Af+Ag Vi, g c F (additivity).
G = R: linear functional.
@ bounded operator: Ais linear & ||A|| = supsc ””/;ﬂ'f < 0

a ] \

{Af  IflF < 1)
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Unbounded linear functional: example

(C'[0, 1], [l == maxxepo,1 [F(X)]), A(f) = F(0) € R:
@ A: linear « differentiation & evaluation are linear,
Q f(x)=e™(neZ"):

o |[fa]l, <1, but

o A = 1150 = |~ ne~™|,_o| =1 =l =n— .
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Continuous operator

@ Def.: Ais
@ continuous at fy € F: Ve > 036 = d(¢, fo) > 0, s.t.

|f —foll- <6  implies |Af — Af|lg < e.

@ continuous: if it is continuous at Vfy € F.
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Continuous operator

@ Def.: Ais
@ continuous at fy € F: Ve > 036 = d(¢, fo) > 0, s.t.

|f —foll- <6  implies |Af — Af|lg < e.

@ continuous: if it is continuous at Vfy € F.

@ Example:

o Let Ay(f) .= (f,9) » € R, where f,g € F.
@ Ay is Lipschitz continuous:

() 52 lin. CBS
[Ag(fi) = Ag(R)] = T I(f = f2.0) 2| < llgll = Iy — 2l = -
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Continuous-bounded relations

Theorem:
@ A: linear operator. Equivalent: Ais

@ continuous,
@ continuous at one point,
© bounded.
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Continuous-bounded relations

Theorems:
@ A: linear operator. Equivalent: Ais

@ continuous,
@ continuous at one point,
© bounded.

@ Riesz representation (F: Hilbert, G = R):

continuous linear functionals = {(-,9) r : g € F} |
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Let us switch to RKHS-s! J
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View-1: continuous evaluation. )

@ Let # c R* be a Hilbert space.
@ Consider for fixed x € X the dx : f € H — f(x) € R map.
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View-1: continuous evaluation. )

@ Let # c R* be a Hilbert space.
@ Consider for fixed x € X the dx : f € H — f(x) € R map.
@ The (Dirac) evaluation functional is linear:

Sx(af + Bg) = (af + Bg)(x) = af(x) + Bg(x)
= adx(f) + Bix(9) (Va,B €R,f,g e H).
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View-1: continuous evaluation. )

@ Let # c R* be a Hilbert space.
@ Consider for fixed x € X the dx : f € H — f(x) € R map.
@ The (Dirac) evaluation functional is linear:

Sx(af + Bg) = (af + Bg)(x) = af(x) + Bg(x)
= adx(f) + Bix(9) (Va,B €R,f,g e H).

@ Def.: H is called RKHS if d4 is continuous Vx € X.
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Example for non-continuous &y

H = L2[0,1]  fo(x) = x™
@ f, — 0c Hsince

1/2

1
1

. . — i 2n — _

Jim [l = Ol ,,'Lmoo</ox dX) AN g
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Example for non-continuous &y

H = L2[0,1]  fo(x) = x™
@ f, — 0 e Hsince

1/2
]
1
. . — | 2n T v
nI|_>mOO||f,, 0ll, nI|_>mOO </0 X dx) nI|_>mOO Nl 0,
e but (51(fn) =1-» 04 (0) =0.

In L2: norm convergence # pointwise convergence. J
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View-1: convergence

In RKHS: convergence in norm =- pointwise convergence! J

@ Result: f, 25 f= £, 25 f.

Zoltan Szabo Foundations of RKHS-s — Advanced Topics in ML



View-1: convergence

In RKHS: convergence in norm =- pointwise convergence! J

o Result: f, 2 f = f, 5 f.
@ Proof: Forany x € X,

() — FO0)] "2 84 (F) — 6x(F)] "2 [6¢(f — 1)

dx: bounded
< loxl[|Ifn = fll4 -

<oo —0
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View-2: reproducing = elements, kernel trick.

@ Let # be a Hilbert space of X — R functions.

® k: X x X — Ris called a reproducing kernel of # if for
Vxe X

@ k(- x) € H (generators’),
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View-2: reproducing = elements, kernel trick. J

@ Let # be a Hilbert space of X — R functions.

® k: X x X — Ris called a reproducing kernel of # if for
Vxe X, feH
@ k(- x) € H ('generators’),
Q (f,k(-,x)),, = f(x) (reproducing property).
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View-2: reproducing = elements, kernel trick. J

@ Let # be a Hilbert space of X — R functions.

® k: X x X — Ris called a reproducing kernel of # if for
Vxe X, feH
@ k(- x) € H ('generators’),
Q (f,k(-,x)),, = f(x) (reproducing property).
Specifically: Vx,y € X,

k(x,y) = (k (%) k(G y )
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View-2: reproducing = elements, kernel trick. J

@ Let # be a Hilbert space of X — R functions.

® k: X x X — Ris called a reproducing kernel of # if for
Vxe X, feH
@ k(- x) € H ('generators’),
Q (f,k(-,x)),, = f(x) (reproducing property).
Specifically: Vx,y € X,

k(x,y) = (k (%) k(G y )

Uniqueness, existence?
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Reproducing kernel: uniqueness

Reproducibility & norm definition = uniqueness. J

@ Let ky, ko berk.-s of H. Thenfor Vf e H,Vx e X

(7Y lin, K Tk,

(f ki (5 x) = k2 (- X))y f(x) = f(x) = 0.
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Reproducing kernel: uniqueness

Reproducibility & norm definition = uniqueness. J

@ Let ky, ko berk.-s of H. Thenfor Vf e H,Vx e X

<f7 k1 ('7 X) - k2('7 X)>’H (oo |i:l"l, ki rk.

@ Choosing f = kq(-,x) — ko(-, X), we get

f(x) — f(x) = 0.

k1 (-, %) — k2 (-, X)|5, =0, (VX € X)

i.e., k1 = k2.

Zoltan Szabo Foundations of RKHS-s — Advanced Topics in ML



View-2 (r.k.) < view-1 (RKHS)

@ Result: H has ark. (k) & H is a RKHS.
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View-2 (r.k.) < view-1 (RKHS)

@ Result: H has ark. (k) & H is a RKHS.
@ Proof (=):

[0x(F)]

IN

VG X) ([l

i.e. 0y : H — R is bounded (hence continuous).
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View-2 (r.k.) < view-1 (RKHS)

@ Result: H has ark. (k) & H is a RKHS.
@ Proof (=):

135 (F) "2 £ L K x))g ] <

VG X) ([l

i.e. 0y : H — R is bounded (hence continuous).
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View-2 (r.k.) < view-1 (RKHS)

@ Result: H has ark. (k) & H is a RKHS.
@ Proof (=):

5] 2 1100 | L5 (K x)) 3 S K3 g [l

k: rk.
= k(X %) [l

i.e. 0y : H — R is bounded (hence continuous).
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View-2 (r.k.) < view-1 (RKHS)

@ Result: H has ark. (k) & H is a RKHS.
@ Proof (=):

5] 2 1100 | L5 (K x)) 3 S K3 g [l

k: rk.
= k(X %) [l

i.e. 0y : H — R is bounded (hence continuous).

Convergence in RKHS =- uniform convergence! (k: bounded). J
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View-2 (r.k.) & view-1 (RKHS): <, existence of r.k.

Proof («<): Let 6 be continuous for all x € X.
@ By the Riesz repr. theorem 3f;, € H
ox(f) = (f, f5, Yy, VfEH.

~~
=k(-,x)?
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View-2 (r.k.) & view-1 (RKHS): <, existence of r.k.

Proof («<): Let 6 be continuous for all x € X.
@ By the Riesz repr. theorem 3f;, € H

ox(f) = (f, s, )p, V€ H.
~—~
=k(-,x)?

Q Let k(xX', x) = f5,(x"), Vx,x" € X, then

k(- x) = f5, € H,
(f, k(- X)) 3= Ox(f) = £(x).

Thus, k is the reproducing kernel.
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View-3: positive definiteness. J

@ Let k: X x X — R be a symmetric function.
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View-3: positive definiteness. J

@ Let k: X x X — R be a symmetric function.
® G := [k(x;, X)]7;_4: Gram matrix.
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View-3: positive definiteness. J

@ Let k: X x X — R be a symmetric function.
® G := [k(x;, X)]7;_4: Gram matrix.
@ K is called positive definite, if

a’Ga>0

forvn>1,vae R", ¥(xq,...,Xp) € X".
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View-4: ’kernel as inner product’ view.

@ Def.: Ak : X x X — R function is called kernel, if
@ 3¢ : X — F, where Fis a Hilbert space s.t.

@ Intuition: k is inner product in F.
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Reproducing kernel = kernel = positive definiteness

@ Every rk. is a kernel: ¢(x) := K(-,x), k(x,y) = (k(-, x),k(-, ¥)) -
@ Every kernel is positive definite:

n n
a’'Ga=) > aak(x,x)

i=1 j=1
kdef I|n
<2a, ) Za,m}

[ ”J-'_
o(x:)

F
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@ Result-1 (proved):
RKHS (65 continuous) < reproducing kernel.
@ Result-2 (proved):
reproducing kernel = kernel = positive definite.

Zoltan Szabo Foundations of RKHS-s — Advanced Topics in ML



Until now

@ Result-1 (proved):
RKHS (65 continuous) < reproducing kernel.
@ Result-2 (proved):
reproducing kernel = kernel = positive definite.

Moore-Aronszajn theorem (follows)
positive definite = reproducing kernel.
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Until now

@ Result-1 (proved):
RKHS (65 continuous) < reproducing kernel.
@ Result-2 (proved):
reproducing kernel = kernel = positive definite.

Moore-Aronszajn theorem (follows)
positive definite = reproducing kernel.

= the 4 notions are exactly the same!
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Moore-Aronszajn construction: high-level view

@ Given: a k : X x X — R positive definite function.
@ We construct a pre-RKHS H:

n
Ho = {f:Za,-k(',x,-) o €R, X € X} D {k(-,x): x € X},
i—1

<f7g>’}-[0 = k(X7y)7
where f = k(-,x), g = k(-, y) .
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Moore-Aronszajn construction: high-level view

@ Given: a k : X x X — R positive definite function.
@ We construct a pre-RKHS H:

n
Ho = {f:Za,-k(',x,-) o eR X € X} O {k(-,x): x € X},

(f, Q)5 Zza/ﬂ/ (X3, ¥));

i=1 j=1

where f =311 aik(-,x), g =Y "4 Bik(-, ¥))-
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Moore-Aronszajn construction: high-level view

@ Ho will satisfy:
Q linear space (v); (f, 9),: Well-defined & inner product.

@ J,-s are continuous on Hg (Vx).
@ Forany {f,} ¢ Ho Cauchy seq.:

£,.7%0 = f 0.

@ From Hy we construct H as:
@ # c R¥, for which
Q 3 {f,} Ho-Cauchy seq. such that f, Xt
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Moore-Aronszajn construction: high-level view

o Let
<f>g>H = “m <fnvgn>’H07 (1)

n—oo

where f, I f, On >, g Ho-Cauchy sequences.
@ H will satisfy:

@ Ho C H: vV [fa=T € Hpl
@ H is a RKHS with r.k. k:
@ 7 linear space (v),
Q (f.9),,: well-defined & inner product.
H is complete.
© 0.-s are continuous on # (Vx).
© 7 hasrk. k (used to define ).
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(-, )3+ Well-defined, k reproducing on H,

o Recall: if f = 3" ajk(-, %), g = X124 Bik(-, ), then

(F. Qg = D> ciBik(xi, ).

i=1 j=1

@ (-,-)3, is independent of the particular {«;} and {/;}:

(£, Du, = ZaiZﬂ/k(Xi,yj) = Z a;g(x;) { Z ij(y,)} :
i—1

i=1 j=1 j=1
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(-, )3+ Well-defined, k reproducing on H,

o Recall: if f = 3" ajk(-, %), g = X124 Bik(-, ), then

=33 aiBk(x, y))-

i=1 j=1

@ (-,-)3, is independent of the particular {«;} and {/;}:

(f,g Za,Zﬁ/ (X, Y) = Za,g X;) { Zﬂjf(y/)} .

i=1 = j=1

@ = reproducing property on Hg:

(£ K (X)), —Za, (x5, x) = f(x).
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(, ), - iNnner product

@ The 'tricky’ property to check:
Ifllygy = (F )z, =0 = f=0.

@ This holds by CBS (for the semi-inner product (-, )3, ): VX

krk. onH CBS
()| e Mo (f,k(.7x)>%‘ < |13, V() = 0.
=0
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Pre-RKHS:

Ox Is continuous on Hg (Vx): Let f, g € Hog, then

Ox def, K rke, (-,)3, lin
|0x(f) — dx(9)| = | {f =9, k(. X)) 3, |
CBS, k rk.

< VkXGX) = glly, -
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Pre-RKHS:

fn : Ho-Cauchy M 0= f, ﬂ 0:

@ fp: Cauchy = bounded, i.e. ||f];,, < A.

@ fp: Cauchy = n,m > 3Ny: [[fy — T[4, < €/(2A).

o Let f/\/1 = 2;21 aik(+, x;). n > 3ANs: |[fa(x)| < ﬁ (i=1,...,rn.
For n > max(Ny, No):

2
I3, <e.
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Pre-RKHS:

fn : Ho-Cauchy M 0= f, ﬂ 0:

@ f,: Cauchy = bounded, i.e. ||fy|[;,, < A.

@ fp: Cauchy = n,m > 3Ny: [[fy — fnll4,, < €/(2A).

o Letfy, = > ¢ aik(-, x;). n > 3INa: |fa(Xi)] < g U=1,....1).
For n > max(Ny, No):

10l12 = (o by < 1 (Fn — f g |+ | (s ) |

i
< = Ly, allagg + D |ifa(x))] <e.
111 Ho 0 i:1H’—J

<[e/(2A)A=§ <levl zray
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(*, )4 well-defined

an = (fn, gn)4, IS convergent by Cauchyness in R:

lan — am|<e
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(-, )4 well-defined

an = (fn, gn)4, IS convergent by Cauchyness in R:

lan — am| = <fn>gn>7.,50 - (fmagm>H0

= |(fn, On)aqy — (fm: Gn)agy + (fmy Gn)ggy — (fm, Om)ay,

(fo — fm, gn>H0 + (fm, Gn — Qm>7.,50

IN

{fo = fns G| + | {F G — Gy
190134, 1fn = fmllag, + [[fmll 1, 1190 — Gmlly, <€
—_——— — ———

<A <5z <B <s5g

IN

fo, gn: Cauchy = bounded, i.e. ||f|l;,, < A, [|gnll3, < B-
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(*, )4 well-defined

The limit is independent of the Cauchy seq. chosen: let
o fo, 2 X £ gn, g 25 g1 Ho-Cauchy seq.-s,
o Qp = <fn7gn>7-[0’ O/;‘l = <fl{lg;7>7-[0
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(-, )4 well-defined

The limit is independent of the Cauchy seq. chosen: let
° fyf I 9n, 9, ALK g: Hp-Cauchy seq.-s,

o Qp = <fn7gn>7-[0’ 0/17 = <frlig;7>7-[0
@ 'Repeating’ the previous argument:

lan =il < 11Gnllag, (1 = alls, + 1llse, ll9n — Gnlls, -
N—_——l———— —— ——
bounded —0 bounded —0
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(-, )4 well-defined

The limit is independent of the Cauchy seq. chosen: let
° fyf I 9n, 9, ALK g: Hp-Cauchy seq.-s,

o Qp = <fn7gn>7-[0’ 0/17 = <frlig;7>7-[0
@ 'Repeating’ the previous argument:

lan =il < 11Gnllag, (1 = alls, + 1llse, ll9n — Gnlls, -
N—_——l———— —— ——
bounded —0 bounded —0

0 0 f Kty 0=t f % 0(gy— g,
similarly).
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(-, ) Inner product

The ’tricky’ bit:

(f,f)yy=0=f=0.

o Let f, ™% f Ho-Cauchy, and (f, f),, = limp ||fs||3, = 0. Then

| | O
()] = Tim |01 = lim [8(f)] < m_ (18] [ fally, = O,

<© 50

(x): 0x is continuous on Hy.
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Until now: (-, -),, is well-defined & inner product. |

Remains:
@ 6-s are continuous on H (Vx).
© 7 is complete.
© The reproducing kernel on H is k.
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0x-S are continuous on H: lemma

H,y is dense in H. |

e Sufficient to show: f, % f Ho-Cauchy = fj ot
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0x-S are continuous on H: lemma

H,y is dense in H. |

e Sufficient to show: f, % f Ho-Cauchy = fj ot
@ Proof: Fix e > 0,
o fo: Ho-Cauchy = IN < Vm, n: ||fm — fofl5, <e.

o Fix n* > N, then fy, — fo. 255 f— f..
@ By the definition of |-||,, :

2 o . 2 2
I fl2 = lim o~ ], < &,

ie., f, 25 f.
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0x-S are continuous on H

Sufficient to show: d, linear is continuous at f = 0. Fix x € X. )

@ We have seen: ¢y is continuous on Hg, i.e. In

19 = Ollyy = 191, <1 = 16x(9)—6x(0)| = |6x(9)—0| = |g(x)| < ¢/2.
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0x-S are continuous on H

Sufficient to show: d, linear is continuous at f = 0. Fix x € X. )

@ We have seen: ¢y is continuous on Hg, i.e. In

19 = Ollyy = 191, <1 = 16x(9)—6x(0)| = |6x(9)—0| = |g(x)| < ¢/2.
@ Take f € H: ||f||,; <n/2. Since Hy C H dense, If, Ho-Cauchy, IN
f(x) = fn(x)| < /2 = f 25 1],
If=fully <m/2 [ f 2 1=

1lla, = Il < [Fll2g + [ = Tl < -
—_— N——

n
<3 <

s
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0x-S are continuous on H

Sufficient to show: d, linear is continuous at f = 0. Fix x € X. )

@ We have seen: ¢y is continuous on Hg, i.e. In

19 = Ollyy = 191, <1 = 16x(9)—6x(0)| = |6x(9)—0| = |g(x)| < ¢/2.
@ Take f € H: ||f||,; <n/2. Since Hy C H dense, If, Ho-Cauchy, IN
f(x) = fn(x)| < /2 = f 25 1],
If=fully <m/2 [ f 2 1=

1lla, = Il < [Fll2g + [ = Tl < -
—_— N——

n
<3 <

s

@ With g = fy we get [fin(x)| < 5 = |f(x)| < [f(x) — In(X)| + |fn(X)| < e
—_— Y~
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‘H is complete

High-level idea: let {f,} C #H be any Cauchy seq.,
@ Jf(x) := lim, fa(x) since
@ Jx cont. on H = {fs(x)} C R Cauchy seq. = convergent.
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‘H is complete

High-level idea: let {f,} C #H be any Cauchy seq.,
@ Jf(x) := lim, fa(x) since
@ dy cont. on H = {fs(x)} C R Cauchy seq. = convergent.
@ Question: is the point-wise limit f € #?
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‘H is complete

High-level idea: let {f,} C #H be any Cauchy seq.,
@ Jf(x) := lim, fa(x) since
@ dy cont. on H = {fs(x)} C R Cauchy seq. = convergent.
@ Question: is the point-wise limit f € #?

@ |dea:
@ 7o denseinH = 3g, € Ho S.t. ||gn — fall, < L.
@ We show
® gn 2 f;{gn} C Ho: Cauchy seq.} = f € H.
o f L f.
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ognv—x>f:

1gn(x) — F(X)| < |gn(X) — fa(X)| + |fa(X) — f(X)|
= |6x(gn — fa)| + |[fa(x) — F(X)] .

—0; dx cont. on H —0; f def.
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@ {gn} C Hy is Cauchy sequence:
[gm — Gnlla, = 19m — 9nlly
< |1gm — fmll3 + 1fm — falls, + Mfa — Gnll
1 1
< — 1 _
< bt lin = ol -

Om.gn def —0;fp:H-Cauchy
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e Finally, f, 5 f: _ gn def.
— 0: shown at "Ho dense in ' A<

. ]
If = fally < [If = Gnllsy +11Gn = fallsy < [If = Gnll L
n
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Final property: the reproducing kernel on H is k

@ LetfeH,and f, X, f Ho-Cauchy sequence.

@ Then,
@ | (b) . (c)
(FKCX)) 2 im (fa, k( X)) g0 = lim fo(x) © (),
where

@ (a): definition of (-,-),,,
@ (b): k reproducing kernel on H,,
o (C): fy 2 f.
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We have shown that

® RKHS (04 continuous) < reproducing kernel < kernel
(feature view) < positive definite.

[}
@ Moore-Aronszajn theorem:

@ RKHS construction for a k pos. def. function.
o ldea:
@ pre-RKHS: Ho = span [{k(-, x) }xex],
© H := pointwise limit of H,-Cauchy sequences.
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Thank you for the attention!
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Vector space axioms

(V,+, \) is vector space if [Vvq,Vo,v3, v € V, a b € R]:

(V1 +V2) + V3 = vy + (V2 + v3), (associativity)
V{ + Vo = Vo + V¢, (commutativity)
H0:v+0=v,
d—v:v+(-v)=0,
a(bv) = (ab)v,

v =y,

a(vy + Vo) = avy + ava,

(a+ b)v=av+ bv.
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‘H is a vector space

H c RY = Needed:
@ fcH = \ecH: IHf} C Ho-Cauchy, f, AL

{An} C Ho (< Hop: vector space), Cauchy,
(AF)(x) 25 (AF)(X).
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‘H is a vector space

H c RY = Needed:

Q f,geH=F+gecH: I}, {gn} C Ho-Cauchy, f, X f, On X, g
{fa+ 9n} C Ho (<= Ho: vector space), Cauchy,
(fa+ Gn)(x) =5 (F + g)().
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(-, )24, inner product

Needed: for Vf = Z,a,-k(-,X,-), 9 =>_;Bik(-.y;) € Ho
0 <f7g>7'lo = <g7 f>

(f,9)n Zza:ﬂ/ (X)) = D> Biik (v, %) = (9, Faug
;o

i
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(-, )24, inner product

Needed: for VA € R, f = 3=, aik(-, %), g = >°; Bk (-, ¥j) € Ho

Q O\, 9)u, = Mf,9)n,:

Mo = Y _(Aa)Bk(Xi, y) = XY iBik(xi, ¥;) = MF, @y
i i.f
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(-, )24, inner product

Needed: for VA € R, f = 3=, aik(-, %), g = >°; Bk (-, ¥j) € Ho

Q (fi + 5,901, = (fi, Dy + (2 D) wy [fi <> X, fo 5 aff X'
Lhs =) aiBik(xi,y;) = > aiBik(x!,y) + > of Bik(x!', yj) = rh.s.,
i i i

where fi + f, < o}, af, X;, X{'.
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(-, )24, inner product

Needed: for VA € R, f = 3=, aik(-, %), g = >°; Bk (-, ¥j) € Ho

Q F=0=(f,f)y, =0:
f=0xk(-,x)= (f,f)a, =0 x 0 x k(x,x) =0.
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(-, )22 semi inner product

Needed: for Vf, fi,fh,g € H
Q (f,9)n = (g, Nn:
Mo jim
n

<f7 g>7'l = Iirr;n<fn7gn>7'io = (gm fn>7'lo = <g7 f>7'l
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(-, )22 semi inner product

Needed: for Vf, fi,fh,g e H,A € R

g <)‘f7 g>7‘l = )‘<f7 g>'H:
(A, @) = M (Ao, Gn)g = M Alfo, Gty = MM, gn)g = AF, ).
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(-, )22 semi inner product

Needed: for Vf, fi,fh,g e H,A € R

e <f1 + f2>g>7'[ = <f1>g>7'[ + <f27g>7'l:
(fr + o, G = W (Fyn + o, Gty = WM {Fr Gt + (Fo.ms )]
= lim(fy n, )rto +1iM{fo.n, @)1y = (F1s @) + (fo, P
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(-, )22 semi inner product

Needed: for Vf, fi,fh,g e H,A € R

Q =0=(f,fly=0:Letf,=0

(F, Fyn = lim(0, 0y, "~

limo = 0.
n
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