Probabilistic Amplitude Demodulation

Richard Turner (turner@gatsby.ucl.ac.uk)
Maneesh Sahani (maneesh@gatsby.ucl.ac.uk)

Gatsby Computational Neuroscience Unit, 12/09/2007
Motivation
Motivation
Motivation
Motivation
Motivation
Motivation: Traditional AM

![Graph showing time in seconds (s) and a red line with fluctuations]
Motivation: Traditional AM
Motivation: Traditional AM

![Graph showing time vs signal amplitude with labels '1', 'II', '×']
Motivation: Demodulate the modulator
Motivation: Demodulate the modulator
Motivation: Demodulate the modulator
Motivation: Demodulate the modulator
Motivation: Demodulation Cascade
Traditional Demodulation Algorithms: Analytic Signal

![Graph showing y and x(2) and x(1) over time/s]
Traditional Demodulation Algorithms: Analytic Signal
Traditional Demodulation Algorithms: Analytic Signal

![Graph showing "y and x(2)" and "x(1)" over time/s]

- y and x(2)
- x(1)
Traditional Demodulation Algorithms: square and lowpass
Traditional Demodulation Algorithms: square and lowpass

\[
\begin{align*}
\text{y and x}(2) \\
\text{x}(1)
\end{align*}
\]
Traditional Demodulation Algorithms: square and lowpass

![Graph showing y and x(2) over time/s with notable peaks and fluctuations]

![Graph showing x(1) with periodic oscillations and a decreasing trend over time/s]
Traditional Demodulation Algorithms are not sufficient

- **Analytic Signal Amplitude**
 - recovers a *carrier of constant variance*.
 - recovers a *modulator that may not correspond to the envelope we want*.
 - no tunable parameter

- **Square and lowpass**
 - recovers a *good-looking smooth envelope*
 - recovers a *carrier of high variance* i.e. not demodulated
 - has a tunable parameter
Advantages of the probabilistic approach

Representing a signal as:

\textbf{quickly varying carrier} × \textbf{slowly varying positive envelope}

is \textbf{fundamentally an ill posed problem we need prior information} and therefore the \textbf{probabilistic setting is the natural one}.

- Makes \textbf{assumptions explicit} allowing them to be criticised and improved

- Allows us to put \textbf{error-bars} on our inferences

- We can develop a \textbf{family of related algorithms}: cheap and cheerful/slow and Bayesian, with/without hand-tunable parameters

- \textbf{Tap into the existing theory} and methods to e.g. deal with \textbf{missing data}, \textbf{model comparison} etc.
A simple generative model for AM

\[
\begin{align*}
 z_t^{(2)} &\sim \text{Norm}(\lambda z_{t-1}^{(2)}, \sigma^2) \\
x_t^{(2)} &= f(z_t^{(2)}, a)
\end{align*}
\]
A simple generative model for AM

\[z_t^{(2)} \sim \text{Norm}(\lambda z_{t-1}^{(2)}, \sigma^2) \]

\[x_t^{(2)} = f(z_t^{(2)}, a) \]
A simple generative model for AM

\[z_t^{(2)} \sim \text{Norm}(\lambda z_{t-1}^{(2)}, \sigma^2) \]

\[x_t^{(2)} = f(z_t^{(2)}, a) \]

\[x_t^{(1)} \sim \text{Norm}(0, 1) \]

\[l_{\text{eff}} = -\frac{1}{\log(\lambda)} \]
A simple generative model for AM

\[z_t^{(2)} \sim \text{Norm}(\lambda z_{t-1}^{(2)}, \sigma^2) \]

\[x_t^{(2)} = f(z_t^{(2)}, a) \]

\[x_t^{(1)} \sim \text{Norm}(0, 1) \]

\[y_t = x_t^{(1)} x_t^{(2)} \]

\[l_{\text{eff}} = -1 / \log(\lambda) \]
Learning Algorithms

The probability of everything

\[p(y_{1:T}, x^{(1)}_{1:T}, x^{(2)}_{1:T}, \lambda | \sigma^2, a) = p(\lambda) p(y_{1:T} | x^{(1)}_{1:T}, x^{(2)}_{1:T}) p(x^{(1)}_{1:T}) p(x^{(2)}_{1:T}) \]
Learning Algorithms

Remember the Jacobian

\[p(y_{1:T}, x^{(1)}_{1:T}, x^{(2)}_{1:T}, \lambda | \sigma^2, a) = p(\lambda)p(y_{1:T} | x^{(1)}_{1:T}, x^{(2)}_{1:T})p(x^{(1)}_{1:T})p(x^{(2)}_{1:T}) \]

\[p(z_{1:T}) \prod_{t=1}^{T} \left| \frac{dz_t}{dx^{(2)}_t} \right| \]
Integrate out the carrier

\[
p(y_{1:T}, x_{1:T}^{(1)}, x_{1:T}^{(2)}, \lambda | \sigma^2, \alpha) = p(\lambda) p(y_{1:T} | x_{1:T}^{(1)}, x_{1:T}^{(2)}) p(x_{1:T}^{(1)}) \underbrace{p(x_{1:T}^{(2)})}_{\ddots} p(z_{1:T}) \prod_{t=1}^{T} \left| \frac{dz_t}{dx_t^{(2)}} \right|
\]

\[
p(y_{1:T}, x_{1:T}^{(2)}, \lambda | \sigma^2, \alpha) = \int dx_{1:T}^{(1)} p(y_{1:T}, x_{1:T}^{(1)}, x_{1:T}^{(2)}, \lambda | \sigma^2, \alpha)
\]
Learning Algorithms

Integrate out the **dynamics** (λ) (ML will not work)

\[
p(y_{1:T}, x_{1:T}^{(1)}, x_{1:T}^{(2)}, \lambda | \sigma^2, a) = p(\lambda)p(y_{1:T} | x_{1:T}^{(1)}, x_{1:T}^{(2)})p(x_{1:T}^{(1)}) \underbrace{p(x_{1:T}^{(2)})}_{p(z_{1:T}) \prod_{t=1}^{T} \left| \frac{dz_t}{dx_t^{(2)}} \right|}
\]

\[
p(y_{1:T}, x_{1:T}^{(2)}, \lambda | \sigma^2, a) = \int dx_{1:T}^{(1)} p(y_{1:T}, x_{1:T}^{(1)}, x_{1:T}^{(2)}, \lambda | \sigma^2, a)
\]

\[
p(y_{1:T}, x_{1:T}^{(2)} | \sigma^2, a) = \int d\lambda \int dx_{1:T}^{(1)} p(y_{1:T}, x_{1:T}^{(1)}, x_{1:T}^{(2)}, \lambda | \sigma^2, a)
\]
Learning Algorithms: CHEAP AND CHEERFUL

Maximise over the envelope and other parameters

\[
p(y_{1:T}, x_{1:T}^{(1)}, x_{1:T}^{(2)}, \lambda | \sigma^2, a) = p(\lambda)p(y_{1:T} | x_{1:T}^{(1)}, x_{1:T}^{(2)})p(x_{1:T}^{(1)})p(x_{1:T}^{(2)})
\]

\[
p(z_{1:T}) \prod_{t=1}^{T} \left| \frac{dz_t}{dx_t^{(2)}} \right|
\]

\[
p(y_{1:T}, x_{1:T}^{(2)}, \lambda | \sigma^2, a) = \int dx_{1:T}^{(1)} p(y_{1:T}, x_{1:T}^{(1)}, x_{1:T}^{(2)}, \lambda | \sigma^2, a)
\]

\[
p(y_{1:T}, x_{1:T}^{(2)} | \sigma^2, a) = \int d\lambda \int dx_{1:T}^{(1)} p(y_{1:T}, x_{1:T}^{(1)}, x_{1:T}^{(2)}, \lambda | \sigma^2, a)
\]

\[
\text{arg max } p(y_{1:T}, x_{1:T}^{(2)} | \sigma^2, a)
\]

\[
x_{1:T}^{(2)}, \sigma^2, a
\]
Sample the envelope and other parameters

\[p(y_{1:T}, x_{1:T}^{(1)}, x_{1:T}^{(2)}, \lambda | \sigma^2, a) = p(\lambda)p(y_{1:T} | x_{1:T}^{(1)}, x_{1:T}^{(2)})p(x_{1:T}^{(1)})p(x_{1:T}^{(2)}) \]

\[p(z_{1:T}) \prod_{t=1}^{T} \left| \frac{dz_t}{dx_{t}^{(2)}} \right| \]

\[p(y_{1:T}, x_{1:T}^{(2)}, \lambda | \sigma^2, a) = \int dx_{1:T}^{(1)} p(y_{1:T}, x_{1:T}^{(1)}, x_{1:T}^{(2)}, \lambda | \sigma^2, a) \]

\[p(y_{1:T}, x_{1:T}^{(2)} | \sigma^2, a) = \int d\lambda \int dx_{1:T}^{(1)} p(y_{1:T}, x_{1:T}^{(1)}, x_{1:T}^{(2)}, \lambda | \sigma^2, a) \]

\[p(x_{1:T}^{(2)} | y_{1:T}, \sigma^2, a) = \frac{1}{p(y_{1:T} | \sigma^2, a)p(y_{1:T} | \sigma^2, a)} p(y_{1:T}, x_{1:T}^{(2)} | \sigma^2, a) \]
Results: Vanilla Probabilistic Amplitude Demodulation (PAD)
Results: PAD tuning parameters for phonemes
Results: PAD tuning parameters for phonemes

![Graph showing PAD tuning parameters for phonemes]
Results: PAD tuning parameters for phonemes
Results: PAD tuning parameters for pitch

![Graph showing y and x(2) trends over time/s](image)

![Graph showing x(1) trends over time/s](image)
Results: PAD tuning parameters for pitch

The diagram shows the time evolution of variables y and $x(2)$, and $x(1)$ over time in seconds (s). The data points are plotted against time to visualize the behavior of these variables over a specified period.
Results: PAD tuning parameters for pitch
New Model: Demodulation Cascade
Results: Demodulation Cascade

![Graph showing time series data for y and x](image-url)
Results: Demodulation Cascade

![Graph showing demodulation cascade results with time axis labeled as 'time /s'.]
Mode: sentences
Mean and Error-bars: Hamiltonian MCMC

![Graph showing time series data for y and x(2) with error bars, and x(1) with time scale]
Mode: phonemes
Mode: cascade
Error-bars: Hamiltonian MCMC

![Graph showing error-bars for Hamiltonian MCMC](image_url)
Part 2: Current Work
Modeling the fine temporal structure
Frequency Modulation and Instantaneous Frequency

\[x_t^{(2)} \]
Frequency Modulation and Instantaneous Frequency

\[x(t) \]

\[\omega(t) \]

\[\chi(t) \]

\[\chi^{(2)}(t) \]
Frequency Modulation and Instantaneous Frequency

\[x(t) = \sin(\omega_0 + \frac{\pi}{2} t) \]

\[\omega(t) = \omega_0 + \frac{\pi}{2} t \]

Graphs showing the modulation and instantaneous frequency. The left graph displays \(\omega(t) \) and \(\omega_0 \), while the right graphs show \(x(t) \) with different modulation levels.
Frequency Modulation and Instantaneous Frequency

\[\omega_t = \frac{2\pi}{\omega_0} \cdot t \]

\[x(t) = \sin(2\pi f_0 t) \]

\[y(t) = \sin(2\pi f_0 t + \phi(t)) \]

\[\phi(t) = \int \omega_f(t) \, dt \]

\[\omega_f(t) = \frac{\Delta f}{2} \cdot t \]

\[x(2) = \sin(2\pi \cdot 2 f_0 t) \]

\[x(1) = \sin(2\pi f_0 t) \]

\[y(t) = \sin(2\pi f_0 t + \phi(t)) \]

\[\phi(t) = \int \omega_f(t) \, dt \]

\[\omega_f(t) = \frac{\Delta f}{2} \cdot t \]

\[x(2) = \sin(2\pi \cdot 2 f_0 t) \]

\[x(1) = \sin(2\pi f_0 t) \]

\[y(t) = \sin(2\pi f_0 t + \phi(t)) \]

\[\phi(t) = \int \omega_f(t) \, dt \]

\[\omega_f(t) = \frac{\Delta f}{2} \cdot t \]
Proof of concept
Proof of concept

![Graph showing oscillatory behavior with frequency and time plots.](image)
Proof of concept

![Graph showing a sine wave and frequency over time]

- **Y-axis:** Amplitude
- **X-axis:** Time (s)
- **ω/2π (Hz):** Frequency

The graph illustrates a proof of concept for a system's behavior over time, showing how amplitude and frequency change with respect to time.
Proof of concept

![Graph showing y and \(\omega/2\pi\) vs. time]
Probabilistic Short Time Fourier Transform
Probabilistic Short Time Fourier Transform
Probabilistic Short Time Fourier Transform
Summary

- **AM** is an important **long-range structure** present in many natural sounds.
- Developed a **family of algorithms** for **amplitude demodulation**.
- Proposed the **demodulation cascade** as a useful representation of natural sounds.
- Current Work:
 - Extending to simultaneous **frequency and amplitude demodulation**.
 - Combining mixtures of these to make **Probabilistic STFT** representation.
- Many **traditional signal processing algorithms** address essentially ill-posed problems are therefore **often best viewed as problems of Bayesian inference**.
AM and FM

- PAD puts a **terrible** prior over the pitch and formant structure: **white-noise**

- An alternative is motivated by **Instantaneous Frequency**;

\[
y_t = x_t^{(2)} x_t^{(1)} = x_t^{(2)} \cos(\theta_t)
\]

\[
\omega_t = \theta_t - \theta_{t-1}
\]

- Place priors over the instantaneous frequency e.g. \(\omega_t \) is the mean frequency plus a slowly moving perturbation,

\[
\omega_t = \langle \omega \rangle + z_t
\]

\[
\theta_t = \langle \omega \rangle t + \sum_{t'=1}^{t} z_{t'}
\]
A simple generative model for FM

\[p(x_t^{(2)}|x_{t-1}^{(2)}) = \text{Norm}\left[\lambda x_{t-1}^{(2)}, \sigma_x^2 (1 - \lambda^2) \right] \]
A simple generative model for FM

\[
p(x_t^{(2)} | x_{t-1}^{(2)}) = \text{Norm} \left[\lambda x_{t-1}^{(2)}, \sigma_x^2 (1 - \lambda^2) \right]
\]

\[
p(z_t | z_{t-1}) = \text{Norm} \left[\lambda z_{t-1}, \sigma_z^2 (1 - \lambda^2) \right]
\]

\[
\theta_t = \sum_{t'} \omega_{t'} = \langle \omega \rangle_t + \sum_{t=t'} z_{t'}
\]
A simple generative model for FM

\[p(x_t^{(2)}|x_{t-1}^{(2)}) = \text{Norm} \left[\lambda x_{t-1}^{(2)}, \sigma_x^2(1 - \lambda^2) \right] \]

\[p(z_t|z_{t-1}) = \text{Norm} \left[\lambda z_{t-1}, \sigma_z^2(1 - \lambda^2) \right] \]

\[\theta_t = \sum_{t'} \omega_{t'} = \langle \omega \rangle t + \sum_{t=t'} z_{t'} \]

\[p(y_t|x_t^{(2)}, z_t) = \text{Norm} \left[x_t^{(2)} \cos(\theta_t), \sigma_y^2 \right] \]
Learning: Variational EM

- Imagine we know the phase at each time point ($z_{1:T}$)

- Then updates for $x_{1:T}^{(2)}$ are simple: Kalman Smoother with time varying weights

 $$p(y_t|x_t^{(2)}, z_t) = \text{Norm} \left[x_t^{(2)} c_t, \sigma_y^2 \right]$$

- How do we learn the phases?
 - either via MAP
 - or via sampling to get sufficient stats $\langle c_t \rangle$ and $\langle c_t^2 \rangle$

- Causal annealing really helps to avoid local minima induced by the 2π degeneracy in phase
Part 3: A generative model for speech
Probabilistic Amplitude Demodulation

\[x^{(3)}_t = x^{(2)}_t x^{(1)}_t y_t' \]
Probabilistic Short Time Fourier Transform
Combination: Generative Model for Speech
New modulation cascade model

\[x^{(3)}_t \]

\[x^{(2)}_{1:4,t} \]

\[y_{1:T} \]

time /s
New modulation cascade model

\[x_{1:4,t} \]

\[y_{1:T} \]
New modulation cascade model
New modulation cascade model
New modulation cascade model
Results
Modulation Cascade Process Results: Sentence, K1 = 24, K2 = 6, D = 200
Results