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Abstract

Can one parallelize complex exploration–
exploitation tradeoffs? As an example,
consider the problem of optimal high-
throughput experimental design, where
we wish to sequentially design batches of
experiments in order to simultaneously learn
a surrogate function mapping stimulus to
response and identify the maximum of the
function. We formalize the task as a multi-
armed bandit problem, where the unknown
payoff function is sampled from a Gaussian
process (GP), and instead of a single arm, in
each round we pull a batch of several arms in
parallel. We develop GP-BUCB, a principled
algorithm for choosing batches, based on
the GP-UCB algorithm for sequential GP
optimization. We prove a surprising result;
as compared to the sequential approach, the
cumulative regret of the parallel algorithm
only increases by a constant factor indepen-
dent of the batch size B. Our results provide
rigorous theoretical support for exploiting
parallelism in Bayesian global optimization.
We demonstrate the effectiveness of our
approach on two real-world applications.

1. Introduction

Many applications, from recommender systems to op-
timal control to experimental design, require solving
exploration–exploitation tradeoffs: one needs to make
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a sequence of decisions with uncertain outcomes and
thus, based on noisy feedback, one wishes to simulta-
neously learn a model and use that model to maximize
the reward obtained.

Often, the set of possible decisions is large or infinite,
and therefore we must be able to generalize from par-
tial observations to predict the likely reward associated
with unexplored decisions. A second crucial challenge
is that we wish to explore many possible decisions in
parallel: in information retrieval, it may not be pos-
sible to update the predictive model in real-time, but
perhaps once per day, taking into account all the feed-
back collected; in experimental design, we may wish to
design batches of simultaneously running experiments,
only incorporating feedback once all experiments ter-
minate; and in complex control tasks, performance
feedback may become available only after a delay.

This paper tackles these two central challenges aris-
ing when solving large-scale exploration–exploitation
tradeoffs. We model the problem as a stochastic multi-
armed bandit problem, where the unknown mean pay-
off function is modeled as a Gaussian process (GP,
Rasmussen & Williams (2006)). As nonparametric
statistical models, GPs can flexibly incorporate a vari-
ety of assumptions about regularity of the payoff func-
tion via its covariance (or kernel) function. We design
an efficient algorithm, GP-BUCB, that is able to handle
both the parallel exploration problem (where we pro-
pose batches of B experiments executed concurrently)
and delayed feedback (where each decision can only
use feedback up to B rounds ago). Our approach gen-
eralizes the GP-UCB approach (Srinivas et al., 2010)
to the parallel setting. We prove bounds on the cu-
mulative regret incurred by GP-BUCB. We show that,
perhaps surprisingly, near-linear speedup is possible
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for many commonly used kernel functions: as long as
the batch size B grows at most polylogarithmically in
the number of rounds T , the GP-BUCB regret bounds
only increase by a constant factor independent of B
as compared to the known bounds for the sequential
algorithm. We also demonstrate how the GP-BUCB
algorithm can be drastically accelerated by using lazy
evaluations. We evaluate our approach on several syn-
thetic benchmark optimization tasks, as well as two
real data sets, respectively related to automated vac-
cine design and therapeutic spinal cord stimulation.

Related Work Classical work on multi-armed ban-
dit problems has focused on the case of a finite number
of decisions (Robbins, 1952). Optimistic allocation ac-
cording to upper-confidence bounds (UCB) on the pay-
offs has proven to be particularly effective (Auer et al.,
2002). Recently, approaches for coping with large (or
infinite) sets of decisions have been developed. In these
cases, dependence between the payoffs associated with
different decisions must be modeled and exploited. Ex-
amples include bandits with linear (Dani et al., 2008;
Abernethy et al., 2008) or Lipschitz-continous payoffs
(Kleinberg et al., 2008), or bandits on trees (Koc-
sis & Szepesvári, 2006; Bubeck et al., 2008). The
exploration-exploitation tradeoff has also been studied
in Bayesian global optimization and response surface
modeling, where Gaussian process models are often
used due to their flexibility in incorporating prior as-
sumptions about the payoff function (Brochu et al.,
2009). Several heuristics, such as Maximum Expected
Improvement (Jones et al., 1998), Maximum Prob-
ability of Improvement (Mockus, 1989), and upper-
confidence based methods (Cox & John, 1997), have
been developed to balance exploration with exploita-
tion and successfully applied in learning problems (Li-
zotte et al., 2007). Recently, Srinivas et al. (2010) an-
alyzed GP-UCB, an upper-confidence bound sampling
based algorithm for this setting, and proved bounds
on its cumulative regret, and thus convergence rates
for Bayesian global optimization. We build on this
foundation and generalize it to the parallel setting.

To enable parallel selection, one must account for the
lag between decisions and observations. Most existing
approaches that can deal with such delay result in a
multiplicative increase in the cumulative regret as the
delay grows. Only recently, Dudik et al. (2011) demon-
strated that it is possible to obtain regret bounds
that only increase additively with the delay (i.e., the
penalty becomes negligible for large numbers of deci-
sions). However, the approach of Dudik et al. only ap-
plies to contextual bandit problems with finite decision
sets, and thus not to settings with complex (even non-
parametric) payoff functions. In contrast, there has

been heuristic work in parallel Bayesian global opti-
mization using GPs, e.g. by Ginsbourger et al. (2010).
The state of the art is the simulation matching algo-
rithm of Azimi et al. (2010). To our knowledge, no the-
oretical results regarding the regret of this algorithm
exist. We compare with this approach in Section 5.

2. Problem Statement and Background

We wish to make a sequence of decisions
x1,x2, . . . ,xT ∈ D, where D is called the deci-
sion set, which is often (but not necessarily) a
compact subset of Rd. For each decision, we observe
noisy scalar reward y1, y2, . . . , yT , where for any t,
yt = f(xt) + εt and where f : D → R is in turn
an unknown function modeling the expected payoff
f(x) for each decision x. For now we assume that
the noise variables εt are i.i.d. Gaussian with known
variance σ2

n, i.e., εt ∼ N (0, σ2
n). We will relax this

assumption later. In the strictly sequential setting, we
allow xt to depend on observations y1:t−1 associated
with x1, . . . ,xt−1. Below, we will formalize the main
problem tackled in this paper: the challenging setting
where xt may only depend on y1:t′ , for some t′ < t−1.

We wish to maximize the cumulative reward∑T
t=1 f(xt), or equivalently minimize the cumulative

regret RT =
∑T

t=1 rt, where rt = [f(x∗)− f(xt)] and
x∗ ∈ argmaxx∈D f(x) is an optimum decision (as-
sumed to exist, but not necessarily to be unique). In
experimental design, D might be the set of possible
stimuli that can be applied, and f(x) corresponds to
the response to stimulus x ∈ D. By minimizing the
regret, we ensure progress towards the most effective
stimulus uniformly over T . In fact, the average re-
gret, RT /T , is a natural upper bound on the subop-
timality of the best stimulus considered so far, i.e.,
RT /T ≥ mint [f(x∗)− f(xt)] (often called the simple
regret, Bubeck et al. (2009)).

The Problem: Parallel / Delayed Selection In
many applications, we wish to select batches of deci-
sions x1, ...,xB to be evaluated in parallel. One natu-
ral application is the design of high-throughput exper-
iments, where we perform several experiments in par-
allel, but only receive feedback after the experiments
have concluded. In other settings, we may only receive
feedback after a delay. In both situations, decisions are
selected sequentially, but when making the decision xt

in round t, we can only make use of the feedback ob-
tained in rounds 1, . . . , t′, for some t′ ≤ t−1. Formally,
we assume there is some mapping fb : N → N0 such
that fb[t] ≤ t−1, ∀t ∈ N, and when taking decision at
time t, we can use feedback up to and including round
fb[t]. If fb[t] = 0, no information is available.
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This framework can model a variety of realistic sce-
narios. Setting B = 1 corresponds to the non-delayed,
strictly sequential setting. If the feedback is delayed
by exactly B rounds, we can simply set fb[t] = max{t−
B, 0}. To select batches of size B, we can simply
set fb[t] = b(t − 1)/BcB, i.e., fb[1] = . . . fb[B] = 0,
fb[B + 1] = . . . fb[2B] = B, . . . . We may also be in-
terested in executing several experiments in parallel,
but the duration of an experiment may be variable,
and we can start a new experiment as soon as one
finishes. In this case, fb[t] may be a more complex
mapping. Here, B is the bound on the duration of any
single experiment. In the following, we only assume
that t− fb[t] ≤ B for some known constant B.

Modeling f via Gaussian Processes (GPs) If we
do not make any assumptions about the payoff func-
tion f , for large (possibly infinite) decision setsD there
is no hope to do well, i.e., incur little regret or even
simply converge to an optimal decision. One effective
formalism is to model f as a sample from a Gaussian
process (GP) prior. A GP is a probability distribution
across a class of – typically smooth – functions, which
is parameterized by a kernel function k(x,x′), which
characterizes the smoothness of f , and a mean func-
tion µ(x), which we assume to be µ(x) = 0 w.l.o.g.
We write f ∼ GP(µ, k) to denote that we model f as
sampled from such a GP. If we assume that the noise
is i.i.d. Gaussian and we condition on a set of obser-
vations y1:t−1 = [y1, ..., yt−1] corresponding to X =
{x1, ...,xt−1}, at any x ∈ D, we obtain a Gaussian
posterior f(x)|y1:t−1 ∼ N (µt−1(x), σ2

t−1(x)), where

µt−1(x) = k[K + σ2I]−1y1:t−1 and (1)

σ2
t−1(x) = k(x,x)− k[K + σ2

nI]−1kT , (2)

where k = k(x, X) is the row vector of kernel evalua-
tions between x and X and K = K(X,X) is the ma-
trix of kernel evaluations between past observations.

The GP-UCB approach Modeling f as a sample
from a GP has the major advantage that the predic-
tive uncertainty can be used to guide exploration and
exploitation. Recently, Srinivas et al. (2010) analyzed
the Gaussian process Upper Confidence Bound (GP-
UCB) selection rule

xt = argmax
x∈D

[
µt−1(x) + α

1/2
t σt−1(x)

]
. (3)

This decision rule uses αt, a domain-specific time-
varying parameter, to trade off exploitation (sam-
pling x with high mean) and exploration (sampling
x with high standard deviation) by changing the rela-
tive weighting of the posterior mean and standard de-
viation, respectively µt−1(x) and σt−1(x) from Equa-
tions (1) and (2). Srinivas et al. (2010) showed that,

Algorithm 1 GP-BUCB

Input: Decision set D, GP prior µ0, σ0, kernel func-
tion k(·, ·)
for t = 1, 2, . . . , T do

Choose xt = argmaxx∈D[µfb[t](x) + β
1/2
t σt−1(x)]

Compute σt(·)
if t = fb[t+ 1] then

Obtain yt′ = f(xt′) + εt′ for t′ ∈ {fb[t], . . . , t}
Perform Bayesian inference to obtain µt(·)

end if
end for

with proper choice of αt, the cumulative regret of GP-
UCB grows sublinearly for many commonly used kernel
functions, providing the first regret bounds and con-
vergence rates for GP optimization.

Motivated by the strong theoretical and empirical per-
formance of GP-UCB, we explore generalizations to
batch / parallel selection (i.e., B > 1). One näıve ap-
proach would be to update the GP-UCB score (3) only
once new feedback becomes available, but this algo-
rithm would simply select the same observation up to
B times, leading to limited exploration. To encourage
more exploration, one may require that no decision is
selected twice (i.e., simply rank decisions according to
the GP-UCB score, and pick decisions in order of de-
creasing score, until new feedback is available). How-
ever, since f often varies smoothly, so does the GP-
UCB score; this modification would also suffer from
limited exploration. In the following, we introduce
the Gaussian process - Batch Upper Confidence Bound
(GP-BUCB) algorithm, which encourages diversity in
exploration, and prove strong performance guarantees.

3. The GP-BUCB Algorithm
A key property of GPs is that the predictive variance
(2) only depends on where the observations are made,
but not which values were actually observed. Thus,
it is possible to compute the posterior variance used
in the sequential GP-UCB score, even while previous
observations are not yet available. A natural approach
towards parallel exploration is therefore to alter (3) to
sequentially choose decisions within the batch as

xt = argmax
x∈D

[
µfb[t](x) + β

1/2
t σt−1(x)

]
. (4)

Here, the role of βt is analogous to that of αt in the
GP-UCB algorithm. This approach naturally encour-
ages diversity in exploration by taking into account
the change in predictive variance: since the payoffs
of “similar” decisions have similar predictive distribu-
tions, exploring one decision will automatically reduce
the predictive variance of similar decisions.
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Figure 1. (a): The confidence intervals Cseq
fb[t](x) (dark), computed from previous noisy observations (crosses), are centered

around the posterior mean (solid black) and contain f(x) (white dashed) w.h.p. To avoid overconfidence, GP-BUCB chooses
Cbatch

fb[t] (x) (light gray) such that even in the worst case, Cbatch
t (x) will contain Cseq

fb[t](x). (b): Due to the observations that

GP-BUCB “hallucinates” (stars), the outer posterior confidence intervals Cbatch
t (x) shrink from their values at the start of

the batch (black dashed), but still contain Cseq
fb[t](x), as desired. (c): Upon selection of the last decision of the batch, the

feedback for all decisions is obtained, and new confidence intervals Cseq
fb[t′](x) and corresponding Cbatch

fb[t′] (x) are computed.

The disadvantage of taking this approach, however, is
that the decision selection late in the batch is predi-
cated on having information from the early decisions
in the batch, but we do not in fact currently have
that information; we are being “overconfident” about
our knowledge of the function at those locations.
This overconfidence requires us to compensate in a
principled manner. One conceptual approach to doing
so is to increase the width of the confidence intervals
(through proper choice of βt), such that the confidence
intervals used by GP-BUCB are conservative, i.e.,
contain the true function f(x) with high probability.
Figure 1 illustrates this idea. In Section 4, we show
how it is indeed possible to properly choose βt so
that the regret only mildly increases, providing
strong theoretical evidence about the potential for
parallelizing GP optimization.

Lazy Variance Calculation One major computa-
tional bottleneck of applying GP-BUCB is calculating
the posterior mean µt(x) and variance σ2

t (x) for the
candidate decisions. The mean is updated only when-
ever feedback is obtained, and – upon computation of
the Cholesky factorization of K(X,X) + σ2

nI (which
only needs to be done once whenever new feedback
arrives) – predicting µt(x) takes O(t) additions and
multiplications. On the other hand, σ2

t must be re-
computed for every x in D after every single round,
and requires solving backsubstitution, which requires
O(t2) computations. Therefore, the variance compu-
tation dominates the computational cost of GP-BUCB.

Fortunately, for any fixed decision x, σ2
t (x) is mono-

tonically decreasing in t. This fact can be exploited to
dramatically improve the running time of GP-BUCB,
at least for finite (or when using discretizations of the)
decision sets D. The key idea is that instead of re-
computing σt−1(x) for all decisions x in every round
t, we can maintain an upper bound σ̂t−1(x), initial-

ized to σ̂0(x) = ∞. In every round, we lazily apply
the GP-BUCB rule with this upper bound, to identify

xt = argmax
x∈D

[
µfb[t](x) + β

1/2
t σ̂t−1(x)

]
. (5)

We then recompute σ̂t−1(xt) ← σt−1(xt). If xt still
lies in the argmax of (5), we have identified the next de-
cision to make, and set σ̂t(x) = σ̂t−1(x) for all remain-
ing decisions x. This idea generalizes to the bandit
setting a technique proposed by Minoux (1978), which
concerns calculating the greedy action for submodu-
lar maximization and leads to dramatically improved
empirical computational speed, discussed in Section 5.

4. Regret Bounds

Srinivas et al. (2010) prove that the cumulative regret
of the strictly sequential GP-UCB can be bounded (up
to logarithmic factors) as RT = O∗(

√
TαT γT ), where

γT = max
|A|≤T

I(f ; yA) (6)

is the maximum mutual information

I(f ; yA)=H(yA)−H(yA |f)=
1

2
log
∣∣I+σ−2n K(A,A)

∣∣
obtained through observations yA of any set A ⊆ D
of T decisions evaluated. For many kernel functions
commonly used in practice, they show that γT grows
sublinearly and αT only needs to grow polylogarith-
mically in T . Thus, RT /T → 0, i.e., GP-UCB is a
no-regret algorithm.

The analysis of GP-UCB (and upper-confidence index
policies in general) rests upon three major pillars: (1)
The constructed confidence intervals

Cseq
t (x) =

[
µt−1(x)± α1/2

t σt−1(x)
]

(7)

contain the true payoff f(x) with high probability;
(2) The width of the confidence interval at the se-
lected decision bounds the instantaneous regret rt (i.e.,
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rt ≤ wt, where wt = 2α
1/2
t σt−1(xt)); and (3) the

widths w1, . . . , wT shrink sufficiently quickly to ensure
sublinear regret.

Our strategy for choosing βt in the GP-BUCB rule rests
on a generalization of this analysis. We will choose βt
such that the confidence intervals

Cbatch
t (x) =

[
µfb[t](x)± β1/2

t σt−1(x)
]

(8)

still contain the true expected payoff f(x) with high
probability. Under this condition, a straightforward
generalization of the arguments of Srinivas et al. (2010)
leads to regret bounds of the form O∗(

√
TβT γT ) (for-

mal statement is given below).

Avoiding Overconfidence. We seek to derive suf-
ficient conditions on βt to ensure that the confidence
intervals employed by GP-BUCB contain f with high
probability. As we will see, a crucial role is played by
the conditional mutual information, which for observa-
tions yA and yS of two finite sets A,S ⊆ D is defined
as

I(f ;yA | yS) = H(yA | yS)−H(yA | f).

Lemma 1 is the key technical result, which allows us
to infer how much the confidence intervals must be
enlarged to avoid overconfidence.

Lemma 1. For f sampled from a known GP prior
with known noise variance σ2

n, the ratio of σfb[t](x) to
σt−1(x) is bounded as

σfb[t](x)

σt−1(x)
≤ exp{I(f ;yfb[t]+1:t−1 | y1:fb[t])}. (9)

Therefore, the relative amount by which the confi-
dence intervals can shrink w.r.t. decision x is bounded
by the worst-case (greatest) mutual information
I(f ;yfb[t]+1:t−1 | y1:fb[t]) obtained during selection of
xfb[t]+1:t−1, those decisions for which feedback is not
available. Thus, if we have a constant bound C on
the maximum conditional mutual information that
can be accrued within a batch, we can use it to guide
our choice of βt to ensure that the algorithm is not
overconfident. We can then leverage the machinery of
Srinivas et al. (2010) to derive our regret bound below.

Regret Bounds Our main result bounds the regret
of GP-BUCB in terms of a bound C on the maximum
conditional mutual information. It holds under any of
three different assumptions about the payoff function
f , which may all be of practical interest. In particu-
lar, it holds even if the assumption that f is sampled
from a GP is replaced by the assumption that f has
low norm in the Reproducing Kernel Hilbert Space
(RKHS) associated with the kernel function.

Theorem 1. Let δ ∈ (0, 1). Suppose one of the fol-
lowing assumptions holds:

1. D is finite, f is sampled from a known GP
prior with known noise variance σ2

n, and αt =
2 log(|D|t2π2/6δ).

2. D ⊆ [0, l]d is compact and convex, d ∈ N, l > 0.
f is sampled from a known GP prior with known
noise variance σ2

n, and k(x,x′) satisfies the fol-
lowing bound w.h.p. on the derivatives of GP sam-
ple paths f : for some constants a, b > 0,

Pr

{
sup
x∈D
|∂f/∂xj | > L

}
≤ ae−(L/b)2 , j = 1, . . . , d.

Choose αt = 2 log(t22π2/(3δ)) +

2d log
(
t2dbl

√
log(4da/δ)

)
.

3. D is arbitrary; f has RKHS norm ||f ||k ≤M . The
noise εt form an arbitrary martingale difference
sequence (meaning that E[εt | ε1, . . . , εt−1] = 0 for
all t ∈ N), uniformly bounded by σn. Further de-
fine αt = 2M2 + 300γt ln3(t/δ).

Further suppose we have bound C > 0 s.t., for all t,

max
A⊆D,|A|≤B−1

I(f ;yA | y1:fb[t]) ≤ C. (10)

Then, the cumulative regret of GP-BUCB, using βt =
exp(2C)αfb[t], is bounded by O∗(

√
TγT exp(2C)αT )

w.h.p. Precisely,

Pr
{
RT ≤

√
C1T exp(2C)αT γT + 2 ∀T ≥ 1

}
≥ 1−δ

where C1 = 8/ log(1 + σ−2n ).

The key quantity that controls the regret in Theorem 1
is the bound C on the maximum conditional mutual
information obtainable within a batch (10). In par-
ticular, the cumulative regret bound of GP-BUCB is a
factor exp(C) larger than the regret bound for the se-
quential (B = 1) GP-UCB algorithm. Intuitively, one
expects that C must grow monotonically with B: with
greater delay, there is more potential for exploration
(and thus to gain more information). An easy upper
bound is obtained as follows: Due to the “informa-
tion never hurts” bound (Cover & Thomas, 1991), the
conditional mutual information I(f ;yA | yS) is mono-
tonically decreasing in S (i.e., as elements are added
to set S). Therefore, I(f ;yA | yS) ≤ I(f ;yA) ≤
γB−1, whenever |A| ≤ B − 1. However, the choice
C = γB−1 is not satisfying; usually, γB−1 grows at
least as Ω(logB), suggesting that exp(C) would have
to grow at least linearly inB. In the following, we show
that it is possible to slightly modify the GP-BUCB al-
gorithm so that a constant choice of C independent of
B suffices.



Parallelizing Exploration–Exploitation Tradeoffs with Gaussian Process Bandit Optimization

Table 1. Initialization set sizes for Theorem 2.

Kernel Type Size T init of Initialization Set Dinit Regret Multiplier C′

Linear: γt ≤ ηd log (t+ 1) max
[
log (B), e · log η+log d+2 log (B)

2 log (B)−1
ηd(B − 1) log (B)

]
exp (2/e)

Matérn: γt ≤ νtε (ν(B − 1))1/(1−ε) e

RBF: γt ≤ η(log (t+ 1))d max

[
(log (B))d,

(
e
d

log η+(d+1) log (B)
2 log (B)−1

)d
η(B − 1)(log (B))d

]
exp ((2d/e)d)

Better Bounds Through “Initialization” The
key idea that allows us to obtain regret bounds in-
dependent of B is again to exploit monotonicity prop-
erties of the conditional mutual information. Suppose
that instead of GP-BUCB, we use a two-stage proce-
dure, that first nonadaptively (i.e., without any feed-
back) selects an initialization set Dinit of size |Dinit| =
T init. The algorithm then obtains feedback yinit for all
decisions Dinit = {xinit

1 , . . . ,xinit
T init}. In a second stage,

it then applies GP-BUCB on the posterior Gaussian
process distribution, conditioned on yinit.

Notice that if we define

γinitT = max
A⊆D,|A|≤T

I(f ;yA | yinit),

then, under the assumptions of Theorem 1, using
C = γinitB−1, the regret of the two-stage algorithm is

bounded by RT = O(T init +
√
TγinitT αT exp 2C). In

the following, we show that it is indeed possible to
construct an initialization set Dinit such that the size
T init is dominated by

√
TγinitT αT exp(2C), and – cru-

cially – that C = γinitB−1 can be bounded independently
of the batch size B.

We will construct Dinit via uncertainty sampling: we
start with Dinit

0 = {}, and for each t = 1, . . . , T init

greedily add the most uncertain decision

xinit
t = argmax

x∈D
σ2
t−1(x),

and set Dinit
t = Dinit

t−1 ∩ xinit
t . We have the following

key result about the residual information gain γinit:

Lemma 2. Suppose we use uncertainty sampling to
generate an initialization set Dinit of size T init. Then

γinitB−1 ≤
B − 1

T init
γT init .

Whenever γT is sublinear (i.e., γT = o(T )), then for
any constant C > 0, we can choose T init as a function
of B such that γinitB−1 < C. In order to derive bounds on
T init, we in turn need a concrete analytical bound on
γT . Fortunately, Srinivas et al. (2010) prove bounds
on how the information gain γT grows for some of the
most commonly used kernels. Table 1 provides suffi-
cient conditions for how quickly T init must grow as a
function of the batch size B. Finally, note that uncer-
tainty sampling is a special case of the GP-BUCB algo-
rithm with a constant prior mean of 0 and the require-

ment that for all 1 ≤ t ≤ T init, fb[t] = 0, i.e., no feed-
back is taken into account for the first T init iterations.

We summarize our analysis in the following theorem.
For sake of notation, define Rseq

T to be the regret bound
of Srinivas et al. (2010) associated with the sequential
GP-UCB algorithm (i.e., Theorem 1 with B = 1).

Theorem 2. Suppose one of the conditions of Theo-
rem 1 is satisfied. Further suppose the kernel and T init

are as listed in Table 1. Fix δ > 0. Let RT be the regret
of GP-BUCB, which ignores feedback for the first T init

rounds. Then there exists a constant C ′ independent
of B such that for any T ≥ 0, it holds with probability
at least 1− δ that

RT ≤ C ′Rseq
T + 2||f ||∞T init,

where C ′ takes the value shown in Table 1.

Notice that, whenever B = O(polylog(T )), T init =
O(polylog(T )). Further note Rseq

T = Ω(
√
T ). Thus, as

long as the batch size does not grow too quickly, the
term O(T init) is dominated by C ′Rseq

T and thus the
regret bounds of GP-BUCB are only a constant factor
independently of B worse than those of GP-UCB.

5. Experiments

We empirically evaluate GP-BUCB on several synthetic
benchmark problems as well as two real applications.
We compare it with four alternatives: (1) The strictly
sequential GP-UCB algorithm (B = 1); (2) NRB-UCB,
an approach that simply picks the maximizer of the
GP-UCB score B times; (3) NTB-UCB, an approach
that picks the top B scores according to the GP-UCB
criterion; (4) A state of the art algorithm for Batch
Bayesian optimization proposed by Azimi et al.
(2010), which can use either a UCB or Maximum
Expected Improvement (MEI) decision rule, herein
SM-UCB and SM-MEI respectively. All batch selec-
tion algorithms pick batches of B = 10 points and
all experiments were repeated for 100 trials with
independent observation noise for each trial.

Synthetic Benchmark Problems We first test
GP-BUCB in conditions where the true prior is known.
A set of 100 example functions was drawn from a zero-
mean GP with Matérn kernel over the interval [0, 1].
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Figure 2. Results for [M] Matérn GP, [S] Spinal Cord Therapy and [V] Vaccine Design data sets. Average and Minimum
regret are over the actions taken by the algorithm so far. All plots are averages over 100 trials. In Figures (d) and (h),
note the logarithmic vertical scaling and the order of magnitude differences in run time between algorithms.

The kernel, its parameters, and the noise variance
were known to each algorithm. The decision set D
was the discretization of [0, 1] into 1000 evenly spaced
points. Figures 2(a) and 2(e) present the results of
this experiment. GP-BUCB performed slightly better
than SM-UCB and SM-MEI in terms of both average
regret and minimum regret. GP-BUCB, SM-UCB, and
SM-MEI were outperformed by GP-UCB early on, but
after they received their first observations at the end
of batch 1 (query 10), performance was comparable to
GP-UCB. As expected, both of the näıve algorithms
performed quite poorly. Figure 2(d) compares the
algorithms in terms of their running time; lazy
variance calculations led to dramatic running time im-
provements. We also performed experiments on other
synthetic benchmark domains, with qualitatively sim-
ilar results (presented in the supplemental material).

Automated Vaccine Design We also tested GP-
BUCB on a database of Widmer et al. (2010), which
describes the binding affinity of various peptides with
a Major Histocompatibility Complex (MHC) Class I
molecule, of importance when designing vaccines to
exploit peptide binding properties. Each of the pep-
tides is described by a set of chemical features in R45.
The binding affinity of each peptide, which is treated
as the reward or payoff, is described as an offset IC50

value. The experiments used a linear ARD kernel
fitted on a different MHC molecule from the same data
set. Figures 2(b) and 2(f) present this experiment’s re-
sults. GP-BUCB performs competitively with SM-MEI
and SM-UCB, both in terms of average and minimum
regret, and converges to the performance of GP-UCB.

Spinal Cord Therapy Lastly, we compare the al-
gorithms on a data set of leg muscle activity triggered
by therapeutic spinal electrostimulation in spinal cord
injured rats. The experimental objective is to choose
the stimulus electrodes which maximize the resulting
activity in lower limb muscles, as measured by elec-
tromyography (EMG), in order to improve spinal reflex
and locomotor function. We sought to maximize the
peak-to-peak amplitude of the recorded EMG wave-
forms from the right medial Gastrocnemius muscle in
a time window corresponding to a single interneuronal
delay. This objective function measures to what de-
gree the selected stimulus activates the interneurons
in the spinal gray matter which control reflex activity.
Electrode configurations were represented in R4 by the
cathode and anode locations on the array. A squared-
exponential ARD kernel was fitted for this space us-
ing experimental data from 12 days post-injury. Al-
gorithm testing was done on data from 116 electrode
pairs tested on the 14th day post-injury. Experimen-
tal results are presented in Figures 2(c) and 2(g). This
problem setting was quite challenging for all algo-
rithms, as the data was highly multi-modal. Conse-
quently, GP-UCB often failed to find the optimum in
the number of queries examined; out of 100 runs, only
18 had converged to the optimum, and out of the re-
mainder, none had ever visited the optimum in 200
queries. Interestingly, the GP-BUCB, SM-UCB and
SM-MEI algorithms were more robust to these diffi-
culties; their superior initialization, born of the ex-
ploratory behavior forced on them by their initial ig-
norance, resulted in convergence likelihoods on the or-
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der of 40% for each. The superior performance of GP-
BUCB to SM-UCB and SM-MEI with respect to average
regret and the comparable likelihoods of convergence
within the practical experimental window considered
indicate that GP-BUCB is at least as effective as the
current state of the art in this challenging experimental
setting. Lazy variance calculations again led to dra-
matic running time improvements, presented in Fig-
ure 2(h).

6. Conclusions

We have developed the GP-BUCB algorithm for paral-
lelizing exploration and exploitation tradeoffs in Gaus-
sian process bandit optimization. We showed how the
regret of GP-BUCB can be bounded in terms of an in-
tuitive conditional mutual information quantity. Using
this analysis, we prove that GP-BUCB can be “initial-
ized” to obtain regret bounds which only additively
depend on the batch size for many kernel functions
commonly used. We further show how “lazy” vari-
ance evaluation can yield order-of-magnitude improve-
ments in running time. In our experiments, GP-BUCB
compares favorably to the state of the art in paral-
lel Bayesian optimization, which is not equipped with
theoretical guarantees. We believe that our results
provide an important step towards solving complex,
large-scale exploration-exploitation tradeoffs.
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