Two problems with variational expectation maximisation for time-series models

Richard Turner, Pietro Berkes and Maneesh Sahani
({turner, berkes, maneesh}@gatsby.ucl.ac.uk)

Gatsby Computational Neuroscience Unit, UCL, London
Motivation
Motivation
Motivation
Motivation
Introduction

• Variational methods allow you to side-step intractabilities in inference

• The methods are justified as:
 – fast (compared to MCMC)
 – give back uncertainty estimates (unlike MAP)
 – extendable to learning (variational EM and variational Bayes)
 – optimises a lower bound on the likelihood (evidence)

• Today: Investigate the properties of variational algorithms for Toy Gaussian Liner Dynamical Systems
Take home message

1. Variational methods are **compact** (Well known: Mackay, 2003)
 - Mean-field **fails to propagate uncertainty information between time steps**
 - Can reduce mean field to an iterative MAP-like algorithm for finding the mean
 - Factored variational methods fall-over in the worst possible way: **When the approximation is a terrible one they become uber confident**

2. Variational methods are **biased**
 - Parameter estimates are often **very different from the maximum-likelihood solution**
 - The tightest approximation is not always the best for learning
All the theory you need to understand this talk

\[\log p(Y | \theta) \]
All the theory you need to understand this talk

\[\log p(Y|\theta) = \log \int dX p(Y, X|\theta) \]
All the theory you need to understand this talk

\[
\log p(Y|\theta) = \log \int dX p(Y, X|\theta) \frac{q(X)}{q(X)},
\]

\[
F(q(X), \theta) = \log p(Y|\theta) - \text{KL}(q(X) || p(X|Y, \theta)).
\]
All the theory you need to understand this talk

\[
\log p(Y|\theta) = \log \int dX p(Y, X|\theta) \frac{q(X)}{q(X)},
\]

\[
\geq \int dX q(X) \log \frac{p(Y, X|\theta)}{q(X)}
\]
All the theory you need to understand this talk

\[
\log p(Y|\theta) = \log \int dX p(Y, X|\theta) \frac{q(X)}{\mathcal{Q}(X)}, \\
\geq \int dX q(X) \log \frac{p(Y, X|\theta)}{q(X)} = F(q(X), \theta).
\]
All the theory you need to understand this talk

\[\log p(Y|\theta) = \log \int dX p(Y, X|\theta) \frac{q(X)}{q(X)}, \]

\[\geq \int dX q(X) \log \frac{p(Y|\theta)p(X|Y, \theta)}{q(X)} = F(q(X), \theta). \]
All the theory you need to understand this talk

\[
\log p(Y|\theta) = \log \int dX p(Y, X|\theta) \frac{q(X)}{q(X)}, \\
\geq \int dX q(X) \log \frac{p(Y|\theta)p(X|Y, \theta)}{q(X)} = F(q(X), \theta).
\]

\[
F(q(X), \theta) = \log p(Y|\theta) - \text{KL}(q(X)||p(X|Y, \theta)),
\]
All the theory you need to understand this talk

\[
\log p(Y|\theta) = \log \int dX p(Y, X|\theta) \frac{q(X)}{q(X)},
\]

\[
\geq \int dX q(X) \log \frac{p(Y|\theta) p(X|Y, \theta)}{q(X)} = F(q(X), \theta).
\]

\[
F(q(X), \theta) = \log p(Y|\theta) - \text{KL}(q(X) || p(X|Y, \theta)),
\]

\[
q(X) = \prod_{i=1}^{I} q_i(x_{C_i})
\]
All the theory you need to understand this talk

\[
\log p(Y|\theta) = \log \int dX p(Y, X|\theta) \frac{q(X)}{q(X)},
\]

\[
\geq \int dX q(X) \log \frac{p(Y|\theta)p(X|Y, \theta)}{q(X)} = F(q(X), \theta).
\]

\[
F(q(X), \theta) = \log p(Y|\theta) - \text{KL}(q(X)||p(X|Y, \theta)),
\]

\[
q(X) = \prod_{i=1}^{I} q_i(x_{C_i})
\]

\[
q(x_{C_i}) = \frac{1}{Z_i} \exp \left(\langle \log p(Y, X|\theta) \rangle \prod_{j \neq x_i} q(x_{C_j}) \right)
\]
Example 1: Mean-field for inference in time-series models

Consider an AR(1) prior over latent variables and an arbitrary likelihood function

\[p(x_t|x_{t-1}) = \text{Norm}(\lambda x_{t-1}, \sigma_{\text{COND}}^2) \]

Point of time-series models is strong correlations; \(\lambda \approx 1 \) and \(\sigma_{\text{COND}}^2 \approx 0 \).

Marginal variance is \(\frac{\sigma_{\text{COND}}^2}{1 - \lambda^2} \)
Example 1: Mean-field for inference in time-series models

\[q(x_t) = \frac{1}{Z} p(y_t|x_t) \exp(\langle \log p(x_t|x_{t-1}) p(x_{t+1}|x_t) \rangle q(x_{t+1}) q(x_{t-1})) \]
Example 1: Mean-field for inference in time-series models

\[q(x_t) = \frac{1}{Z} p(y_t|x_t) \exp(\langle \log p(x_t|x_{t-1}) p(x_{t+1}|x_t) \rangle q(x_{t+1}) q(x_{t-1})) , \]

\[= \frac{1}{Z} p(y_t|x_t) \text{Norm} \left(\frac{\lambda}{1 + \lambda^2} \left(\langle x_{t-1} \rangle q(x_{t-1}) + \langle x_{t+1} \rangle q(x_{t+1}) \right), \frac{\sigma^2_{\text{COND}}}{1 + \lambda^2} \right) , \]
Example 1: Mean-field for inference in time-series models

\[q(x_t) = \frac{1}{Z} p(y_t|x_t) \exp\left(\langle \log p(x_t|x_{t-1})p(x_{t+1}|x_t)\rangle q(x_{t+1})q(x_{t-1})\right), \]

\[= \frac{1}{Z} p(y_t|x_t) \text{Norm} \left(\frac{\lambda}{1 + \lambda^2} \left(\langle x_{t-1}\rangle q(x_{t-1}) + \langle x_{t+1}\rangle q(x_{t+1}) \right), \frac{\sigma_{\text{COND}}^2}{1 + \lambda^2} \right), \]

\[= \frac{1}{Z} p(y_t|x_t) q_{\text{prior}}(x_t) \]
Example 1: Mean-field for inference in time-series models

\[q(x_t) = \frac{1}{Z} p(y_t|x_t) \exp(\langle \log p(x_t|x_{t-1}) p(x_{t+1}|x_t) \rangle q(x_{t+1}) q(x_{t-1})) , \]

\[= \frac{1}{Z} p(y_t|x_t) \text{Norm} \left(\frac{\lambda}{1 + \lambda^2} \left(\langle x_{t-1} \rangle q(x_{t-1}) + \langle x_{t+1} \rangle q(x_{t+1}) \right) , \frac{\sigma^2_{\text{COND}}}{1 + \lambda^2} \right) , \]

\[= \frac{1}{Z} p(y_t|x_t) q_{\text{prior}}(x_t) \]

Point of time-series models: Large observation noise (wide \(p(y_t|x_t) \))
Example 1: Summary

- Mean-field = the field you would see if all the other variables took their mean values.

- Variational prior is identical to the inference we’d make if we knew the adjacent latent variables: the uncertainty in them is not folded in

- Temporally factored variational approximations for time series are narrower than the conditional (which is very concentrated)

- Uncertainties are meaningless (compared to the true marginals)

- When variational approximations are least accurate, they are at their most confident
Learning: What do you want out of a variational method?

- **Learning parameters is important** e.g. in scientific enquiry (how sparse are sounds, how slow are natural scenes)

- What makes for a good variational approximation in this case?
 \[
 F(q(X), \theta) = \log p(Y|\theta) - \text{KL}(q(X)||p(X|Y, \theta))
 \]

- Instant reaction: Want the KL to be as **tight as possible, everywhere**.

- Not necessarily the case: Better to be **equally tight everywhere**.

- We show:
 - The KL can be strongly parameter dependent and bias learning to regions where the bound is tight, rather than the likelihood large.
 - Mean-field can out-perform more structured approximations as its bound is less parameter dependent
Example 2: Structured approximations for time-series

- Simplest possible linear Gaussian state-space model (two latent chains and two-time steps)

\[
p(x_{k,1}) = \text{Norm} \left(0, \frac{\sigma_x^2}{1 - \lambda^2} \right)
\]

\[
p(x_{k,2}|x_{k,1}) = \text{Norm} \left(\lambda x_{k,1}, \sigma_x^2 \right)
\]

\[
p(y_t|x_{1,t}, x_{2,t}) = \text{Norm}(x_{1t} + x_{2t}, \sigma_y^2)
\]
Example 2: Sample from the model

\[y_t = x_{1,t} + x_{2,t} + \epsilon_t \]
Example 2: Larger observation noise

\[y_t = x_{1,t} + x_{2,t} + \epsilon_t \]
$y_t = x_{1,t} + x_{2,t} + \varepsilon_t$
Example 2: Faster dynamics

\[y_t = x_{1,t} + x_{2,t} + \varepsilon_t \]
Example 2: Structured approximations for time-series

- Simplest possible **linear Gaussian state-space model** (two latent chains and two-time steps)

\[
p(x_{k,1}) = \text{Norm} \left(0, \frac{\sigma_x^2}{1 - \lambda^2} \right)
\]

\[
p(x_{k,2}|x_{k,1}) = \text{Norm} \left(\lambda x_{k,1}, \sigma_x^2 \right)
\]

\[
p(y_t|x_{1,t}, x_{2,t}) = \text{Norm}(x_{1t} + x_{2t}, \sigma_y^2)
\]

- Joint distribution \(p(X, Y) \), probability of the data \(p(Y) \) and posterior distribution over hidden variables \(p(X|Y) \) are all Gaussian.

- Posterior is correlated
 - through time (due to the slowness-prior; more so as \(|\lambda| \to 1\) and \(\sigma_x^2 \to 0\)),
 - across chains (explaining away; more so as \(\sigma_y^2 \to 0\))
Example 2: Structured approximations for time-series

Four approx schemes: mean-field, chain-factored, temporally-factored, and MAP

\[
\begin{align*}
\text{unfactored over chains:} & \\
p(x|y) &= q(x_{11}, x_{12}, x_{21}, x_{22}) \\
q_2(x) &= q_{21}(x_{11}, x_{12})q_{22}(x_{21}, x_{22}) \\
q_3(x) &= q_{31}(x_{11}, x_{21})q_{32}(x_{12}, x_{22}) \\
q_1(x) &= q_{11}(x_1)q_{12}(x_2)q_{13}(x_3)q_{14}(x_4)
\end{align*}
\]

\[q_{ij}\text{ Gaussian with a mean and precision matching elements in } \mu_{x|y} \text{ and } \Sigma_{x|y}^{-1}.
\]
Example 2: Learning σ_y^2, Likelihood

Free Energies

-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
Example 2: Learning σ_y^2, Likelihood
Example 2: Learning σ_y^2, Mean-field
Example 2: Learning σ_y^2, unfactored over time

\[\begin{array}{c}
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\end{array} \]

Free Energies

\[\begin{array}{c}
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\end{array} \]

Free Energies
Example 2: Learning σ^2_y, unfactored over chains
Example 2: Learning σ^2_y, high noise behaviour
Example 2: Learning σ_y^2, low noise behaviour
Example 2: Crossing point $\sigma^2_y = \sigma^2_x/|\lambda|$
Example 2: Learning σ_y^2, Maxima
Example 2: Learning σ_y^2, MAP solution

\[\begin{array}{c}
\text{Free Energies} \\
\log p(X,Y)
\end{array} \]

\[\begin{array}{c}
\sigma_y \\
\log p(X,Y)
\end{array} \]
Example 2: Learning λ

\[\begin{align*}
\text{Free Energies} & \quad \log p(X,Y) \\
-1 & \quad -0.8 & \quad -0.6 & \quad -0.4 & \quad -0.2 & \quad 0 & \quad 0.2 & \quad 0.4 & \quad 0.6 & \quad 0.8 & \quad 1 \\
-10000 & \quad -5000 & \quad -\log p(X,Y) & \quad -5000 & \quad -10000 \\
0.55 & \quad 0.6 & \quad 0.65 & \quad 0.7 & \quad 0.75 & \quad 0.8 & \quad 0.85 & \quad 0.9 & \quad 0.95
\end{align*}\]
Example 2: Biases σ_y^2
Example 2: Best Approximation
Example 2: Biases λ

\[\Delta \lambda \]

\[\lambda \]

\[\sigma^2_y \]
Example 2: Inferring two parameters
Example 2: Best Approximation
Example 2: Summary

• The parameter dependent bias is often very large.

• Mean field methods can out-perform more structured approximations

• MAP methods can out-perform variational methods

• Different structural approximations are better at determining different parameters and tightness is not a brilliant indicator
Take home message

1. Variational methods are **compact** (Well known: Mackay, 2003)
 - Mean-field **fails to propagate uncertainty information between time steps**
 - Can reduce mean field to an iterative MAP-like algorithm for finding the mean
 - Factored variational methods fall-over in the worst possible way: **When the approximation is a terrible one they become uber confident**

2. Variational methods are **biased**
 - Parameter estimates are often **very different from the maximum-likelihood solution**
 - The tightest approximation is not always the best for learning