TNS Journal Club: Interneurons of the Hippocampus, Freund and Buzsaki

Rich Turner (turner@gatsby.ucl.ac.uk)

Gatsby Unit, 22/04/2005
Introduction

- *Interneuron* $\overset{\text{def}}{=} \text{GABAergic non-principal cell}

- Usually involved in *local circuitry*.

- Unifying review of morphological, neurochemical and physiological features of interneurons in the hippocampus.

- Massively complex:
 - Loads of facts ($\sim 10^4$) which are often exceptions to previous facts.
 - (Many) Life-times of work (original studies are 100 years old).
 - Dictionary like description is an exponential task.

- Quite an old paper (9yrs) and experimental focus is on rodents.
Why make a career out of interneurons?

- Only 10% of cells are interneurons - so why bother?

But:

- Primary cells are covered with synapses from interneurons (interneuron \rightarrow 1000-3000 pyramidal cells)

The authors of this paper believe:

- Interneurons have a crucial role in regulating the complex interactions between principal cells.

- Interneurons represent a key to the understanding of network operations.

- In contrast to primary cells in a hippocampal subfield, the afferent and efferent connectivity of interneurons show *great variation* thereby enabling them to carry out multiple tasks.
Morphology

- Look at data from a wide range of *single cell labelling* studies

- *Classification* of interneurons based on *dendritic and axonal arborization* (branching) patterns, the location of the *cell body* and the *afferent* and *efferent* connection types.
Two examples - connections

- Chandelier or Axo-axonic cells
 - Characteristic axon termination forming rows of boutons aligned parallel with the initial segments of principals.
 - Highly specific termination: Exclusive post synaptic elements are axon initial segments of pyramidal cells.

- Basket Cell: at least 5 different types
 - heterogeneous afferent connections
 - innervate cell bodies of principal cells
Two examples—morphology

Axo-axonal (top) and Basket cells (bottom). Quite similar: Dendritic trees tufted and span all layers. Small number of basket cell collaterals penetrate the statum radiatum. Numerous vertically oriented axon terminal segments in the axo-axonal cells.
Morphological classification

Superposed pictures of real neurons in situ. Axo-axonic, 11. Basket cell of CA1, 7. O-LM cell of CA3 - feedback interneuron

Rich T.
Summary of morphological classification: nb arborized axons correspond closely to field’s afferents
Rich T.
Neurochemical classification

Produced using a sequence of stains, final for neuropeptide in synaptic bouton.
Subcortical innervation of hippocampal interneurons

• Generally comes from relatively small groups of neurons and activate GABAergic interneurons which in turn exert GABAergic inhibition onto large populations of principal cells.

• Two pathways from the septum:
 – GABAergic pathway into the CA3 subfield
 – Cholinergic pathway direct to principal cells in DG, CA1 and CA3

• Serotonergic Raph-Hippocampal Projection (from median raphe nucleus)
 – two types of afferents possibly with different mechanisms of action one tending to release serotonin at non-synaptic sites.

• Noradrenergic innervation of the hippocampal formation from the locus coeruleus.
 – Particularly dense in regions receiving mossy fibre input and the majority do not make conventional synapses.
Hippocampal interneurons with extrahippocampal or commissural projection

- Unconventional feature of non-principal cells

- Hilar commissural projection - there is a component of direct inhibition in the feed-forward inhibitory response evoked in the DG by commissural stimulation.

- Hippocamposeptal projection - GABAergic feedback
Post Synaptic Actions of Interneurons

- Dendrites, cell bodies, and the axon initial segment of every principal cell in cortical structures are innervated by inhibitory interneurons.

- Stimulation of afferent fibres elicits biphasic IPSPs in principal cells
 - first phase due to activation of (fast) $GABA_A$ receptors
 - increases the membrane conductance and therefore shunts the membrane currents
 - late phase is mediated by K^+ ion flux through channels linked by G-proteins to (slow) $GABA_B$ receptors.

- Numerous unanswered questions remain regarding how the GABA receptors are activated.
Inhibition in networks 1

- interneurons provide stability by *feedback* and *feedforward* inhibition
 - some interneurons are innervated exclusively by extrahippocampal afferents (feedforward)
 - some exclusively by inter-regional and extra-regional afferents (feedback)
 - but many are innervated by both

- recurrent inhibition is faster than the refractory period of principal cells

- feed-forward inhibition is particularly strong in the hippocampus

- there is also evidence for disinhibition

- *Boolean logic* cannot capture the rich dynamics of these networks *dynamics* (surprise surprise)
• single pyramidal cell \rightarrow 100s interneurons \rightarrow 1000-3000 pyramidal cells

• \Rightarrow *in vivo* Hippocampus with no input is quiet

• However, *in vitro* the feedback loops are weakened by behaviour via neuromodulators and neurotransmitters

• Interneurons rhythmically inhibit the pyramidal cells during θ causing their phase locked response
Role of interneurons in synaptic plasticity

• Inhibitory circuits may modify the long-term excitability of principal cells in several ways.

• GABAergic synapses on principal cells may undergo long term modifications (contrary to previous belief).

• The interneuron circuitry may be modified in a number of ways, including:
 – presynaptic changes of excitatory terminals on interneurons
 – modification of the postsynaptic sites on interneurons
 – excitability changes of interneurons
 – presynaptic modification of GABA release
 – post-synaptic GABA sensitivity changes
Interneurons shape population activity of principal cells

- Interneurons appear to be critically involved in the induction and maintenance of network oscillations in the theta (≈ 10Hz), gamma (40-100Hz), and ultrafast (200Hz) frequency ranges.

- They may also regulate recruitment of principal cells during SPW bursts.

- More from Máté on this one...
Summary

• There is a(n ever growing) wealth of morphological, physiological, neurochemical data.

• This *can* be collected without regard to relevance or wider implication.

• The task of the theorist - to see the wood for the trees - is not trivial.

• It has to involve ignoring large proportions of the forest for now.