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Abstract

Investigating people’s representations of categories of compli-
cated objects is a difficult challenge, not least because of the
large number of ways in which such objects can vary. To make
progress we need to take advantage of the structure of ob-
ject categories – one compelling regularity is that object cate-
gories can be described by a small number of dimensions. We
present Look-Ahead Monte Carlo with People, a method for
exploring people’s representations of a category where there
are many irrelevant dimensions. This method combines ideas
from Markov chain Monte Carlo with People, an experimental
paradigm derived from an algorithm for sampling complicated
distributions, with ideas from hybrid Monte Carlo, a technique
that uses directional information to construct efficient statisti-
cal sampling algorithms. We show that even in a simple ex-
ample, our approach takes advantage of the structure of object
categories to make experiments shorter and increase our ability
to accurately estimate category representations.
Keywords: category representation; Markov chain Monte
Carlo; directional judgements

Introduction
Categories are an essential component of how people reason
about the world, allowing us to act intelligently when we en-
counter new objects, new people, or new situations. Natu-
ral stimuli, such as images or text, tend to be very compli-
cated. In contrast, much of our understanding of categori-
sation behaviour has been built on experiments using well-
controlled stimuli that vary along only one or two dimensions
(e.g., Nosofsky, 1986). A major driver of the disconnect be-
tween experimental investigations and real-world behaviour
is that standard experimental methods do not allow the exper-
imenter to adaptively focus on informative stimuli. Attempt-
ing to map out a complicated category with standard methods
would require participants to complete an unendurable num-
ber of trials.

Identifying connections between cognitive science and
statistics can help us develop new methods to extend our ex-
perimental reach. Many of the computational models of cat-
egorisation developed from carefully-controlled laboratory
studies can be interpreted as representing categories as prob-
ability distributions over their constituent stimuli (Ashby &
Alfonso-Reese, 1995). Statisticians have developed sophisti-
cated methods to sample from high-dimensional distributions
and Sanborn and Griffiths (2008) identified how to use one
of these methods, Markov Chain Monte Carlo (MCMC), to
draw samples from categories that were represented in the
mind. This method, termed Markov Chain Monte Carlo with

People (MCMCP), focused trials on informative regions of
stimuli – greatly reducing the number of trials a participant
needs to perform.

While MCMCP exploited the local nature of categories, it
could not exploit the way that many categories lie on man-
ifolds. Many seemingly complex stimulus representations
possess a simpler embedded representation. For example,
images, when represented as a grid of pixel values, inhabit
a high-dimensional space, typically hundreds to hundreds
of thousands of dimensions. Yet modifications to these im-
ages, such as changing a facial expression or moving a limb,
require simultaneously modifying only some of the dimen-
sions. Thus often stimuli possess many irrelevant dimensions
and many “linked” dimensions, where changing one implies
proportionally changing many other connected dimensions.
Since such relationships are often smooth among dimensions,
suggesting a manifold structure.

In this paper, we present an extension to MCMCP that
is able to take advantage of the manifold structure of
continuous-valued stimuli and apply it to a low-dimensional
stimulus. We take inspiration from the large literature in sta-
tistical computing that has explored how MCMC algorithms
can be modified to increase their efficiency in solving specific
problems. For example, Hybrid Monte Carlo (Neal, 1996) is
a successful method for sampling in high-dimensional spaces
that incorporates directional information into MCMC meth-
ods. We adapt MCMCP to include directional information,
allowing participants to “look ahead” at the consequences of
their decisions so they can guide stimulus generation, increas-
ing the efficiency with which we can investigate categories.

The remainder of this paper is organised as follows. We
first introduce the MCMC and explain how it was adapted to
people. Next we introduce Look-Ahead Monte Carlo with
People (LAMCP), first motivating it intuitively and then pre-
senting the technical justification of our method. We com-
pare LAMCP to MCMCP empirically in an experiment ex-
ploring the golden ratio in rectangles–a simple example of a
low-dimensional manifold in a higher-dimensional space. We
then conclude with a brief discussion how our method relates
to other sampling techniques.

Background: MCMC with People
Using the connection between computational models of cat-
egorisation and probability distributions (Ashby & Alfonso-



Reese, 1995), let p(x|c) denote the probability of stimulus x
under the distribution associated with category c. We could
attempt to elicit people’s category representation by asking
them to rate the typicality of item x in category c, but that
would require us to present participants with every stimu-
lus of interest. Instead we would like to draw samples from
p(x|c).

The Metropolis sampling scheme (Metropolis, Rosenbluth,
Rosenbluth, Teller, & Teller, 1953) is a commonly used algo-
rithm for generating a sequence of samples from a designer-
supplied probability distribution. It constructs a Markov
chain whose stationary distribution is the provided probabil-
ity distribution and then uses this Markov chain to, eventually,
generate a sequence of samples from the stationary distribu-
tion. The algorithm has two parts that are provided by the
designer: a proposal distribution q(x?|x), and an acceptance
function A(x?,x). The proposal distribution is typically a sim-
ple distribution (such as a Gaussian or uniform distribution)
and is used to propose possible samples, x?, given the current
sample, x. The acceptance function tests how similar sam-
ples from this proposal distribution are to the desired station-
ary distribution, guiding the algorithm towards this distribu-
tion. Both the proposal distribution and acceptance function
must be carefully selected to ensure the Markov chain con-
verges correctly (see Neal, 1993). At each step t of the algo-
rithm, a new state of the chain is proposed, x?t , by sampling
it from the proposal distribution, q(x?t |xt−1). With probability
A(x?t ,xt−1), the state of the Markov chain at step t is the pro-
posal x?t , otherwise it is the previous state, i.e., xt = xt−1. The
initial state x0 of the Markov chain is picked at random. It can
be shown that if this procedure is repeated for long enough,
the Markov chain it defines will eventually converge on the
desired stationary distribution.

MCMCP (Sanborn & Griffiths, 2008; Sanborn, Griffiths, &
Shiffrin, 2010) transformed the Metropolis sampling scheme
into an experimental method for cognitive science. MCMCP
is a sequential paradigm in which participants construct the
stimuli themselves, in small, manageable steps. The equi-
librium distribution of interest is the distribution over stimuli
belonging to a single category p(x|c), which we shall write as
π(x) for short-hand, the particular category being implicit.

On each trial of the MCMCP procedure, a new stimulus
sample x?t is generated by a computer from an experimenter-
provided proposal distribution, such as a Gaussian or uniform
distribution. Participants are presented with a choice of two
possible samples; the current state, xt−1, or the proposed new
state, x?t . Their selection becomes the new state of the Markov
chain, xt+1. The next trial has the same form, and the proce-
dure repeats until the Markov chain is deemed to have equi-
libriated.

If participants choose x?t according to a valid acceptance
function, then one can show that, just like Metropolis sam-
pling, this scheme forms a Markov chain whose stationary
distribution is the distribution over stimuli in a particular cat-
egory π(x). Fortunately there is an exact correspondence be-

tween the ratio rule of human decision making (Luce, 1963)
and a valid acceptance function for use with Metropolis sam-
pling, namely the Barker acceptance function (Barker, 1965):

A(x?t ,xt−1) =
π(x?t )

π(x?t )+π(xt−1)
(1)

Assuming participants’ choices are Markov, the paradigm
forms a Metropolis sampling scheme whose states are sam-
ples from people’s distribution of objects in a particular cate-
gory at the equilibriation of the Markov chain.

The proposal distribution used by MCMCP is fixed and
provided by the experimenter; typically it is an isotropic
Gaussian distribution. This induces a random-walk Markov
kernel, which, as Neal (1993) notes for general MCMC, and
as Martin, Griffiths, and Sanborn (2012) note for MCMCP,
can be inefficient for exploring large, correlated spaces.
Gains in efficacy are to be had by removing this random walk,
whilst maintaining the properties that allow it to converge to
the category distribution.

An Intuitive View of MCMCP and LAMCP
Before presenting our novel Look-Ahead Monte Carlo with
People (LAMCP) method, we will provide some intuitions
as to how it differs from MCMCP. Intuitively, we can
think about exploring a probability distribution by follow-
ing a Markov chain in terms of a hiker attempting to travel
along a ridge path. The ridge represents an interesting
low-dimensional manifold embedded in a largely irrelevant
higher-dimensional space, and we wish participants to ex-
plore this manifold efficiently.

Suppose our hiker is standing upon a bumpy ridge in an
otherwise large flat landscape. He wishes to explore the ridge,
whilst only descending into the lower parts of the landscape
fleetingly. Suppose also that the he cannot see anything, and
must be told about the terrain by MCMCP or LAMCP.

MCMCP allows our hiker to know about the terrain where
he currently stands and also at another location, picked at ran-
dom by MCMCP. He must then choose whether he wishes to
step to this new location or stay where he is. MCMCP does
not know of our hiker’s intention to follow the ridge, and so
when MCMCP proposes locations far away from him, the
new location is likely to be in the flat and so he will often
elect not to move. Proposed locations very close to our hiker
are likely to be on the ridge so he will be willing to make a
step. Walking along the ridge in this random fashion will take
a great many small steps.

LAMCP gives our hiker a guide. This guide walks away
from the hiker along a randomly oriented straight line. The
guide then returns to the hiker and tells him on average, how
much of the ridge she saw on her travels. If the hiker feels
that the guide saw a lot of the ridge, then LAMCP randomly
picks a location along this straight line. The hiker can then
either stay where he is, or walk to this new location offered
by LAMCP. With LAMCP, the hiker can take advantage of
a longer view. In addition, our guide will propose the same



direction in which our hiker just travelled, which will be ad-
vantageous in following a straight ridge path. Both aspects
allow our hiker to travel more quickly.

Look-Ahead Monte Carlo with People
Look-Ahead Monte Carlo with People (LAMCP) is a sequen-
tial paradigm that, like MCMCP, samples from a participant’s
distribution over stimuli for a particular category. Unlike
MCMCP, LAMCP has two kinds of trials. The first kind
are just like the trials of MCMCP; participants are asked to
choose between a generated stimulus and the previous stim-
ulus as the next state of a Markov chain. In the second kind
of trial, however, participants are asked to choose a direction
in the stimulus space to explore. This directional information
is then used to generate a stimulus to be presented to the par-
ticipant in the first kind of trial. Thus LAMCP produces two
kinds of samples; stimuli, which we shall denote x, and also
directions, which we shall denote with d.

LAMCP alternates between proposing stimuli using the
current direction and previous stimulus and proposing direc-
tions using the current stimulus and previous direction. In this
way, LAMCP is able to capture and to some extent remember
local manifold structure when generating stimuli.

Recalling the analogy of the hiker trying to follow a ridge;
new stimuli are generated from directions by starting at the
current stimulus and advancing some distance according to
the current direction. The distance advanced is sampled at
random. More precisely, the two kinds of trials of LAMCP
operate as follows:

Stimulus trial: Suppose that a direction dt has been sampled
already. The direction has an additive effect upon the cur-
rent stimulus and so the proposal for the new stimulus, x?t ,
is:

x?t = xt−1 + εtdt

where εt is a random value, sampled once for each stimulus
trial, with distribution which we shall denote qε(εt), deter-
mining for how far the direction dt should be followed. The
variable εt is the distance travelled, in direction dt to obtain
the new stimulus.

Participants are then presented with the previous stimulus
xt−1 and the proposal x?t and asked which of these stimuli
looked like they belonged more to the category of inter-
est π(x). As in MCMCP, we assume this choice is made
by participants according to the ratio rule and thus corre-
sponds to the Barker acceptance function (Equation 1).

Direction trial: In this step, participants pick a suitable di-
rection for advancing the current stimulus x. A direc-
tion proposal is sampled from the direction proposal dis-
tribution qd(d?

t |dt−1,xt−1). Direction values are presented
to participants as animations, showing how the proposed
stimuli will be derived from the direction. This is the look-
ahead part of our paradigm: this animation provides par-
ticipants with insight into how selecting a direction would

affect the proposal of stimuli during future stimulus trials.
Participants can decide to continue along a single direction
for multiple stimulus trials by continuing to select the cur-
rent direction during a direction trial.

Suppose N frames are to be generated for a proposed
direction d?

t . First N values of εt are selected, typi-
cally uniformly spaced within some task-specific interval:
ε1

t ,ε
2
t , . . . ,ε

N
t . Then frame n ∈ {1, . . . ,N} is the stimulus

produced by xt + εn
t d?

t . The animation loops, first increas-
ing the frame number n from 1 to N, then decreasing the
frame number from N to 1.

Participants are presented with two animations: one corre-
sponding to the proposed direction d?

t and another for the
previous direction dt−1. Participants are asked to select the
animation in which the stimuli look most like they belongs
to the category of interest. By doing so, participants are
picking the direction that is most likely to offer a stimulus
belonging to the category during the next stimulus trial.

Again, as in MCMCP, we assume this choice is made
by participants according to the ratio rule and thus corre-
sponds to the Barker acceptance function (Equation 1).

In summary, the LAMCP paradigm is as follows:

1. Generate new direction proposal from direction proposal
distribution qd :

d?
t ∼ qd(d?

t |dt−1) (2)

The experimenter provides qd : the distribution is re-
quired by the Barker acceptance function to be symmetric,
qd(d?|d) = qd(d|d?).

2. Generate an N-frame animation of the resulting samples:
x?t = xt−1 + εnd?

t for each n ∈ {1,2, . . . ,N}.

3. Participants asked to choose between d?
t and dt−1 for the

new direction dt , based upon the animated stimuli. In par-
ticular they select the new direction with probability:

π(d?
t |xt−1)

π(d?
t |xt−1)+π(dt−1|xt−1)

4. Generate new stimulus proposal from direction dt and pre-
vious stimulus xt−1:

εt ∼ qε(εt) (3)
x?t = xt−1 + εtdt (4)

The experimenter provides qε. Typically it will be a Gaus-
sian distribution or a scale mixture of Gaussian distribu-
tions.

5. Participants are asked to choose between x?t and xt−1 as the
new stimulus xt , choosing x?t with probability:

π(x?t )
π(x?t )+π(xt−1)



In terms of Markov chains, LAMCP is a Metropolis sam-
pler, where each kind of trial can be understood to be updates
to either the stimulus or the direction. The overall stationary
distribution is π(x,d) = π(x)π(d|x). Participants are asked
to pick directions whose animation show a high probability
stimulus for the longest. Stated more formally, the stationary
distribution for directions is:

π(d|x) ∝

∫ ∫
π(x?)δ(x? = x+ εd)dx?dε (5)

where x? are the look-ahead points and π(x?) is the stimulus
distribution evaluated at these look-ahead points, whilst ε is
their distance along the direction d from the original stimulus
x.

Extending LAMCP to Many Choices
As originally developed, MCMCP and LAMCP consisted of
two alternative forced choice (2AFC) trials. This follows
naturally from the Barker acceptance function (Equation 1).
However, a larger number of alternatives could provide even
more informative judgements.

At the start of each trial, instead of generating one proposal
x?t , a set of n proposals is generated {xp

t : p ∈ {1, . . . ,n}}.
Let c denote the index of the selected choice; instead of the
Barker acceptance function in Equation 1, we use:

A(xc
t ,xt−1) =

π(xc
t )

π(xt−1)+∑
n
p=1 π(xp

t )
(6)

Just as the Barker acceptance function (Equation 1) naturally
arises in people’s decision making from the Luce’s choice ax-
iom (Luce, 1963), so too does Equation 6.

It is not obvious, however, whether such an acceptance
function leads to a valid Markov chain Monte Carlo sampler.
By considering the multiple choice Markov transition kernel,
one can show that the condition of detailed balance is satis-
fied by this acceptance function, and hence the above accep-
tance function maintains the equilibrium distribution π(x). In
particular, the Markov transition kernel is:

T (x→ x′) =
n

∑
p=1

δ(x′,xp)A(xp,x)S(x,xp)

+δ(x′,x)

[
1−

n

∑
p=1

∫
A(xp,x)S(x,xp)dxp

]
(7)

where S is the symmetric proposal distribution for generating
new proposals. Detailed balance requires one to show that
π(x)T (x→ x′) = p(x′)T (x′→ x) holds for all x and x′, which
is easily achieved by substitution of definitions and algebra.

Though we have shown that the connection between the
ratio rule and a valid acceptance function holds for more
than two choices, there is evidence that people do not fol-
low the ratio rule in this case (Wills, Reimers, Stewart, Suret,
& McLaren, 2000). Rouder (2004) suggests that behaviour is
better explained by raising the choice probabilities to a power

that varies from trial to trial. In our experiment, we shall only
use this new regime for direction trials, where we do not need
to sample from a stable distribution. In future, however, it
would be interesting to explore how robust MCMCP is to the
deviations from the ratio rule that people display.

Experiment: Testing LAMCP
We evaluated whether LAMCP is able to produce proposals
that are more commonly accepted than MCMCP, generated
higher quality samples than MCMCP, and use fewer trials
to achieve the same quality of estimates as MCMCP. Each
trial shall correspond to one decision made by a participant.
For LAMCP, this means it will take two trials to produce one
stimulus.

We applied LAMCP and MCMCP to a simple task where
stimuli are parameterized by two dimensions—rectangles
with width and height. Our aim is to elicit from participants
samples from the category of golden rectangles, where the
height is equal to the golden ratio (1.618) times the width.
This scenario is a manifestation the ridge example that we
motivated our approach with earlier. The golden ratio lies
along a ridge in the two dimensional space form by all widths
and heights.

Participants were asked to select the rectangle that looked
most like a golden ratio rectangle on stimulus trials, or in the
case of direction trials, to pick the animation that looked most
like a golden ratio rectangle for the longest amount of time.
We evaluated how their output deviated from ideal golden ra-
tio rectangles.

Participants. A total of 43 participants were recruited from
Amazon Mechanical Turk: each having at least a 95% task
approval rate, and had at least 100 approved tasks. Each par-
ticipant was required to contribute at least 100 decisions to the
task to be paid $0.05. To check for consistency among par-
ticipants, approximately 10% of participants’ decisions were
repeats of their own or other participants’ decisions. These
repeats were not used in the analysis. Participants’ decisions
were incorporated in real-time, and so some participants dis-
continued the experiment before 100 decisions but their re-
sults were still included (five participants for LAMCP, six for
MCMCP24, and two for MCMCP).

Stimuli. Stimuli were black rectangles rendered in the par-
ticipant’s web browser. Each stimulus was drawn in a 232
pixel by 232 pixel light grey box, with an internal border of 5
pixels. The light grey box had a border of 5 pixels surround-
ing it, and was on a white background. For animated stimuli,
25 frames were generated, and the frame was advanced, in a
loop, changed approximately every 100 ms. For 2AFC tri-
als, stimuli were shown side by side. For 4AFC trials, stimuli
were shown in a grid of two rows and two columns. The
stimuli parameters (width and height) were generated by ei-
ther MCMCP or LAMCP, using truncated Gaussians for the



initial stimulus and proposal distributions to ensure the pa-
rameters remained within the range 0 to 1. For MCMCP, the
variance of the truncated Gaussians was randomly chosen at
each trial to either be 0.01 or 0.25. For LAMCP, the variance
of the truncated Gaussians was randomly chosen at each trial
to either be 0.1 or 0.5. Variance parameters for LAMCP were
higher than those for MCMCP.

Procedure. Participants were asked to study 24 examples
of rectangles, six of which were golden ratio rectangles and
18 non-golden ratio rectangles. Six of the counter-examples
were the six examples rotated by 90 degrees, with explicit
instructions highlighting that golden ratio rectangles are tall
and thin, not short and wide.

We ran three regimes—MCMCP with just 2AFC trials,
MCMCP with alternating 2AFC and 4AFC trials (to account
for the effects of including alternating 2AFC/4AFC trials,
which we shall call MCMCP24), and LAMCP with 2AFC
for stimulus trials and 4AFC for direction trials. For each
regime, we ran 10 chains, each chain being 100 trials long.
Each trial consisted of choosing between either the stimulus
selected by the previous trial and one or three new stimuli.

Results. The median acceptance rates of MCMCP and
MCMCP24 were 38% (± 2%; semi-interquartile range) and
37% (± 4%), respectively, whilst the median acceptance rate
of stimulus for LAMCP was 46% (± 2%), suggesting that
the proposals generated by LAMCP were typically more rep-
resentative than those generated by MCMCP.

The median absolute difference between the estimated
golden ratio and the true golden ratio was 0.72 (±0.44
semi-interquartile range) and 0.92 (±2.73) for MCMCP and
MCMCP24, respectively. The median absolute difference of
LAMCP, 0.52 (±0.38) is closer to the golden ratio than both
MCMCP methods. The absolute differences of MCMCP and
MCMCP24 are significantly (p < 0.001) different to the ab-
solute differences of LAMCP under the Wilcoxon rank-sum
test.

Effective sample size is a heuristic for determining the
number of independent samples yielded by an MCMC
procedure. We compared effective sample size estimates
of LAMCP, MCMCP and MCMCP24 using R-CODA
(Plummer, Best, Cowles, & Vines, 2006). We found that the
median effective sample size for LAMCP was 5 (±1) whilst it
was 11 (±4) and 19 (±15) for MCMCP and MCMCP24, re-
spectively. This suggests that whilst LAMCP produces more
favourable samples, the samples are more correlated with one
another than those produced by MCMCP. This could be a
consequence a linear correlation introduced by the genera-
tive process of the stimuli used by LAMCP. Interestingly the
effective sample size for directional samples was 15±3 with
an acceptance rate of 75% ± 2%.

Figure 1 shows the estimated golden ratio and distance
of samples to the golden ratio produced by MCMCP and
LAMCP. The top row of Figure 1 shows that participants us-

ing LAMCP quickly find the golden ratio and are easily able
to explore and follow this correlation in the stimulus param-
eters, compared to MCMCP participants. The bottom row of
Figure 1 shows that throughout the evolution of both Markov
chains, LAMCP participants generate samples that are closer
to the golden ratio than MCMCP participants.

We recorded the time between trials for each partici-
pant, and for LAMCP, compared the difference between
these times for stimulus and direction trials. We could find
no significant difference in these times under a variety of
two-sample tests (Wilcoxon rank-sum, t-, and Kolmogorov-
Smirnov tests; p > 0.05, n = 500). A likely explanation for
this is that network transmission time dominates participants
decision time: the median time between trials was 2.8 sec-
onds (± 1 second semi-interquartile range). Thus for Me-
chanical Turk experiments, using directional trials do not ap-
pear to take more of a participants’ time than stimulus trials.

Discussion

Look-Ahead Monte Carlo with People is an extension to
MCMCP that exploits local manifold structure found in con-
tinuous valued stimuli by soliciting direction judgements
from participants. This method will allow us to more ef-
ficiently explore and understand complicated categories in
higher dimensions than previously attempted, by extracting
more useful information per trial from participants. Whilst
our simple experiment demonstrated the efficacy of our tech-
niques in even the simplest case, for tasks such as images of
faces, similar local structure likely exists in stimuli and so we
can hope for similar gains.

Compared to other procedures for eliciting distributions
from people, LAMCP’s two kind of trial paradigm is also
similar to iterated learning (Kirby, 1998; Griffiths & Kalish,
2007) where people either sample an internal representation
or a physical manifestation of that representation. Direc-
tions are akin to an internal representation of what lies ahead,
whilst the stimuli are the manifestations of the directions. The
analogy is particularly apt if different people participate in
each pair of LAMCP trials.

LAMCP not only produces samples from people’s stimu-
lus distribution, but also samples from their distribution over
directions in stimulus space. Whilst our motivation for sam-
pling from this distribution is purely incidental—we wish to
obtain directions in some principled fashion so as to inform
the stimulus generation process—the directions give a direct
hint as to what people estimate to be the shape of the manifold
in which samples lie. This extra piece of statistical informa-
tion may be useful in gaining a better estimate of structure of
stimuli, as well as aiding the estimation process.

Acknowledgements: We wish to thank Peter Dayan and
Charles Sutton for several useful discussions.
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Figure 1: Estimates of the golden ratio (top) and distance of samples to the golden ratio manifold (bottom) under three regimes:
MCMCP (left), MCMCP24 (middle), and LAMCP (right). Heavy solid lines correspond to the median over 10 chains, whilst
lighter solid lines are the interquartile range. Dashed straight lines in the top plots correspond to the golden ratio (top) and its
reciprocal (bottom).
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