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Abstract

We propose an efficient Bayesian nonparametric model for discovering hierar-
chical community structure in social networks. Our model is a tree-structured
mixture of potentially exponentially many stochastic blockmodels. We describe a
family of greedy agglomerative model selection algorithms that take just one pass
through the data to learn a fully probabilistic, hierarchical community model. In
the worst case, Our algorithms scale quadratically in the number of vertices of
the network, but independent of the number of nested communities. In practice,
the run time of our algorithms are two orders of magnitude faster than the Infinite
Relational Model, achieving comparable or better accuracy.

1 Introduction

People often organise themselves into groups or communities. For example, friends may form
cliques, scientists may have recurring collaborations, and politicians may form factions. Conse-
quently the structure found in social networks is often studied by inferring these groups. Using
community membership one may then make predictions about the presence or absence of unob-
served connectivity in the social network. Sometimes these communities possess hierarchical struc-
ture. For example, within science, the community of physicists may be split into those working on
various branches of physics, and each branch refined repeatedly until finally reaching the particular
specialisation of an individual physicist.

Much previous work on social networks has focused on discovering flat community structure. The
stochastic blockmodel [1] places each individual in a community according to the block structure
of the social network’s adjacency matrix, whilst the mixed membership stochastic blockmodel [2]
extends the stochastic blockmodel to allow individuals to belong to several flat communities simul-
taneously. Both models require the number of flat communities to be known and are parametric
methods.

Greedy hierarchical clustering has previously been applied directly to discovering hierarchical com-
munity structure [3]. These methods do not require the community structure to be flat or the number
of communities to be known. Such schemes are often computationally efficient, scaling quadrat-
ically in the number of individuals for a dense network, or linearly in the number of edges for a
sparse network [4]. These methods do not yield a full probabilistic account of the data, in terms of
parameters and the discovered structure.

Several authors have also proposed Bayesian approaches to inferring community structure. The Infi-
nite Relational Model (IRM; [5, 6, 7]) infers a flat community structure. The IRM has been extended
to infer hierarchies [8], by augmenting it with a tree, but comes at considerable computational cost.
[9] and [10] propose methods limited to hierarchies of depth two, whilst [11] propose methods lim-
ited to hierarchies of known depth.. The Mondrian process [12] propose a flexible prior on trees and
a likelihood model for relational data. Current Bayesian nonparametric methods do not scale well
to larger networks because the inference algorithms used make many small changes to the model.

∗Part of the work was done whilst at the Gatsby Unit, University College London.
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Such schemes can take a large number of iterations to converge on an adequate solution whilst each
iteration often scales unfavourably in the number of communities or vertices.

We shall describe a greedy Bayesian hierarchical clustering method for discovering community
structure in social networks. Our work builds upon Bayesian approaches to greedy hierarchical
clustering [13, 14] extending these approaches to relational data. We call our method Bayesian
Hierarchical Community Discovery (BHCD). BHCD produces good results two orders of magnitude
faster than a single iteration of the IRM, and its worst case run-time is quadratic in the number of
vertices of the graph and independent of the number of communities.

The remainder of the paper is organised as follows. Section 2 describes the stochastic blockmodel. In
Section 3 we introduce our model as a hierarchical mixture of stochastic blockmodels. In Section 4
we describe an efficient scheme for inferring hierarchical community structure with our model.
Section 5 demonstrates BHCD on several data sets. We conclude with a brief discussion in Section 6

2 Stochastic Blockmodels

A stochastic blockmodel [1] consists of a partition, φ, of vertices V and for each pair of clusters
p and q in φ, a parameter, θpq , giving the probability of a presence or absence of an edge between
nodes of the clusters. Suppose V = {a, b, c, d}, then one way to partition the vertices would be
to form clusters ab, c and d, which we shall write as φ = ab|c|d, where | denotes a split between
clusters. The probability of an adjacency matrix, D, given a stochastic blockmodel, is as follows:

P (D|φ, {θpq}p,q∈φ) =
∏
p,q∈φ

θ
n1
pq
pq (1− θpq)n

0
pq (1)

where n1pq is the total number of edges in D between the vertices in clusters p and q, and n0pq is the
total number of observed absent edges in D between the vertices in clusters p and q.

When modelling communities, we expect the edge appearance probabilities within a cluster to be
different to those between different clusters. Hence we place a different prior on each of these
cases. Similar approaches have been taken to adapt the IRM to community detection [7], where
non-conjugate priors were used at increased computational cost. In the interest of computational
efficiency, our model will instead use conjugate priors but with differing hyperparameters. θpp will
have a Beta(α, β) prior and θpq , p 6= q, will have a Beta(δ, λ) prior. The hyperparameters are picked
such that α > β and δ < λ, which correspond to a prior belief of a higher density of edges within
a community than across communities. Integrating out the edge appearance parameters, we obtain
the following likelihood of a particular partition φ:

P (D|φ) =
∏
p∈φ

B(α+ n1pp, β + n0pp)

B(α, β)

∏
p,q∈φ
p 6=q

B(δ + n1pq, λ+ n0pq)

B(δ, λ)
(2)

where B(·, ·) is the Beta function. We may generalise this to use any exponential family:

p(D|φ) =
∏
p∈φ

f(σpp)
∏

p,q∈φ, p 6=q

g(σpq) (3)

where f(·) is the marginal likelihood of the on-diagonal blocks, and g(·) is the marginal likelihood
of the off-diagonal blocks. We use σpq to denote the sufficient statistics from a (p, q)-block of the
adjacency matrix: all of the elements whose row indices are in cluster p and whose column indices
are in cluster q. For the remainder of the paper, we shall focus on the beta-Bernoulli case given in
(2) for concreteness. i.e., σpq = (n1pq, n

0
pq), with f(x, y) = B(α+x,β+y)

B(α,β) and g(x, y) = B(δ+x,λ+y)
B(δ,λ) .

For clarity of exposition, we shall focus on modelling undirected or symmetric networks with no
self-edges, so σpq = σqp and σ{x}{x} = 0 for each vertex x, but in general this restriction is not
necessary.

One approach to inferring φ is to fix the number of communities K then use maximum likelihood
estimation or Bayesian inference to assign vertices to each of the communities [1, 15]. Another
approach is to use variational Bayes, combined with an upper bound on the number of communities,
to determine the number of communities and community assignments [16].
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Figure 1: Hierarchical decomposition of the adjacency matrix into tree-consistent partitions. Black
squares indicated edge presence, white squares indicate edge absence, grey squares are unobserved.

3 Bayesian Hierarchical Communities

In this section we shall develop a Bayesian nonparametric approach to community discovery. Our
model organises the communities into a nested hierarchy T , with all vertices in one community at
the root and singleton vertices at the leaves. Each vertex belongs to all communities along the path
from the root to the leaf containing it. We describe the probabilistic model relating the hierarchy
of communities to the observed network connectivity data here, whilst in the next section we will
develop a greedy model selection procedure for learning the hierarchy T from data.

We begin with the marginal probability of the adjacency matrix D under a stochastic blockmodel:

p(D) =
∑
φ

p(φ)p(D|φ) (4)

If the Chinese restaurant process (CRP) is used as the prior on partitions p(φ), then (4) corresponds
to the marginal likelihood of the IRM. Computing (4) typically requires an approximation: the space
of partitions φ is large and so the number of partitions in the above sum grows at least exponentially
in the number of vertices.

We shall take a different approach: we use a tree to define a prior on partitions, where only partitions
that are consistent with the tree are included in the sum. This allows us to evaluate (4) exactly. The
tree will represent the hierarchical community structure discovered in the network. Each internal
node of the tree corresponds to a community and the leaves of the tree are the vertices of the adja-
cency matrix, D. Figure 1 shows how a tree defines a collection of partitions for inclusion in the
sum in (4). The adjacency matrix on the left is explained by our model, conditioned upon the tree
on the upper left, by its five tree-consistent partitions. Various blocks within the adjacency matrix
are explained either by the on-diagonal model f or the off-diagonal model g, according to each par-
tition. Note that the block structure of the off-diagonal model depends on the structure of the tree T ,
not just on the partition φ. The model always includes the trivial partition of all vertices in a single
community and also the singleton partition of all vertices in separate communities.

More precisely, we shall denote trees as a nested collection of sets of vertices. For example, the tree
in Figure 1 is T = {{a, b}, {c, d, e}, f}. The set of of partitions consistent with a tree T may be
expressed formally as in [14]:

Φ(T ) = {leaves(T )} ∪ {φ1|. . . |φnT
: φi ∈ Φ(Ti), Ti ∈ ch(T )} (5)

where leaves(T ) are the leaves of the tree T , ch(T ) are its children, and so Ti is the ith subtree of
tree T . The marginal likelihood of the tree T can be written as:

p(D|T ) = p(DTT |T ) =
∑
φ

p(φ|T )p(DTT |φ, T ) (6)

where the notation DTT is short for Dleaves(T ),leaves(T ), the block of D whose rows and columns
correspond to the leaves of T .

Our prior on partitions p(φ|T ) is motivated by the following generative process: Begin at the root
of the tree, S = T . With probability πS , stop and generate DSS according to the on-diagonal model
f . Otherwise, with probability 1 − πS , generate all inter-cluster edges between the children of the
current node according to g, and recurse on each child of the current tree S. The resulting prior on
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tree-consistent partitions p(φ|T ) factorises as:

p(φ|T ) =
∏

S∈ancestorT (φ)

(1− πS)
∏

S∈subtreeT (φ)

πS (7)

where subtreeT (φ) are the subtrees in T corresponding to the clusters in partition φ and ancestorT (φ)
are the ancestors of trees in subtreeT (φ). The prior probability of partitions not consistent with T is
zero. Following [14], we define πS = 1− (1− γ)|ch(S)|, where γ is a parameter of the model. This
choice of πS gives higher likelihood to non-binary trees over cascading binary trees when the data
has no hierarchical structure [14]. Similarly, the likelihood of each partition p(D|φ, T ) factorises as:

p(DTT |φ, T ) =
∏

S∈ancestorT (φ)

g
(
σ¬ch
SS

) ∏
S∈subtreeT (φ)

f(σSS) (8)

where σSS are the sufficient statistics of the adjacency matrix D among the leaves of tree S, and
σ¬ch
SS are the sufficient statistics of the edges between different children of S:

σ¬ch
SS = σSS −

∑
C∈ch(S)

σCC (9)

The set of tree consistent partitions given in (5) has at mostO(2n) partitions, for n vertices. However
due to the structure of the prior on partitions (7) and the block model (8), the marginal likelihood (6)
may be calculated by dynamic programming, in O(n + m) time where n is the number of vertices
and m is the number of edges. Combining (7) and (8) and expanding (6) by breadth-first traversal of
the tree, yields the following recursion for the marginal likelihood of the generative process given at
the beginning of the section:

p(DTT |T ) = πT f(σTT ) + (1− πT )g
(
σ¬ch
TT

) ∏
C∈ch(T )

p(DCC |C) (10)

4 Agglomerative Model Selection

In this section we describe how to learn the hierarchy of communities T . The problem is treated as
one of greedy model selection: each tree T is a different model, and we wish to find the model that
best explains the data. The tree is built in a bottom-up greedy agglomerative fashion, starting from
a forest consisting of n trivial trees, each corresponding to exactly one vertex. Each iteration then
merges two of the trees in the forest. At each iteration, each vertex in the network is a leaf of exactly
one tree in the forest. The algorithm finishes when just one tree remains. We define the likelihood
of the forest F as the probability of data described by each tree in the forest times that for the data
corresponding to edges between different trees:

p(D|F ) = g(σ¬ch
FF )

∏
T∈F

p(DTT |T ) (11)

where σ¬ch
FF are the sufficient statistics of the edges between different trees in the forest.

The initial forest, F (0), consists a singleton tree for each vertex of the network. At each iteration
a pair of trees in the forest F is chosen to be merged, resulting in forest F ?. Which pair of tree to
merge, and how to merge these trees, is determined by considering which pair and type of merger
yields the largest Bayes factor improvement over the current model. If the trees I and J are merged
to form the tree M , then the Bayes factor score is:

SCORE(M ; I, J) =
p(DMM |F ?)
p(DMM |F )

=
p(DMM |M)

p(DII |I)p(DJJ |J)g(σIJ)
(12)

where p(DMM |M), p(DII |I) and p(DJJ |J) are given by (10) and σIJ are the sufficient statistics of
the edges connecting leaves(I) and leaves(J). Note that the Bayes factor score is based on data local
to the merge—i.e., by considering the probability of the connectivity data only among the leaves of
the newly merged tree. This permits efficient local computations and makes the assumption that
local community structure should depend only on the local connectivity structure.

We consider three possible mergers of two trees I and J into M . See Figure 2, where for concrete-
ness we take I = {Ta, Tb, Tc} and J = {Td, Te} where Ta, Tb, Tc, Td, Te are subtrees. M may be
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Ta Tb Tc Td Te

I J

Join (M)

Ta Tb Tc

Td Te

J

Absorb (M)

Figure 2: Different merge operations.

1: Initialise F, {pI , σ¬ch
II }I∈F , {σIJ}I,J∈F .

2: for each unique pair I, J ∈ F do
3: Let M := MERGE(I; J), compute pM and

SCORE(M ; I, J), and add M to the heap.
4: end for
5: while heap is not empty do
6: Pop I = MERGE(X;Y ) off the top of heap.
7: if X ∈ F and Y ∈ F then
8: F ← (F \ {X,Y }) ∪ {I}.
9: for each tree J ∈ F \ {I}, do

10: Compute σIJ , σMM , and σ¬ch
MM using (13).

11: Let M := MERGE(I; J), compute pM and
SCORE(M ; I, J), and add M to heap.

12: end for
13: end if
14: end while
15: return the only tree in F
Algorithm 1: Bayesian hierarchical community discovery.

formed by joining I and J together using a new node, giving M = {I, J}. Alternatively M may be
formed by absorbing J as a child of I , yielding M = {J}∪ ch(I), or vice versa, M = {I}∪ ch(J).

The algorithm for finding T is described in Algorithm 1. The algorithm maintains a forest F of
trees, the likelihood pI = p(DII |I) of each tree I ∈ F according to (10), and the sufficient statistics
{σ¬ch

II }I∈F , {σIJ}I,J∈F needed for efficient computation. It also maintains a heap of potential
merges ordered by the SCORE (12), used for determining the ordering of merges. At each iteration,
the best potential merge, say of treesX and Y resulting in tree I , is picked off the heap. If eitherX or
Y is not in F , this means that the tree has been used in a previous merge, so that the potential merge
is discarded and the next potential merge is considered. After a successful merge, the sufficient
statistics associated with the new tree I are computed using the previously computed ones:

σIJ = σXJ + σY J for J ∈ F, J 6= I .
σMM = σII + σJJ + σIJ

σ¬ch
MM =


σIJ if M is formed by joining I and J ,
σ¬ch
II + σIJ if M is formed by J absorbed into I ,
σ¬ch
JJ + σIJ if M is formed by I absorbed into J .

(13)

These sufficient statistics are computed based on previous cached values, allowing each inner loop
of the algorithm to takeO(1) time. Finally, potential mergers of I with other trees J in the forest are
considered and added onto the heap. In the algorithm, MERGE(I; J) denotes the best of the three
possible merges of I and J .

Algorithm 1 is structurally the same as that in [14], and so has time complexity in O(n2 log(n)).
The difference is that additional care is needed to cache the sufficient statistics allowing for O(1)
computation per inner loop of the algorithm. We shall refer to Algorithm 1 as BHCD.

4.1 Variations

BHCD will consider merging trees that have no edges between them if the merge score (12) is
high enough. This does not seem to be a reasonable behaviour as communities that are completely
disconnected should not be merged. We can alter BHCD by simply prohibiting such merges between
trees that have no edges between them. The resulting algorithm we call BHCD sparse, as it only
needs to perform computations on the parts of the network with edges present. Empirically, we have
found that it produces better results than BHCD and runs faster for sparse networks, although in the
worst case it has the same time complexity O(n2 log n) as BHCD.

As BHCD runs, several merges can have the same score. In particular, at the first iteration all pairs of
vertices connected by an edge have the same score. In such situations, we break the ties at random.
Different tie breaks can yield different results and so different runs on the same data may yield
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different trees. Where we want a single tree, we use R (R = 50 in experiments) restarts and pick
the tree with the highest likelihood according to (10). Where we wish to make predictions, we will
construct predictive probabilities (see next section) by averaging all R trees.

4.2 Predictions

For link prediction, we wish to obtain the predictive distribution of a previously unobserved element
of the adjacency matrix. This is easily achieved by traversing one path of the tree from the root to-
wards the leaves, hence the computational complexity is linear in the depth of the tree. In particular,
suppose we wish to predict the edge between x and y, Dxy , given the observed edges D, then the
predictive distribution can be computed recursively starting with S = T :

p(Dxy|DSS , S) = rSf(Dxy|σSS) + (1− rS)

{
p(Dxy|DCC , C) if ∃C ∈ ch(S) : x, y ∈ leaves(C),
g(Dxy|σ¬ch

SS ) if ∀C ∈ ch(S) : x, y 6∈ leaves(C).

rS =
πSf(σSS)

p(DSS |S)
(14)

where rS is the probability that the cluster consisting of leaves(S) is present if the cluster corre-
sponding to its parent is not present, given the data D and the tree T . The predictive distribution
is a mixture of a number of on-diagonal posterior f terms (weighted by the responsibility rT ), and
finally an off-diagonal posterior g term. Hence the computational complexity is Θ(n).

5 Experiments

We now demonstrate BHCD on three data sets. Firstly we examine qualitative performance on
Sampson’s monastery network. Then we demonstrate the speed and accuracy of our method on
a subset of the NIPS 1–17 co-authorship network compared to IRM—one of the fastest Bayesian
nonparametric models for these data. Finally we show hierarchical structure found examining the
full NIPS 1–17 co-authorship network. In our experiments we set the model hyperparameters α =
δ = 1.0, β = λ = 0.2, and γ = 0.4 which we found to work well. In the first two experiments
we shall compare four variations of BHCD: BHCD, BHCD sparse, BHCD restricted to binary trees,
and BHCD sparse restricted to binary trees. Binary-only variations of BHCD only consider joins,
not absorptions, and so may run faster. They also tend to produce better predictive results as they
average over a larger number of partitions. But, as we shall see below, the hierarchies found can be
more difficult to interpret than the non-binary hierarchies found.

Sampson’s Monastery Network Figure 3 shows the result of running six variants of BHCD on time
four of Sampson’s monastery network [17]. Sampson observed the monastery at five times—time
four is the most interesting time as it was before four of the monks were expelled. We treated positive
affiliations as edges, and negative affiliations as observed absent edges, and unknown affiliation as
missing data. [17], using a variety of methods, found four flat groups, shown at the top of Figure 3:
Young Turks (Albert, Boniface, Gregory, Hugh, John Bosco, Mark, Winfrid), Loyal Opposition
(Ambrose, Berthold, Bonaventure, Louis, Peter), Outcasts (Basil, Elias, Simplicius), and Interstitial
group (Amand, Ramuald, Victor).

As can be seen in Figure 3, most BHCD variants find clear block diagonal structure in the adjacency
matrix. The binary versions find similar structure to the non-binary versions, up to permutations of
the children of the non-binary trees. BHCD global is lead astray by out of date scores on its heap
and so finds less coherent structure. The log likelihoods of the trees in Figure 3 are −6.62 (BHCD)
and −22.80 (BHCD sparse). Whilst the log likelihoods of the binary trees in Figure 3 are −8.32
(BHCD binary) and −24.68 (BHCD sparse binary). BHCD finds the most likely tree, and rose trees
typically better explain the data than binary trees.

BHCD finds the Young Turks and Loyal Opposition groups and chooses to merge some members
of the Interstitial group into the Loyal Opposition and Amand into the Outcasts. Mark, however, is
placed in a separate community: although Mark has a positive affiliation with Gregory, Mark also
has a negative affiliation with John Bosco and so BHCD elects to create a new community to account
for this discrepancy.

NIPS-234 Next we applied BHCD to a subset of the NIPS co-authorship dataset [19]. We compared
its predictive performance to both IRM using MCMC and also inference in the IRM using greedy
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Figure 3: Sampson’s monastery net-
work. White indicates a positive affil-
iation, black negative, whilst grey in-
dicates unknown. From top to bot-
tom: Sampson’s clustering, BHCD,
BHCD-sparse, BHCD with binary trees,
BHCD-sparse-binary.

Method Time complexity
IRM (naı̈ve) O(n2K2IR)

IRM (sparse) O(mK2IR)
LFRM [18] O(n2F 2IR)
IMMM [9] O(n2K2IR)

ILA [10] O(n2(F +K2)IR)
[8] O(n2K2IR)

BHCD O(n2 log(n)R)

Table 1: Time complexities of different methods.
n = # vertices, m = # edges, K = # commu-
nities, F = # latent factors, I = # iterations per
restart, R = # restarts.
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Figure 5: Clusters of authors found in NIPS 1–17. Top 10 most most collaborating authors shown
for all clusters with more than 15 vertices.

search, using the publicly available C implementation[20]. Our implementation of BHCD is also in
C. As can be seen from Table 1, BHCD has significantly lower computational complexity than other
Bayesian nonparametric methods even than those inferring flat hierarchies. This is because it is a
simpler model and uses a simpler inference method—thus we do not expect it to yield better predic-
tive results, but instead to get good results quickly. Unlike the other listed methods, BHCD’s worst
case complexity does not depend upon the number of communities, and BHCD always terminates
after a fixed number of steps so has no I factor. This latter factor, I , corresponds to the number
of MCMC steps or the number of greedy search steps, may be large and may need to scale as the
number of vertices increases.

Following [18, 10] we restricted the network to the 234 most connected individuals. Figure 4 shows
the average log predictive probability of held out data, accuracy and Area under the receiver operat-
ing Curve (AUC) over time for both BHCD and IRM. For the IRM, each point represents a single
Gibbs step (for MCMC) or a search step (for greedy search). For BHCD, each point represents a
complete run of the inference algorithm. BHCD is able to make reasonable predictions before the
IRM has completed a single Gibbs scan. We used the same 10 cross-validation folds as used in
[10] and so our results are quantitatively comparable to their results for the Latent Factor Relational
Model (LFRM [18]) and their model, the Infinite Latent Attributes model (ILA). BHCD performs
similarly to LFRM, worse than ILA, and better IRM. After about 10 seconds, the sparse variants
of BHCD make as good predictions on NIPS-234 as the IRM after about 1000 seconds. Notably
the sparse variations are faster than the non-sparse variants of BHCD, as the NIPS co-authorship
network is sparse.

Full NIPS The full NIPS dataset has 2864 vertices and 9466 edges. Figure 5 shows part of the
hierarchy discovered by BHCD. The full inferred hierarchy is large, having 646 internal nodes. We
cut the tree and retained the top portion of the hierarchy, shown above the clusters. We merged all
the leaves of a subtree T into a flat cluster when rT

∏
A∈ancestorT (1−rA) > 0.5 where rT is given in

(14). This quantity corresponds to the probability of picking that particular subtree in the predictive
distribution. Amongst these clusters we included only those with at least 15 members in Figure 5.
We include hierarchies with a lower cut-off in the supplementary.

6 Discussion and Future Work

We proposed an efficient Bayesian procedure for discovering hierarchical communities in social
networks. Experimentally our procedure discovers reasonable hierarchies and is able to make pre-
dictions about two orders of magnitude faster than one of the fastest existing Bayesian nonparametric
schemes, whilst attaining comparable performance. Our inference procedure scales as O(n2 log n)
through a novel caching scheme, where n is the number of vertices, making the procedure suitable
for large dense networks. However our likelihood can be computed in O(n+m) time, where m are
the number of edges. This disparity between inference and likelihood suggests that in future it may
be possible to improve the scalability of the model on sparse networks, wherem� n2. Another way
to scale up the model would be to investigate parameterising the network using the sufficient statis-
tics of triangles, instead of edges as in [21]. Others [7] have found that non-conjugate likelihoods
can yield improved predictions—thus adapting our scheme to work with non-conjugate likelihoods
and doing hyperparameter inference could also be fruitful next steps.
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