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Overview

1 Concepts from functional analysis:

normed-, inner product space,
convergent-, Cauchy sequence,

complete spaces: Banach-, Hilbert space,

continuous/bounded linear operators.
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Overview

2 RKHS:
different views:

1 continuous evaluation functional,
2 reproducing kernel,
3 positive definite function,
4 feature view (kernel).

equivalence, explicit construction.
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Normed space

We define the ’length’ of a vector.

F : vector space over R. ‖·‖ : F → [0,∞) is norm on F , if

1 ‖f‖ = 0 iff. f = 0 (norm separates points),
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Normed space

We define the ’length’ of a vector.

F : vector space over R. ‖·‖ : F → [0,∞) is norm on F , if

1 ‖f‖ = 0 iff. f = 0 (norm separates points),

2 ‖λf‖ = |λ| ‖f‖ ∀λ ∈ R,∀f ∈ F (positive homogenity),
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Normed space

We define the ’length’ of a vector.

F : vector space over R. ‖·‖ : F → [0,∞) is norm on F , if

1 ‖f‖ = 0 iff. f = 0 (norm separates points),

2 ‖λf‖ = |λ| ‖f‖ ∀λ ∈ R,∀f ∈ F (positive homogenity),

3 ‖f + g‖ ≤ ‖f‖+ ‖g‖ ∀f ,g ∈ F (triangle inequality).
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Normed space

We define the ’length’ of a vector.

F : vector space over R. ‖·‖ : F → [0,∞) is norm on F , if

1 ‖f‖ = 0 iff. f = 0 (norm separates points),

2 ‖λf‖ = |λ| ‖f‖ ∀λ ∈ R,∀f ∈ F (positive homogenity),

3 ‖f + g‖ ≤ ‖f‖+ ‖g‖ ∀f ,g ∈ F (triangle inequality).

Note:

norm⇒ metric: d(f ,g) = ‖f − g‖ ⇒
study continuity, convergence.
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Normed space: examples

(R, | · |),
(

Rd , ‖x‖p = [
∑

i |xi |p]
1
p

)

, 1 ≤ p.

p = 1: ‖x‖1 =
∑

i |xi | (Manhattan),

p = 2: ‖x‖2 =
√
∑

i x2
i (Euclidean),

p =∞: ‖x‖∞ = maxi |xi | (maximum norm).
(

C[a,b], ‖f‖p =
[∫ b

a
|f (x)|pdx

] 1
p

)

, 1 ≤ p.
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Inner product space

F : vector space over R. 〈·, ·〉 : F × F → R is an inner product

on F if for ∀αi ∈ R, fi , f ,g ∈ F
1 〈α1f1 + α2f2,g〉 = α1 〈f1,g〉+ α2 〈f2,g〉 (linearity),
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Inner product space

F : vector space over R. 〈·, ·〉 : F × F → R is an inner product

on F if for ∀αi ∈ R, fi , f ,g ∈ F
1 〈α1f1 + α2f2,g〉 = α1 〈f1,g〉+ α2 〈f2,g〉 (linearity),

2 〈f ,g〉 = 〈g, f 〉 (symmetry),
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Inner product space

F : vector space over R. 〈·, ·〉 : F × F → R is an inner product

on F if for ∀αi ∈ R, fi , f ,g ∈ F
1 〈α1f1 + α2f2,g〉 = α1 〈f1,g〉+ α2 〈f2,g〉 (linearity),

2 〈f ,g〉 = 〈g, f 〉 (symmetry),

3 〈f , f 〉 ≥ 0; 〈f , f 〉 = 0⇔ f = 0.
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Inner product space

F : vector space over R. 〈·, ·〉 : F × F → R is an inner product

on F if for ∀αi ∈ R, fi , f ,g ∈ F
1 〈α1f1 + α2f2,g〉 = α1 〈f1,g〉+ α2 〈f2,g〉 (linearity),

2 〈f ,g〉 = 〈g, f 〉 (symmetry),

3 〈f , f 〉 ≥ 0; 〈f , f 〉 = 0⇔ f = 0.

Notes:

1, 2⇒ bilinearity.

inner product⇒ norm: ‖f‖ =
√

〈f , f 〉.
1,2,3’ (〈f , f 〉 ≥ 0) is called semi-inner product.
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Inner product space: examples

(
Rd , 〈x,y〉 =

∑

i xiyi

)
.

(

Rd1×d2 , 〈A,B〉F = tr(AT B) =
∑

ij AijBij

)

.
(

C[a,b], 〈f ,g〉 =
∫ b

a
f (x)g(x)dx

)

.
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Norm vs inner product

Relations:

| 〈f ,g〉 | ≤ ‖f‖ · ‖g‖ (CBS),

4 〈f ,g〉 = ‖f + g‖2 − ‖f − g‖2 (polarization identity),

‖f + g‖2 + ‖f − g‖2 = 2 ‖f‖2 + 2 ‖g‖2 (parallelogram law).
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Norm vs inner product

Relations:

| 〈f ,g〉 | ≤ ‖f‖ · ‖g‖ (CBS),

4 〈f ,g〉 = ‖f + g‖2 − ‖f − g‖2 (polarization identity),

‖f + g‖2 + ‖f − g‖2 = 2 ‖f‖2 + 2 ‖g‖2 (parallelogram law).

Notes:

CBS holds for semi-inner products.

parallelogram law = characterization of ’‖·‖ ← 〈·, ·〉’.
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Convergent-, Cauchy sequence

F : normed space, {fn}∞n=1 ⊂ F , f ∈ F ,

Convergent sequence: fn
F−→ f if ∀ǫ > 0 ∃N = N(ε) ∈ N, s.t.

∀n ≥ N, ‖fn − f‖F < ǫ.
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Convergent-, Cauchy sequence

F : normed space, {fn}∞n=1 ⊂ F , f ∈ F ,

Convergent sequence: fn
F−→ f if ∀ǫ > 0 ∃N = N(ε) ∈ N, s.t.

∀n ≥ N, ‖fn − f‖F < ǫ.

Cauchy sequence: {fn}∞n=1 is a Cauchy sequence if ∀ǫ > 0

∃N = N(ε) ∈ N, s.t. ∀n,m ≥ N, ‖fn − fm‖F < ǫ.
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Convergent-, Cauchy sequence

F : normed space, {fn}∞n=1 ⊂ F , f ∈ F ,

Convergent sequence: fn
F−→ f if ∀ǫ > 0 ∃N = N(ε) ∈ N, s.t.

∀n ≥ N, ‖fn − f‖F < ǫ.

Cauchy sequence: {fn}∞n=1 is a Cauchy sequence if ∀ǫ > 0

∃N = N(ε) ∈ N, s.t. ∀n,m ≥ N, ‖fn − fm‖F < ǫ.

Note:

convergent⇒ Cauchy: ‖fn − fm‖F ≤ ‖fn − f‖F + ‖f − fm‖F .
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Not every Cauchy sequence converges

Examples:

1,1.4,1.41,1.414,1.4142, ...: Cauchy in Q, but
√

2 /∈ Q.
(

C[0,1], ‖·‖L2[0,1]

)

:

1

2
− 1

2n

1

2
+

1

2n

0 1

1
fn

1

n

But a Cauchy sequence is bounded.
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Banach space, Hilbert space

Complete space: ∀ Cauchy sequence converges.

Zoltán Szabó Foundations of RKHS-s – Advanced Topics in ML



Banach space, Hilbert space

Complete space: ∀ Cauchy sequence converges.
Banach space = complete normed space, e.g.

1 Let p ∈ [1,∞), Lp(X ,A, µ) :=
{

f : (X ,A)→ R measurable : ‖f‖p =

[∫

X

|f (x)|pdµ(x)

]1/p

<∞
}

.

2
(
C[a, b], ‖f‖∞ = maxx∈[a,b] |f (x)|

)
.
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Banach space, Hilbert space

Complete space: ∀ Cauchy sequence converges.
Banach space = complete normed space, e.g.

1 Let p ∈ [1,∞), Lp(X ,A, µ) :=
{

f : (X ,A)→ R measurable : ‖f‖p =

[∫

X

|f (x)|pdµ(x)

]1/p

<∞
}

.

2
(
C[a, b], ‖f‖∞ = maxx∈[a,b] |f (x)|

)
.

Hilbert space = complete inner product space; L2(X ,A, µ).
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Linear-, bounded operator

F , G: normed spaces. A : F → G is called

linear operator:
1 A(αf ) = α (Af ) ∀α ∈ R, f ∈ F , (homogeneity),
2 A(f + g) = Af + Ag ∀f , g ∈ F (additivity).

G = R: linear functional.

Zoltán Szabó Foundations of RKHS-s – Advanced Topics in ML



Linear-, bounded operator

F , G: normed spaces. A : F → G is called

linear operator:
1 A(αf ) = α (Af ) ∀α ∈ R, f ∈ F , (homogeneity),
2 A(f + g) = Af + Ag ∀f , g ∈ F (additivity).

G = R: linear functional.

bounded operator: A is linear & ‖A‖ = supf∈F
‖Af‖G
‖f‖F

<∞.

F

1

G

λ

A : F → G

{Af : ‖f‖F ≤ 1}
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Unbounded linear functional: example

(
C1[0,1], ‖f‖∞ := maxx∈[0,1] |f (x)|

)
, A(f ) = f ′(0) ∈ R:

1 A: linear⇐ differentiation & evaluation are linear,
2 fn(x) = e−nx (n ∈ Z+):

‖fn‖∞ ≤ 1, but

|A(fn)| = |f ′n(0)| =
∣
∣
∣− ne−nx

∣
∣
x=0

∣
∣
∣ = | − n| = n→∞.
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Continuous operator

Def.: A is

continuous at f0 ∈ F : ∀ǫ > 0 ∃δ = δ(ǫ, f0) > 0, s.t.

‖f − f0‖F < δ implies ‖Af − Af0‖G < ǫ.

continuous: if it is continuous at ∀f0 ∈ F .
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Continuous operator

Def.: A is

continuous at f0 ∈ F : ∀ǫ > 0 ∃δ = δ(ǫ, f0) > 0, s.t.

‖f − f0‖F < δ implies ‖Af − Af0‖G < ǫ.

continuous: if it is continuous at ∀f0 ∈ F .

Example:

Let Ag(f ) := 〈f , g〉F ∈ R, where f , g ∈ F .

Ag is Lipschitz continuous:

∣
∣Ag(f1)− Ag(f2)

∣
∣
〈·,·〉

F
: lin.

= |〈f1 − f2, g〉F |
CBS

≤ ‖g‖F ‖f1 − f2‖F .
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Continuous-bounded relations

Theorem:

A: linear operator. Equivalent: A is
1 continuous,
2 continuous at one point,
3 bounded.
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Continuous-bounded relations

Theorems:

A: linear operator. Equivalent: A is
1 continuous,
2 continuous at one point,
3 bounded.

Riesz representation (F : Hilbert, G = R):

continuous linear functionals = {〈·,g〉F : g ∈ F} .
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Let us switch to RKHS-s!
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View-1: continuous evaluation.

Let H ⊂ RX be a Hilbert space.

Consider for fixed x ∈ X the δx : f ∈ H 7→ f (x) ∈ R map.
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View-1: continuous evaluation.

Let H ⊂ RX be a Hilbert space.

Consider for fixed x ∈ X the δx : f ∈ H 7→ f (x) ∈ R map.

The (Dirac) evaluation functional is linear:

δx (αf + βg) = (αf + βg)(x) = αf (x) + βg(x)

= αδx (f ) + βδx (g) (∀α, β ∈ R, f ,g ∈ H).
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View-1: continuous evaluation.

Let H ⊂ RX be a Hilbert space.

Consider for fixed x ∈ X the δx : f ∈ H 7→ f (x) ∈ R map.

The (Dirac) evaluation functional is linear:

δx (αf + βg) = (αf + βg)(x) = αf (x) + βg(x)

= αδx (f ) + βδx (g) (∀α, β ∈ R, f ,g ∈ H).

Def.: H is called RKHS if δx is continuous ∀x ∈ X .
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Example for non-continuous δx

H = L2[0,1] ∋ fn(x) = xn:

1 fn → 0 ∈ H since

lim
n→∞

‖fn − 0‖2 = lim
n→∞

(
∫ 1

0

x2ndx

)1/2

= lim
n→∞

1√
2n + 1

= 0,
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Example for non-continuous δx

H = L2[0,1] ∋ fn(x) = xn:

1 fn → 0 ∈ H since

lim
n→∞

‖fn − 0‖2 = lim
n→∞

(
∫ 1

0

x2ndx

)1/2

= lim
n→∞

1√
2n + 1

= 0,

2 but δ1(fn) = 1 9 δ1(0) = 0.

In L2: norm convergence 6⇒ pointwise convergence.
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View-1: convergence

In RKHS: convergence in norm⇒ pointwise convergence!

Result: fn
H−→ f ⇒ fn

∀x−→ f .
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View-1: convergence

In RKHS: convergence in norm⇒ pointwise convergence!

Result: fn
H−→ f ⇒ fn

∀x−→ f .

Proof: For any x ∈ X ,

|fn(x)− f (x)| δx def
= |δx (fn)− δx (f )| δx lin

= |δx (fn − f )|
δx : bounded
≤ ‖δx‖

︸︷︷︸

<∞

‖fn − f‖H
︸ ︷︷ ︸

→0

.
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View-2: reproducing⇒ elements, kernel trick.

Let H be a Hilbert space of X → R functions.

k : X × X → R is called a reproducing kernel of H if for
∀x ∈ X

1 k(·, x) ∈ H (’generators’),
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View-2: reproducing⇒ elements, kernel trick.

Let H be a Hilbert space of X → R functions.

k : X × X → R is called a reproducing kernel of H if for
∀x ∈ X , f ∈ H

1 k(·, x) ∈ H (’generators’),
2 〈f , k(·, x)〉H = f (x) (reproducing property).
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View-2: reproducing⇒ elements, kernel trick.

Let H be a Hilbert space of X → R functions.

k : X × X → R is called a reproducing kernel of H if for
∀x ∈ X , f ∈ H

1 k(·, x) ∈ H (’generators’),
2 〈f , k(·, x)〉H = f (x) (reproducing property).

Specifically: ∀x , y ∈ X ,

k(x , y) = 〈k (·, x) , k (·, y)〉H.
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View-2: reproducing⇒ elements, kernel trick.

Let H be a Hilbert space of X → R functions.

k : X × X → R is called a reproducing kernel of H if for
∀x ∈ X , f ∈ H

1 k(·, x) ∈ H (’generators’),
2 〈f , k(·, x)〉H = f (x) (reproducing property).

Specifically: ∀x , y ∈ X ,

k(x , y) = 〈k (·, x) , k (·, y)〉H.

Questions

Uniqueness, existence?
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Reproducing kernel: uniqueness

Reproducibility & norm definition⇒ uniqueness.

Let k1, k2 be r.k.-s of H. Then for ∀f ∈ H,∀x ∈ X

〈f , k1(·, x)− k2(·, x)〉H
〈·,·〉H lin, ki r.k.

= f (x)− f (x) = 0.
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Reproducing kernel: uniqueness

Reproducibility & norm definition⇒ uniqueness.

Let k1, k2 be r.k.-s of H. Then for ∀f ∈ H,∀x ∈ X

〈f , k1(·, x)− k2(·, x)〉H
〈·,·〉H lin, ki r.k.

= f (x)− f (x) = 0.

Choosing f = k1(·, x)− k2(·, x), we get

‖k1(·, x)− k2(·, x)‖2
H = 0, (∀x ∈ X )

i.e., k1 = k2.
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View-2 (r.k.) ⇔ view-1 (RKHS)

Result: H has a r.k. (k)⇔H is a RKHS.
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View-2 (r.k.) ⇔ view-1 (RKHS)

Result: H has a r.k. (k)⇔H is a RKHS.

Proof (⇒):

|δx (f )| ≤
√

k(x , x) ‖f‖H,

i.e. δx : H → R is bounded (hence continuous).
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View-2 (r.k.) ⇔ view-1 (RKHS)

Result: H has a r.k. (k)⇔H is a RKHS.

Proof (⇒):

|δx (f )| δx def
= |f (x)| k : r.k.

= |〈f , k(·, x)〉H| ≤
√

k(x , x) ‖f‖H,

i.e. δx : H → R is bounded (hence continuous).
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View-2 (r.k.) ⇔ view-1 (RKHS)

Result: H has a r.k. (k)⇔H is a RKHS.

Proof (⇒):

|δx (f )| δx def
= |f (x)| k : r.k.

= |〈f , k(·, x)〉H|
CBS
≤ ‖k(·, x)‖H ‖f‖H

k : r.k.
=

√

k(x , x) ‖f‖H,

i.e. δx : H → R is bounded (hence continuous).
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View-2 (r.k.) ⇔ view-1 (RKHS)

Result: H has a r.k. (k)⇔H is a RKHS.

Proof (⇒):

|δx (f )| δx def
= |f (x)| k : r.k.

= |〈f , k(·, x)〉H|
CBS
≤ ‖k(·, x)‖H ‖f‖H

k : r.k.
=

√

k(x , x) ‖f‖H,

i.e. δx : H → R is bounded (hence continuous).

Convergence in RKHS⇒ uniform convergence! (k : bounded).
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View-2 (r.k.) ⇔ view-1 (RKHS):⇐, existence of r.k.

Proof (⇐): Let δx be continuous for all x ∈ X .

1 By the Riesz repr. theorem ∃fδx ∈ H

δx (f ) = 〈f , fδx
︸︷︷︸

=k(·,x)?

〉H, ∀f ∈ H.
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View-2 (r.k.) ⇔ view-1 (RKHS):⇐, existence of r.k.

Proof (⇐): Let δx be continuous for all x ∈ X .

1 By the Riesz repr. theorem ∃fδx ∈ H

δx (f ) = 〈f , fδx
︸︷︷︸

=k(·,x)?

〉H, ∀f ∈ H.

2 Let k(x ′, x) = fδx (x
′), ∀x , x ′ ∈ X , then

k(·, x) = fδx ∈ H,
〈f , k(·, x)〉H= δx (f ) = f (x).

Thus, k is the reproducing kernel.
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View-3: positive definiteness.

Let k : X × X → R be a symmetric function.
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View-3: positive definiteness.

Let k : X × X → R be a symmetric function.

G := [k(xi , xj )]
n
i ,j=1: Gram matrix.
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View-3: positive definiteness.

Let k : X × X → R be a symmetric function.

G := [k(xi , xj )]
n
i ,j=1: Gram matrix.

k is called positive definite, if

aT Ga ≥ 0

for ∀n ≥ 1, ∀a ∈ Rn, ∀(x1, . . . , xn) ∈ X n.
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View-4: ’kernel as inner product’ view.

Def.: A k : X × X → R function is called kernel, if
1 ∃φ : X → F , where F is a Hilbert space s.t.
2 k(x , y) = 〈φ(x), φ(y)〉F .

Intuition: k is inner product in F .
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Reproducing kernel⇒ kernel⇒ positive definiteness

Every r.k. is a kernel: φ(x) := k(·, x), k(x , y) = 〈k(·, x), k(·, y)〉H.

Every kernel is positive definite:

aT Ga =
n∑

i=1

n∑

j=1

aiajk(xi , xj)

k def ,〈·,·〉F lin
=

〈
n∑

i=1

aiφ(xi),
n∑

j=1

ajφ(xj)

〉

F

‖·‖F=
√

〈·,·〉F
=

∥
∥
∥
∥
∥

n∑

i=1

aiφ(xi )

∥
∥
∥
∥
∥

2

F

≥ 0.

Zoltán Szabó Foundations of RKHS-s – Advanced Topics in ML



Until now

Result-1 (proved):

RKHS (δx continuous)⇔ reproducing kernel.

Result-2 (proved):

reproducing kernel⇒ kernel⇒ positive definite.
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Until now

Result-1 (proved):

RKHS (δx continuous)⇔ reproducing kernel.

Result-2 (proved):

reproducing kernel⇒ kernel⇒ positive definite.

Moore-Aronszajn theorem (follows)

positive definite⇒ reproducing kernel.
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Until now

Result-1 (proved):

RKHS (δx continuous)⇔ reproducing kernel.

Result-2 (proved):

reproducing kernel⇒ kernel⇒ positive definite.

Moore-Aronszajn theorem (follows)

positive definite⇒ reproducing kernel.

⇒ the 4 notions are exactly the same!
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Moore-Aronszajn construction: high-level view

Given: a k : X × X → R positive definite function.

We construct a pre-RKHS H0:

H0 =

{

f =

n∑

i=1

αik(·, xi ) : αi ∈ R, xi ∈ X
}

⊇ {k(·, x) : x ∈ X},

〈f ,g〉H0
= k(x , y),

where f = k(·, x), g = k(·, y) .
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Moore-Aronszajn construction: high-level view

Given: a k : X × X → R positive definite function.

We construct a pre-RKHS H0:

H0 =

{

f =

n∑

i=1

αik(·, xi ) : αi ∈ R, xi ∈ X
}

⊇ {k(·, x) : x ∈ X},

〈f ,g〉H0
=

n∑

i=1

m∑

j=1

αiβjk(xi , yj ),

where f =
∑n

i=1 αik(·, xi ), g =
∑m

j=1 βjk(·, yj ).
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Moore-Aronszajn construction: high-level view

H0 will satisfy:
0 linear space (X); 〈f , g〉H0

: well-defined & inner product.

1 δx -s are continuous on H0 (∀x ).
2 For any {fn} ⊂ H0 Cauchy seq.:

fn
∀x−→ 0 ⇒ fn

H0−−→ 0.

From H0 we construct H as:
1 H ⊂ RX , for which

2 ∃ {fn} H0-Cauchy seq. such that fn
∀x−→ f .
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Moore-Aronszajn construction: high-level view

Let

〈f ,g〉H := lim
n→∞

〈fn,gn〉H0
, (1)

where fn
∀x−→ f , gn

∀x−→ g H0-Cauchy sequences.

H will satisfy:

H0 ⊂ H: X [fn ≡ f ∈ H0].
H is a RKHS with r.k. k :

-1 H: linear space (X),
0 〈f , g〉H: well-defined & inner product.
1 H is complete.
2 δx -s are continuous on H (∀x).
3 H has r.k. k (used to define H0).
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〈·, ·〉H0
: well-defined, k reproducing on H0

Recall: if f =
∑n

i=1 αik(·, xi ), g =
∑m

j=1 βjk(·, yj ), then

〈f ,g〉H0
=

n∑

i=1

m∑

j=1

αiβjk(xi , yj).

〈·, ·〉H0
is independent of the particular {αi} and {βj}:

〈f ,g〉H0
=

n∑

i=1

αi

m∑

j=1

βjk(xi , yj ) =

n∑

i=1

αig(xi)



=

m∑

j=1

βj f (yj)



 .
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〈·, ·〉H0
: well-defined, k reproducing on H0

Recall: if f =
∑n

i=1 αik(·, xi ), g =
∑m

j=1 βjk(·, yj ), then

〈f ,g〉H0
=

n∑

i=1

m∑

j=1

αiβjk(xi , yj).

〈·, ·〉H0
is independent of the particular {αi} and {βj}:

〈f ,g〉H0
=

n∑

i=1

αi

m∑

j=1

βjk(xi , yj ) =

n∑

i=1

αig(xi)



=

m∑

j=1

βj f (yj)



 .

⇒ reproducing property on H0:

〈f , k(·, x)〉H0
=

n∑

i=1

αik(xi , x) = f (x).
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〈·, ·〉H0
: inner product

The ’tricky’ property to check:

‖f‖H0
:= 〈f , f 〉H0

= 0 =⇒ f = 0.

This holds by CBS (for the semi-inner product 〈·, ·〉H0
): ∀x

|f (x)| k r.k. on H0=
∣
∣
∣〈f , k(·, x)〉H0

∣
∣
∣

CBS
≤ ‖f‖H0
︸ ︷︷ ︸

=0

√

k(x , x) = 0.
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Pre-RKHS: main property-1

δx is continuous on H0 (∀x): Let f ,g ∈ H0, then

|δx (f )− δx (g)|
δx def, k r.k., 〈·,·〉H0

lin

= | 〈f − g, k(·, x)〉H0
|

CBS, k r.k.
≤

√

k(x , x) ‖f − g‖H0
.
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Pre-RKHS: main property-2

fn : H0-Cauchy
(∀x)−−→ 0⇒ fn

H0−−→ 0:

fn: Cauchy⇒ bounded, i.e. ‖fn‖H0
< A.

fn: Cauchy⇒ n,m ≥ ∃N1: ‖fn − fm‖H0
< ǫ/(2A).

Let fN1
=
∑r

i=1 αik(·, xi ). n ≥ ∃N2: |fn(xi )| < ǫ
2r |αi |

(i = 1, . . . , r ).

For n ≥ max(N1,N2):

‖fn‖2
H0

<ǫ.
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Pre-RKHS: main property-2

fn : H0-Cauchy
(∀x)−−→ 0⇒ fn

H0−−→ 0:

fn: Cauchy⇒ bounded, i.e. ‖fn‖H0
< A.

fn: Cauchy⇒ n,m ≥ ∃N1: ‖fn − fm‖H0
< ǫ/(2A).

Let fN1
=
∑r

i=1 αik(·, xi ). n ≥ ∃N2: |fn(xi )| < ǫ
2r |αi |

(i = 1, . . . , r ).

For n ≥ max(N1,N2):

‖fn‖2H0
= 〈fn, fn〉H0

≤ |
〈
fn − fN1

, fn
〉

H0
|+ |

〈
fN1

, fn
〉

H0
|

≤
∥
∥fn − fN1

∥
∥
H0
‖fn‖H0

︸ ︷︷ ︸

<[ǫ/(2A)]A= ǫ

2

+
r∑

i=1

|αi fn(xi)|
︸ ︷︷ ︸

<|αi |
ǫ

2r |αi |

<ǫ.
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〈·, ·〉H: well-defined

αn = 〈fn,gn〉H0
is convergent by Cauchyness in R:

|αn − αm|<ǫ
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〈·, ·〉H: well-defined

αn = 〈fn,gn〉H0
is convergent by Cauchyness in R:

|αn − αm| =
∣
∣
∣〈fn,gn〉H0

− 〈fm,gm〉H0

∣
∣
∣

=
∣
∣
∣〈fn,gn〉H0

− 〈fm,gn〉H0
+ 〈fm,gn〉H0

− 〈fm,gm〉H0

∣
∣
∣

=
∣
∣
∣〈fn − fm,gn〉H0

+ 〈fm,gn − gm〉H0

∣
∣
∣

≤
∣
∣
∣〈fn − fm,gn〉H0

∣
∣
∣+
∣
∣
∣〈fm,gn − gm〉H0

∣
∣
∣

≤ ‖gn‖H0
︸ ︷︷ ︸

<A

‖fn − fm‖H0
︸ ︷︷ ︸

< ǫ

2A

+ ‖fm‖H0
︸ ︷︷ ︸

<B

‖gn − gm‖H0
︸ ︷︷ ︸

< ǫ

2B

<ǫ.

fn,gn: Cauchy⇒ bounded, i.e. ‖fn‖H0
< A, ‖gn‖H0

< B.
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〈·, ·〉H: well-defined

The limit is independent of the Cauchy seq. chosen: let

fn, f
′
n

∀x−→ f ; gn,g
′
n

∀x−→ g: H0-Cauchy seq.-s,

αn = 〈fn,gn〉H0
, α′

n = 〈f ′n,g′
n〉H0

.
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〈·, ·〉H: well-defined

The limit is independent of the Cauchy seq. chosen: let

fn, f
′
n

∀x−→ f ; gn,g
′
n

∀x−→ g: H0-Cauchy seq.-s,

αn = 〈fn,gn〉H0
, α′

n = 〈f ′n,g′
n〉H0

.

’Repeating’ the previous argument:

|αn − α′
n| ≤ ‖gn‖H0

︸ ︷︷ ︸

bounded

∥
∥fn − f ′n

∥
∥
H0

︸ ︷︷ ︸

→0

+
∥
∥f ′n
∥
∥
H0

︸ ︷︷ ︸

bounded

∥
∥gn − g′

n

∥
∥
H0

︸ ︷︷ ︸

→0

.

Zoltán Szabó Foundations of RKHS-s – Advanced Topics in ML



〈·, ·〉H: well-defined

The limit is independent of the Cauchy seq. chosen: let

fn, f
′
n

∀x−→ f ; gn,g
′
n

∀x−→ g: H0-Cauchy seq.-s,

αn = 〈fn,gn〉H0
, α′

n = 〈f ′n,g′
n〉H0

.

’Repeating’ the previous argument:

|αn − α′
n| ≤ ‖gn‖H0

︸ ︷︷ ︸

bounded

∥
∥fn − f ′n

∥
∥
H0

︸ ︷︷ ︸

→0

+
∥
∥f ′n
∥
∥
H0

︸ ︷︷ ︸

bounded

∥
∥gn − g′

n

∥
∥
H0

︸ ︷︷ ︸

→0

.

’→ 0’: fn, f
′
n

∀x−→ f ⇒ fn − f ′n
∀x−→ 0⇒ fn − f ′n

H0−−→ 0 (gn − g′
n

similarly).
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〈·, ·〉H: inner product

The ’tricky’ bit:

〈f , f 〉H = 0⇒ f = 0.

Let fn
∀x−→ f H0-Cauchy, and 〈f , f 〉H = limn ‖fn‖2H0

= 0. Then

|f (x)| = lim
n→∞

|fn(x)| = lim
n→∞

|δx (fn)|
(∗)

≤ lim
n→∞

‖δx‖
︸︷︷︸

<∞

‖fn‖H0
︸ ︷︷ ︸

→0

= 0,

(∗): δx is continuous on H0.
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Until now: 〈·, ·〉H is well-defined & inner product.

Remains:

1 δx -s are continuous on H (∀x).

2 H is complete.

3 The reproducing kernel on H is k .
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δx-s are continuous on H: lemma

H0 is dense in H.

Sufficient to show: fn
∀x−→ f H0-Cauchy⇒ fn

H−→ f .
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δx-s are continuous on H: lemma

H0 is dense in H.

Sufficient to show: fn
∀x−→ f H0-Cauchy⇒ fn

H−→ f .

Proof: Fix ǫ > 0,

fn: H0-Cauchy⇒ ∃N ≤ ∀m, n: ‖fm − fn‖H0
< ǫ.

Fix n∗ ≥ N, then fm − fn∗
∀x−→ f − fn∗ .

By the definition of ‖·‖H :

‖f − fn∗‖2
H = lim

m→∞
‖fm − fn∗‖2

H0
≤ ǫ2,

i.e., fn
H−→ f .
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δx-s are continuous on H

Sufficient to show: δx linear is continuous at f ≡ 0. Fix x ∈ X .

We have seen: δx is continuous on H0, i.e. ∃η

‖g − 0‖H0
= ‖g‖H0

< η ⇒ |δx (g)−δx (0)| = |δx (g)−0| = |g(x)| < ǫ/2.
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δx-s are continuous on H

Sufficient to show: δx linear is continuous at f ≡ 0. Fix x ∈ X .

We have seen: δx is continuous on H0, i.e. ∃η

‖g − 0‖H0
= ‖g‖H0

< η ⇒ |δx (g)−δx (0)| = |δx (g)−0| = |g(x)| < ǫ/2.

Take f ∈ H: ‖f‖H < η/2. Since H0 ⊂ H dense, ∃fn H0-Cauchy, ∃N

|f (x)− fN(x)| < ǫ/2 [⇐ fn
∀x−→ f ],

‖f − fN‖H < η/2 [⇐ fn
H−→ f ]⇒

‖fN‖H0
= ‖fN‖H ≤ ‖f‖H

︸ ︷︷ ︸

< η

2

+ ‖f − fN‖H
︸ ︷︷ ︸

< η

2

< η.
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δx-s are continuous on H

Sufficient to show: δx linear is continuous at f ≡ 0. Fix x ∈ X .

We have seen: δx is continuous on H0, i.e. ∃η

‖g − 0‖H0
= ‖g‖H0

< η ⇒ |δx (g)−δx (0)| = |δx (g)−0| = |g(x)| < ǫ/2.

Take f ∈ H: ‖f‖H < η/2. Since H0 ⊂ H dense, ∃fn H0-Cauchy, ∃N

|f (x)− fN(x)| < ǫ/2 [⇐ fn
∀x−→ f ],

‖f − fN‖H < η/2 [⇐ fn
H−→ f ]⇒

‖fN‖H0
= ‖fN‖H ≤ ‖f‖H

︸ ︷︷ ︸

< η

2

+ ‖f − fN‖H
︸ ︷︷ ︸

< η

2

< η.

With g = fN we get |fN(x)| < ǫ
2
⇒ |f (x)| ≤ |f (x)− fN(x)|

︸ ︷︷ ︸

< ǫ

2

+ |fN(x)|
︸ ︷︷ ︸

< ǫ

2

< ǫ.
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H is complete

High-level idea: let {fn} ⊂ H be any Cauchy seq.,

∃f (x) := limn fn(x) since

δx cont. on H ⇒ {fn(x)} ⊂ R Cauchy seq.⇒ convergent.
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H is complete

High-level idea: let {fn} ⊂ H be any Cauchy seq.,

∃f (x) := limn fn(x) since

δx cont. on H ⇒ {fn(x)} ⊂ R Cauchy seq.⇒ convergent.

Question: is the point-wise limit f ∈ H?
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H is complete

High-level idea: let {fn} ⊂ H be any Cauchy seq.,

∃f (x) := limn fn(x) since

δx cont. on H ⇒ {fn(x)} ⊂ R Cauchy seq.⇒ convergent.

Question: is the point-wise limit f ∈ H?

Idea:
1 H0 dense in H ⇒ ∃gn ∈ H0 s.t. ‖gn − fn‖H < 1

n
.

2 We show

gn
∀x
−→ f ; {gn} ⊂ H0: Cauchy seq.} ⇒ f ∈ H.

fn
H
−→ f .
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gn
∀x−→ f :

|gn(x)− f (x)| ≤ |gn(x)− fn(x)|+ |fn(x)− f (x)|
= |δx (gn − fn)|
︸ ︷︷ ︸

→0; δx cont. on H

+ |fn(x)− f (x)|
︸ ︷︷ ︸

→0; f def.

.
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{gn} ⊂ H0 is Cauchy sequence:

‖gm − gn‖H0
= ‖gm − gn‖H
≤ ‖gm − fm‖H + ‖fm − fn‖H + ‖fn − gn‖H
≤ 1

m
+

1

n
︸ ︷︷ ︸

gm,gn def.

+ ‖fm − fn‖H
︸ ︷︷ ︸

→0;fn:H-Cauchy

.
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Finally, fn
H−→ f :

‖f − fn‖H ≤ ‖f − gn‖H + ‖gn − fn‖H ≤
→ 0: shown at ’H0 dense in H’

︷ ︸︸ ︷

‖f − gn‖H +

gn def.
︷︸︸︷

1

n
.
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Final property: the reproducing kernel on H is k

Let f ∈ H, and fn
∀x−→ f H0-Cauchy sequence.

Then,

〈f , k(·, x)〉H
(a)
= lim

n→∞
〈fn, k(·, x)〉H0

(b)
= lim

n→∞
fn(x)

(c)
= f (x),

where

(a): definition of 〈·, ·〉H,
(b): k reproducing kernel on H0,

(c): fn
∀x−→ f .
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Summary

We have shown that

RKHS (δx continuous)⇔ reproducing kernel⇔ kernel

(feature view)⇔ positive definite.

Moore-Aronszajn theorem:

RKHS construction for a k pos. def. function.
Idea:

1 pre-RKHS: H0 = span [{k(·, x)}x∈X ],
2 H := pointwise limit of H0-Cauchy sequences.
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Thank you for the attention!
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Vector space axioms

(V ,+, λ·) is vector space if [∀v1,v2,v3,v ∈ V , a,b ∈ R]:

(v1 + v2) + v3 = v1 + (v2 + v3), (associativity)

v1 + v2 = v2 + v1, (commutativity)

∃0 : v + 0 = v,

∃ − v : v + (−v) = 0,

a(bv) = (ab)v,

1v = v,

a(v1 + v2) = av1 + av2,

(a + b)v = av + bv.
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H is a vector space

H ⊂ RX ⇒ Needed:

1 f ∈ H ⇒ λf ∈ H: ∃{fn} ⊂ H0-Cauchy, fn
∀x−→ f .

{λfn} ⊂ H0 (⇐H0: vector space), Cauchy,

(λfn)(x)
∀x−→ (λf )(x).
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H is a vector space

H ⊂ RX ⇒ Needed:

1 f ∈ H ⇒ λf ∈ H: ∃{fn} ⊂ H0-Cauchy, fn
∀x−→ f .

{λfn} ⊂ H0 (⇐H0: vector space), Cauchy,

(λfn)(x)
∀x−→ (λf )(x).

2 f ,g ∈ H ⇒ f + g ∈ H: ∃{fn}, {gn} ⊂ H0-Cauchy, fn
∀x−→ f , gn

∀x−→ g

{fn + gn} ⊂ H0 (⇐ H0: vector space), Cauchy,

(fn + gn)(x)
∀x−→ (f + g)(x).
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〈·, ·〉H0
: inner product

Needed: for ∀f =
∑

i αik(·, xi ), g =
∑

j βjk(·, yj ) ∈ H0

1 〈f ,g〉H0
= 〈g, f 〉H0

:

〈f ,g〉H0
=
∑

i

∑

j

αiβjk(xi , yj) =
∑

j

∑

i

βjαik(yj , xi ) = 〈g, f 〉H0
.
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〈·, ·〉H0
: inner product

Needed: for ∀λ ∈ R, f =
∑

i αik(·, xi ), g =
∑

j βjk(·, yj ) ∈ H0

1 〈f ,g〉H0
= 〈g, f 〉H0

:

〈f ,g〉H0
=
∑

i

∑

j

αiβjk(xi , yj) =
∑

j

∑

i

βjαik(yj , xi ) = 〈g, f 〉H0
.

2 〈λf ,g〉H0
= λ〈f ,g〉H0

:

〈λf ,g〉H0
=
∑

i ,j

(λαi )βjk(xi , yj) = λ
∑

i ,j

αiβjk(xi , yj ) = λ〈f ,g〉H0
.
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〈·, ·〉H0
: inner product

Needed: for ∀λ ∈ R, f =
∑

i αik(·, xi ), g =
∑

j βjk(·, yj ) ∈ H0

1 〈f ,g〉H0
= 〈g, f 〉H0

:

〈f ,g〉H0
=
∑

i

∑

j

αiβjk(xi , yj) =
∑

j

∑

i

βjαik(yj , xi ) = 〈g, f 〉H0
.

2 〈λf ,g〉H0
= λ〈f ,g〉H0

:

〈λf ,g〉H0
=
∑

i ,j

(λαi )βjk(xi , yj) = λ
∑

i ,j

αiβjk(xi , yj ) = λ〈f ,g〉H0
.

3 〈f1 + f2,g〉H0
= 〈f1,g〉H0

+ 〈f2,g〉H0
[f1 ↔ α′

i , x
′
i , f2 ↔ α′′

i , x
′′
i ]:

l.h.s =
∑

i ,j

αiβjk(xi , yj ) =
∑

i ,j

α′
iβjk(x

′
i , yj) +

∑

i ,j

α′′
i βjk(x

′′
i , yj ) = r.h.s.,

where f1 + f2 ↔ α′
i , α

′′
i , x ′

i , x
′′
i .
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〈·, ·〉H0
: inner product

Needed: for ∀λ ∈ R, f =
∑

i αik(·, xi ), g =
∑

j βjk(·, yj ) ∈ H0

1 〈f ,g〉H0
= 〈g, f 〉H0

:

〈f ,g〉H0
=
∑

i

∑

j

αiβjk(xi , yj) =
∑

j

∑

i

βjαik(yj , xi ) = 〈g, f 〉H0
.

2 〈λf ,g〉H0
= λ〈f ,g〉H0

:

〈λf ,g〉H0
=
∑

i ,j

(λαi )βjk(xi , yj) = λ
∑

i ,j

αiβjk(xi , yj ) = λ〈f ,g〉H0
.

3 〈f1 + f2,g〉H0
= 〈f1,g〉H0

+ 〈f2,g〉H0
[f1 ↔ α′

i , x
′
i , f2 ↔ α′′

i , x
′′
i ]:

l.h.s =
∑

i ,j

αiβjk(xi , yj ) =
∑

i ,j

α′
iβjk(x

′
i , yj) +

∑

i ,j

α′′
i βjk(x

′′
i , yj ) = r.h.s.,

where f1 + f2 ↔ α′
i , α

′′
i , x ′

i , x
′′
i .

4 f = 0⇒ 〈f , f 〉H0
= 0:

f = 0× k(·, x)⇒ 〈f , f 〉H0
= 0× 0× k(x , x) = 0.
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〈·, ·〉H: semi inner product

Needed: for ∀f , f1, f2,g ∈ H
1 〈f ,g〉H = 〈g, f 〉H:

〈f ,g〉H = lim
n
〈fn,gn〉H0

H0:X= lim
n
〈gn, fn〉H0

= 〈g, f 〉H.
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〈·, ·〉H: semi inner product

Needed: for ∀f , f1, f2,g ∈ H, λ ∈ R
1 〈f ,g〉H = 〈g, f 〉H:

〈f ,g〉H = lim
n
〈fn,gn〉H0

H0:X= lim
n
〈gn, fn〉H0

= 〈g, f 〉H.

2 〈λf ,g〉H = λ〈f ,g〉H:

〈λf ,g〉H = lim
n
〈λfn,gn〉H0

H0:X= lim
n

λ〈fn,gn〉H0
= λ lim

n
〈fn,gn〉H0

= λ〈f ,g〉H.
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〈·, ·〉H: semi inner product

Needed: for ∀f , f1, f2,g ∈ H, λ ∈ R
1 〈f ,g〉H = 〈g, f 〉H:

〈f ,g〉H = lim
n
〈fn,gn〉H0

H0:X= lim
n
〈gn, fn〉H0

= 〈g, f 〉H.

2 〈λf ,g〉H = λ〈f ,g〉H:

〈λf ,g〉H = lim
n
〈λfn,gn〉H0

H0:X= lim
n

λ〈fn,gn〉H0
= λ lim

n
〈fn,gn〉H0

= λ〈f ,g〉H.

3 〈f1 + f2,g〉H = 〈f1,g〉H + 〈f2,g〉H:

〈f1 + f2,g〉H = lim
n
〈f1,n + f2,n,g〉H0

H0:X= lim
n
[〈f1,n,g〉H0

+ 〈f2,n,g〉H0
]

= lim
n
〈f1,n,g〉H0

+ lim
n
〈f2,n,g〉H0

= 〈f1,g〉H + 〈f2,g〉H.
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〈·, ·〉H: semi inner product

Needed: for ∀f , f1, f2,g ∈ H, λ ∈ R
1 〈f ,g〉H = 〈g, f 〉H:

〈f ,g〉H = lim
n
〈fn,gn〉H0

H0:X= lim
n
〈gn, fn〉H0

= 〈g, f 〉H.

2 〈λf ,g〉H = λ〈f ,g〉H:

〈λf ,g〉H = lim
n
〈λfn,gn〉H0

H0:X= lim
n

λ〈fn,gn〉H0
= λ lim

n
〈fn,gn〉H0

= λ〈f ,g〉H.

3 〈f1 + f2,g〉H = 〈f1,g〉H + 〈f2,g〉H:

〈f1 + f2,g〉H = lim
n
〈f1,n + f2,n,g〉H0

H0:X= lim
n
[〈f1,n,g〉H0

+ 〈f2,n,g〉H0
]

= lim
n
〈f1,n,g〉H0

+ lim
n
〈f2,n,g〉H0

= 〈f1,g〉H + 〈f2,g〉H.

4 f = 0⇒ 〈f , f 〉H = 0: Let fn ≡ 0

〈f , f 〉H = lim
n
〈0,0〉H0

H0:X= lim
n

0 = 0.
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