
Bayesian Recurrent Neural Networks

Meire Fortunato 1 Charles Blundell 1 Oriol Vinyals 1

Abstract
In this work we explore a straightforward varia-
tional Bayes scheme for Recurrent Neural Net-
works. Firstly, we show that a simple adaptation
of truncated backpropagation through time can
yield good quality uncertainty estimates and su-
perior regularisation at only a small extra com-
putational cost during training. Secondly, we
demonstrate how a novel kind of posterior ap-
proximation yields further improvements to the
performance of Bayesian RNNs. We incorpo-
rate local gradient information into the approx-
imate posterior to sharpen it around the current
batch statistics. This technique is not exclusive
to recurrent neural networks and can be applied
more widely to train Bayesian neural networks.
We also empirically demonstrate how Bayesian
RNNs are superior to traditional RNNs on a lan-
guage modelling benchmark and an image cap-
tioning task, as well as showing how each of
these methods improve our model over a vari-
ety of other schemes for training them. We also
introduce a new benchmark for studying uncer-
tainty for language models so future methods can
be easily compared.

1. Introduction
Recurrent Neural Networks (RNNs) achieve state-of-the-
art performance on a wide range of sequence prediction
tasks (Wu et al., 2016; Amodei et al., 2015; Jozefowicz
et al., 2016; Zaremba et al., 2014; Lu et al., 2016). In this
work we shall examine how to add uncertainty and regu-
larisation to RNNs by means of applying Bayesian meth-
ods to training. Bayesian methods give RNNs another way
to express their uncertainty (via the parameters). At the
same time, by using a prior to integrate out the parameters
to average across many models during training, this gives
a regularisation effect to the network. Recent approaches

1DeepMind. Correspondence to: Meire Fortunato
<meirefortunato@google.com>, Charles Blundell <cblun-
dell@google.com>, Oriol Vinyals <vinyals@google.com>.

either attempt to justify dropout (Srivastava et al., 2014)
and weight decay as a variational inference scheme (Gal &
Ghahramani, 2016), or apply Stochastic Gradient Langevin
dynamics (Welling & Teh, 2011, SGLD) to truncated back-
propagation in time directly (Gan et al., 2016).

Interestingly, recent work has not explored further directly
apply a variational Bayes inference scheme (Beal, 2003)
for RNNs as was done in Graves (2011). We derive a
straightforward approach based upon Bayes by Backprop
(Blundell et al., 2015) that we show works well on large
scale problems. Our approach is a simple alteration to
truncated backpropagation through time that results in an
estimate of the posterior distribution on the weights of
the RNN. Applying Bayesian methods to successful deep
learning models affords two advantages: explicit represen-
tations of uncertainty and regularisation. Our formulation
explicitly leads to a cost function with an information theo-
retic justification by means of a bits-back argument (Hinton
& Van Camp, 1993) where a KL divergence acts as a regu-
lariser.

The form of the posterior in variational inference shapes
the quality of the uncertainty estimates and hence the over-
all performance of the model. We shall show how perfor-
mance of the RNN can be improved by means of adapting
(“sharpening”) the posterior locally to a batch. This sharp-
ening adapts the variational posterior to a batch of data us-
ing gradients based upon the batch. This can be viewed as
a hierarchical distribution, where a local batch gradient is
used to adapt a global posterior, forming a local approx-
imation for each batch. This gives a more flexible form
to the typical assumption of Gaussian posterior when vari-
ational inference is applied to neural networks, which re-
duces variance. This technique can be applied more widely
across other variational Bayes models.

The contributions of our work are as follows:

• We show how Bayes by Backprop (BBB) can be effi-
ciently applied to RNNs.

• We develop a novel technique which reduces the vari-
ance of BBB, and which can be widely adopted in
other maximum likelihood frameworks.

• We improve performance on two widely studied

ar
X

iv
:1

70
4.

02
79

8v
2

 [
cs

.L
G

]
 1

1
A

pr
 2

01
7

Bayesian Recurrent Neural Networks

benchmarks outperforming established regularisation
techniques such as dropout by a big margin.

• We introduce a new benchmark for studying uncer-
tainty of language models.

The remainder of the paper is organised as follows. Sec-
tion 2 and Section 3 review Bayes by Backprop and Back-
prop through time, respectively. Section 4 derives Bayes
by Backprop for RNNs, whilst Section 5 describes poste-
rior sharpening. We briefly review related work in Sec-
tion 6. Experimental evaluation is in Section 7, and finally
we conclude with a discussion in Section 8.

2. Bayes by Backprop
Bayes by Backprop (Graves, 2011; Blundell et al., 2015) is
a variational inference (Wainwright et al., 2008) scheme for
learning the posterior distribution on the weights of a neu-
ral network. The posterior distribution on parameters of the
network θ ∈ Rd, q(θ) is typically taken to be a Gaussian
with mean parameter µ ∈ Rd and standard deviation pa-
rameter σ ∈ Rd, denoted N (θ|µ, σ), noting that we use a
diagonal covariance matrix, and where d is the dimension-
ality of the parameters of the network (typically in the order
of millions). Let log p(y|θ, x) be the log-likelihood of the
neural network, then the network is trained by minimising
the variational free energy:

L(θ) = Eq(θ)
[
log

q(θ)

p(y|θ, x)p(θ)

]
, (1)

where p(θ) is a prior on the parameters.

Algorithm 1 shows the Bayes by Backprop Monte Carlo
procedure for minimising (1) with respect to the mean and
standard deviation parameters of the posterior q(θ).

Minimising the variational free energy (1) is equivalent to
maximising the log-likelihood log p(y|θ, x) subject to a KL
complexity term on the parameters of the network that acts
as a regulariser:

L(θ) = −Eq(θ) [log p(y|θ, x)] + KL [q(θ) || p(θ)] . (2)

In the Gaussian case with a zero mean prior, the KL term
can be seen as a form of weight decay on the mean pa-
rameters, where the rate of weight decay is automatically
tuned by the standard deviation parameters of the prior and
posterior.

The uncertainty afforded by Bayes by Backprop trained
networks has been used successfully for training feedfor-
ward models for supervised learning and to aid exploration
by reinforcement learning agents (Blundell et al., 2015;
Lipton et al., 2016; Houthooft et al., 2016), but as yet, it
has not been applied to recurrent neural networks.

Algorithm 1 Bayes by Backprop
Sample ε ∼ N (0, I), ε ∈ Rd.
Set network parameters to θ = µ+ σε.
Do forward propagation and backpropagation as normal.
Let g be the gradient with respect to θ from backpropa-
gation.
Let gKLθ , gKLµ , gKLσ be the gradients of logN (θ|µ, σ)−
log p(θ) with respect to θ, µ and σ respectively.
Update µ according to the gradient g + gKLθ + gKLµ .
Update σ according to the gradient (g + gKLθ)ε+ gKLσ .

3. Backprop Through Time
The core of an RNN, f , is a neural network that maps the
RNN state at step t, st and an input observation xt to a new
RNN state st+1, f : (st, xt) 7→ st+1.

For concreteness an LSTM core (Hochreiter & Schmidhu-
ber, 1997) has a state st = (ct, ht) where c is an internal
core state and h is the exposed state. Intermediate gates
modulate the effect of the inputs on the outputs, namely the
input gate it, forget gate ft and output gate ot. The rela-
tionship between the inputs, outputs and internal gates of
an LSTM cell (without peephole connections) are as fol-
lows:

it = σ(Wi[xt, ht−1]T + bi),

ft = σ(Wf [xt, ht−1]T + bf),

ct = ftct−1 + it tanh(Wc[xt, ht−1] + bc),

ot = σ(Wo[xt, ht−1]T + bo),

ht = ot tanh(ct),

where Wi (bi), Wf (bf), Wc (bc) and Wo (bo) are the
weights (biases) affecting the input gate, forget gate, cell
update, and output gate respectively.

An RNN can be trained on a sequence of length T by back-
propagation through time where the RNN is unrolled T
times into a feedforward network. That is, by forming the
feedforward network with inputs x1, x2, . . . , xT and initial
state s0:

s1 = f(s0, x1),

s2 = f(s1, x2),

. . .

sT = f(sT−1, xT), (3)

where sT is the final state of the RNN. We shall refer to
an RNN core unrolled for T steps as in (3) by s1:T =
FT (x1:T , s0), where x1:T is the sequence of input vectors
and s1:T is the sequence of corresponding states. Note that
the truncated version of the algorithm can be seen as taking
s0 as the last state of the previous batch, sT .

2

Bayesian Recurrent Neural Networks

Figure 1. Illustration of BBB applied to an RNN.

RNN parameters are learnt in much the same way as in a
feedforward neural network. A loss (typically after further
layers) is applied to the states s1:T of the RNN, and then
backpropagation is used to update the weights of the net-
work. Crucially, the weights at each of the unrolled step
are shared. Thus each weight of the RNN core receives
T gradient contributions when the RNN is unrolled for T
steps.

4. Truncated Bayes by Backprop Through
Time

Applying BBB to RNNs is depicted in Figure 1 where the
weight matrices of the RNN are drawn from a distribution
(learnt by BBB). However, this direct application raises two
questions: when to sample the parameters of the RNN, and
how to weight the contribution of the KL regulariser of (2).
We shall briefly justify the adaptation of BBB to RNNs,
given in Algorithm 2 below.

The variational free energy of (2) for an RNN on a sequence
of length T is:

L(θ) = −Eq(θ) [log p(y1:T |θ, x1:T)]

+ KL [q(θ) || p(θ)] , (4)

where p(y1:T |θ, x1:T) is the likelihood of a sequence pro-
duced when the states of an unrolled RNN FT are fed into
an appropriate probability distribution. The parameters of
the entire network are θ. Although the RNN is unrolled T
times, each weight is penalised just once by the KL term,
rather than T times. Also clear from (4) is that when a
Monte Carlo approximation is taken to the expectation, the
parameters θ should be held fixed throughout the entire se-
quence.

Two complications arise to the above naive derivation in
practice: firstly, sequences are often long enough and mod-

els sufficiently large, that unrolling the RNN for the whole
sequence is prohibitive. Secondly, to reduce variance in the
gradients, more than one sequence is trained at a time. Thus
the typical regime for training RNNs involves training on
mini-batches of truncated sequences.

Let B be the number of mini-batches and C the number of
truncated sequences (“cuts”), then we can write (4) as:

L(θ) = −Eq(θ)

[
log

B∏
b=1

C∏
c=1

p(y(b,c)|θ, x(b,c))

]
+ KL [q(θ) || p(θ)] , (5)

where the (b, c) superscript denotes elements of cth trun-
cated sequence in the bth minibatch. Thus the free energy
of mini-batch b of a truncated sequence c can be written as:

L(b,c)(θ) = −Eq(θ)
[
log p(y(b,c)|θ, x(b,c), s(b,c)prev)

]
+ w

(b,c)
KL KL [q(θ) || p(θ)] , (6)

where w
(b,c)
KL distributes the responsibility of the KL

cost among minibatches and truncated sequences (thus∑B
b=1

∑C
c=1 w

(b,c)
KL = 1), and s

(b,c)
prev refers to the initial

state of the RNN for the minibatch x(b,c). In practice, we
pick w(b,c)

KL = 1
CB so that the KL penalty is equally dis-

tributed among all mini-batches and truncated sequences.
The truncated sequences in each subsequent mini-batches
are picked in order, and so s(b,c)prev is set to the last state of
the RNN for x(b,c−1).

Finally, the question of when to sample weights follows
naturally from taking a Monte Carlo approximations to (6):
for each minibatch, sample a fresh set of parameters.

Algorithm 2 Bayes by Backprop for RNNs
Sample ε ∼ N (0, I), ε ∈ Rd.
Set network parameters to θ = µ+ σε.
Sample a minibatch of truncated sequences (x, y).
Do forward propagation and backpropagation as normal
on minibatch.
Let g be the gradient with respect to θ from backpropa-
gation.
Let gKLθ , gKLµ , gKLσ be the gradients of logN (θ|µ, σ)−
log p(θ) w.r.t. θ, µ and σ respectively.

Update µ according to the gradient g+
1
C g

KL
θ

B +
gKLµ
BC .

Update σ according to the gradient
(
g+ 1

C g
KL
θ

B

)
ε+

gKLσ
BC .

5. Posterior Sharpening
The choice of variational posterior q(θ) as described in
Section 4 can be enhanced by adding side information that

3

Bayesian Recurrent Neural Networks

makes the posterior over the parameters more accurate,
thus reducing variance of the learning process. This “sharp-
ened” posterior yields more stable optimisation, a common
pitfall of Bayesian approaches to train neural networks. We
chose the side information to be the minibatch of data (in-
puts and targets) (x, y) sampled from the training set. This
has the advantage that weights are sampled per minibatch,
so that matrix-matrix operations can still be carried. In this
section we explain how we construct such q(θ|(x, y)).

A challenging aspect of modelling the variational posterior
q(θ|(x, y)) is the large number of dimensions of θ ∈ Rd.
When the dimensionality is not in the order of millions, a
powerful non-linear function (such as a neural network) can
be used which transforms observations (x, y) to the param-
eters of a Gaussian distribution, as proposed in (Kingma &
Welling, 2013; Rezende et al., 2014). Unfortunately, this
neural network would have far too many parameters, mak-
ing this approach unfeasible.

Given that the loss − log p(y|θ, x) is differentiable with
respect to θ, we propose to parameterise q as a linear
combination of θ and gθ = −∇θ log p(y|θ, x), both d-
dimensional vectors. Intuitively, we are applying a cor-
rection which follows the gradient of the loss and which
should, indeed, be helpful to minimise this loss.

Thus, we can define a hierarchical posterior of the form

q(θ|(x, y)) =

∫
q(θ|ϕ, (x, y))q(ϕ)dϕ, (7)

with µ, σ ∈ Rd, and q(ϕ) = N (ϕ|µ, σ) – the same as in the
standard BBB method. Finally, let ∗ denote element-wise
multiplication, we then have

q(θ|ϕ, (x, y)) = N (θ|ϕ− η ∗ gϕ, σ2
0I), (8)

where η ∈ Rd is a free parameter to be learnt and σ0 a
scalar hyper-parameter of our model. η can be interpreted
as a per-parameter learning rate.

During training, we get θ ∼ q(θ|(x, y)) via ancestral sam-
pling to optimise the loss

L(µ, σ, η) = E(x,y)[Eq(ϕ)q(θ|ϕ,(x,y))[L(x, y, θ, ϕ|µ, σ, η)]],
(9)

with L(x, y, θ, ϕ|µ, σ, η) given by

L(x, y, θ, ϕ|µ, σ, η) = − log p(y|θ, x) +

KL [q(θ|ϕ, (x, y)) || p(θ|ϕ)] +

1

C
KL [q(ϕ) || p(ϕ)] ,

where µ, σ, η are our model parameters, and p are the pri-
ors for the distributions defining q (for exact details of these
distributions see Section 7). The bound on the true data

likelihood which yields eq. (9) is derived in the supple-
mentary material. Algorithm 3 presents how learning is
performed in practice.

Unlike regular BBB where the KL terms can be ignored
during inference (see supplementary material), there are
two options for doing inference under posterior sharp-
ening. The first involves using q(ϕ) and ignoring
any KL terms, similar to regular BBB. The second in-
volves using q(θ|(x, y)) which requires using the term
KL [q(θ|ϕ, (x, y)) || p(θ|ϕ)] yielding an upper bound on
perplexity (lower bound in log probability; see supplemen-
tary material for details). A comparison of the two infer-
ence methods is provided in the next section.

Algorithm 3 BBB with Posterior Sharpening
Sample a minibatch (x, y) of truncated sequences.
Sample ϕ ∼ q(ϕ) = N (ϕ|µ, σ).
Let gϕ = −∇ϕ log p(y|ϕ, x).
Sample θ ∼ q(θ|ϕ, (x, y)) = N (θ|ϕ− η ∗ gϕ, σ2

0I).
Compute the gradients of eq. (9) w.r.t. (µ, σ, η).
Update (µ, σ, η).

6. Related work
We note that the procedure of sharpening the posterior as
explained above has similarities with other techniques. Per-
haps the most obvious one is line search: indeed, η is
a trained parameter that does line search along the gra-
dient direction. Probabilistic interpretations have been
given to line search in e.g. Mahsereci & Hennig (2015),
but ours is the first that uses a variational posterior with
the reparametrization trick/perturbation analysis gradient.
Also, the probabilistic treatment to line search can also be
interpreted as a trust region method.

Another related technique is dynamic evaluation (Mikolov
et al., 2010), which trains an RNN during evaluation of the
model with a fixed learning rate. The update applied in
this case is cumulative, and only uses previously seen data.
Thus, they can take a purely deterministic approach and ig-
nore any KL between a posterior with privileged informa-
tion and a prior. As we will show in Section 7, performance
gains can be significant as the data exhibits many short term
correlations.

Lastly, learning to optimise (or learning to learn) (Li & Ma-
lik, 2016; Andrychowicz et al., 2016) is related in that a
learning rate is learned so that it produces better updates
than those provided by e.g. AdaGrad (Duchi et al., 2011) or
Adam (Kingma & Ba, 2014). Whilst they train a paramet-
ric model, we treat these as free parameters (so that they
can adapt more quickly to the non-stationary distribution
w.r.t. parameters). Notably, we use gradient information
to inform a variational posterior so as to reduce variance

4

Bayesian Recurrent Neural Networks

of Bayesian Neural Networks. Thus, although similar in
flavour, the underlying motivations are quite different.

Applying Bayesian methods to neural networks has a long
history, with most common approximations having been
tried. Buntine & Weigend (1991) propose various maxi-
mum a posteriori schemes for neural networks, including
an approximate posterior centered at the mode. Buntine
& Weigend (1991) also suggest using second order deriva-
tives in the prior to encourage smoothness of the result-
ing network. Hinton & Van Camp (1993) proposed using
variational methods for compressing the weights of neural
networks as a regulariser. Hochreiter et al. (1995) suggest
an MDL loss for single layer networks that penalises non-
robust weights by means of an approximate penalty based
upon perturbations of the weights on the outputs. MacKay
(1995) investigated using the Laplace approximation for
capturing the posterior of neural networks. Neal (2012) in-
vestigated the use of hybrid Monte Carlo for training neural
networks, although it has so far been difficult to apply these
to the large sizes of networks considered here.

More recently Graves (2011) derived a variational infer-
ence scheme for neural networks and Blundell et al. (2015)
extended this with an update for the variance that is un-
biased and simpler to compute. Graves (2016) derives a
similar algorithm in the case of a mixture posterior. Sev-
eral authors have claimed that dropout (Srivastava et al.,
2014) and Gaussian dropout (Wang & Manning, 2013) can
be viewed as approximate variational inference schemes
(Gal & Ghahramani, 2015; Kingma et al., 2015, respec-
tively). Gal & Ghahramani (2016) goes a step further
and uses Monte Carlo dropout for LSTMs (we compare
to this results in our experiments). Variational methods
typically underestimate the uncertainty in the posterior (as
they are mode seeking, akin to the Laplace approximation),
whereas expectation propagation methods are mode aver-
aging and so tend to overestimate uncertainty. Nonethe-
less, several papers explore applying expectation propa-
gation to neural networks: Soudry et al. (2014) derive a
closed form approximate online expectation propagation
algorithm, whereas Hernández-Lobato & Adams (2015)
proposed using multiple passes of assumed density filtering
(in combination with early stopping) attaining good perfor-
mance on a number of small data sets. Hasenclever et al.
(2015) derive a distributed expectation propagation scheme
with SGLD (Welling & Teh, 2011) as an inner loop. Others
have also considered applying SGLD to neural networks
(Li et al., 2015) and Gan et al. (2016) more recently used
SGLD for LSTMs (we compare to these results in our ex-
periments).

7. Experiments
We present the results of our method for a language mod-
elling benchmark and an image caption generation task.

7.1. Language Modelling

We evaluated our model on the Penn Treebank (Marcus
et al., 1993) benchmark, a task consisting on next word pre-
diction. We used the network architecture from Zaremba
et al. (2014), a simple yet strong baseline on this task, and
for which there is an open source implementation1. The
baseline consists of an RNN with LSTM cells and a spe-
cial regularisation technique, where the dropout operator
is only applied to the non-recurrent connections. We keep
the network configuration unchanged, but instead of using
dropout we apply our Bayes by Backprop formulation. Our
goal is to demonstrate the effect of applying BBB to a pre-
existing, well studied architecture.

To train our models, we tuned the parameters on the prior
distribution, the learning rate and its decay. The weights
were initialised randomly and we used gradient descent
with gradient clipping for optimisation, closely following
Zaremba et al. (2014)’s “medium” recipe.

As in Blundell et al. (2015), the prior of the network
weights θ was taken to be a scalar mixture of two Gaus-
sian densities with zero mean and variances σ2

1 and σ2
2 .

p(θ) =
∏
j

(
πN (θj |0, σ2

1) + (1− π)N (θj |0, σ2
2)
)
, (10)

where θj is the j-th weight of the network. We searched
π ∈ { 14 ,

1
2 ,

3
4}, log σ1 ∈ {0,−1,−2} and log σ2 ∈

{−6,−7,−8}.

For speed purposes, during training we used one sample
from the posterior for estimating the gradients and comput-
ing the (approximate) KL-divergence. For inference, we
experimented with either computing the expected loss via
Monte Carlo sampling, or using the mean of the posterior
distribution as the parameters of the network (MAP esti-
mate). We observed that the results improved as we in-
creased the number of samples but they were not signifi-
cantly better than taking the mean (as was also reported by
(Graves, 2011; Blundell et al., 2015)). For convenience, in
Table 1 we report our numbers using the mean of the con-
verged distribution, as there is no computation overhead
w.r.t. a standard LSTM model.

In Table 1, we report results for the medium LSTM config-
uration (2 layers with 650 units each) from Zaremba et al.
(2014), which we refer to as “LSTM dropout”. We also

1https://github.com/tensorflow/models/
blob/master/tutorials/rnn/ptb/ptb_word_lm.
py

5

https://github.com/tensorflow/models/blob/master/tutorials/rnn/ptb/ptb_word_lm.py
https://github.com/tensorflow/models/blob/master/tutorials/rnn/ptb/ptb_word_lm.py
https://github.com/tensorflow/models/blob/master/tutorials/rnn/ptb/ptb_word_lm.py

Bayesian Recurrent Neural Networks

Table 1. Word-level perplexity on the Penn Treebank language
modelling task (lower is better).

Model (medium) Validation Test

LSTM 120.7 114.5
LSTM dropout 86.2 82.1

SGLD N/A 109.1
SGLD dropout N/A 99.6

Variational LSTM (tied weights) 81.8 79.7
Variational LSTM (tied weights, MS) N/A 79.0

Bayes by Backprop (BBB) 78.8 75.5
BBB with Posterior Sharpening ≤ 77.8 ≤ 74.8

Model (medium)
with Dynamic Evaluation Validation Test

LSTM dropout 79.7 77.1
Bayes by Backprop (BBB) 73.4 70.7

BBB with Posterior Sharpening ≤ 72.6 ≤ 69.8

included the numbers for two other Bayesian approaches:
Variational LSTMs by Gal & Ghahramani (2016) and
Stochastic Gradient Langevin dynamics (SGLD) by Gan
et al. (2016). Finally, we added dynamic evaluation
(Mikolov et al., 2010) results with a learning rate of 0.1,
which was found via cross validation.

As with other VAE-related RNNs (Fabius & van Amers-
foort, 2014; Bayer & Osendorfer, 2014; Chung et al., 2015)
perplexities using posterior sharpening are reported includ-
ing a KL penalty KL [q(θ|ϕ, (x, y)) || p(θ|ϕ)] in the log
likelihood term (the KL is computed exactly, not sampled).
For posterior sharpening we use a hierarchical prior for θ:
p(θ|ϕ) = N (θ|ϕ, σ2

0I) which expresses our belief that a
priori, the network parameters θ will be much like the data
independent parameters ϕ with some small Gaussian per-
turbation. In our experiments we swept over σ0 on the
validation set, and found σ0 = 0.02 to perform well, al-
though results were not particularly sensitive to this. Note
that with posterior sharpening, the perplexities reported are
upper bounds (as the likelihoods are lower bounds).

Lastly, we tested the variance reduction capabilities of pos-
terior sharpening by analysing the perplexity attained by
the best models reported in Table 1. Standard BBB yields
258 perplexity after only one epoch, whereas the model
with posterior sharpening is better at 227.

Lower perplexities on the Penn Treebank task can be
achieved by varying the model architecture, which should
be complementary to our work of treating weights as ran-
dom variables—we are simply interested in assessing the
impact of our method on an existing architecture, rather
than absolute state-of-the-art. See Kim et al. (2015); Zilly
et al. (2016); Merity et al. (2016), for a report on recent ad-
vances on this benchmark, where they achieve perplexities
of 70.9 on the test set.

Figure 2. Entropy gap ∆Hp (eq. (12)) between reversed and reg-
ular Penn Treebank test sets × number of samples.

7.1.1. UNCERTAINTY ANALYSIS

We used the Penn Treebank test set, which is a long se-
quence of ≈ 80K words, and reversed it. Thus, the “re-
versed” test set first few words are: “us with here them see
not may we ...” which correspond to the last words of the
standard test set: “... we may not see them here with us”.

Let V be the vocabulary of a task. For a given input se-
quence x = x1:T and a probabilistic model p, we define
the entropy of x under p, Hp[x], by

Hp[xi] =
∑
w∈V

p(w|x1:i−1) log
1

p(w|x1:i−1)

Hp[x] =

T∑
i=1

Hp[xi]. (11)

Let 1
THp[X] = Hp[X] , i.e., the per word entropy. Let

X be the standard Penn Treebank test set, and Xrev the re-
versed one. For a given probabilistic model p, we define
the entropy gap ∆Hp by

∆Hp = Hp[Xrev]−Hp[X]. (12)

Since Xrev clearly does not come from the training data
distribution (reversed English does not look like proper En-
glish), we expect ∆Hp to be positive and large. Namely, if
we take the per word entropy of a model as a proxy for the
models’ certainty (low entropy means the model is confi-
dent about its prediction), then the overall certainty of well
calibrated models over Xrev should be lower than over X .
Thus, Hp[Xrev] > Hp[X]. When comparing two distribu-
tions, we expect the better calibrated one to have a larger
∆Hp.

In Figure 2, we plotted ∆Hp for the BBB and the baseline
dropout LSTM model. The BBB model has a gap of about

6

Bayesian Recurrent Neural Networks

Baseline: a white plate with a pizza on it
BBB: a small white dog eating a piece of
pizza

Baseline: a sheep standing in a field of grass
BBB: a sheep standing on top of a lush green
field

Baseline: a pile of luggage sitting on top of a
wooden floor
BBB: a close up of a person holding a skate board

Baseline: a small boat in a large body of
water
BBB: a boat traveling down a river next to a
bridge

Baseline: a man riding a motorcycle down a
street
BBB: a police officer riding a motorcycle down
a street

Baseline: a large clock mounted to the side
of a building
BBB: a clock hanging from the ceiling of a
building

Figure 3. Image captioning results on MSCOCO development set.

0.67 nats/word when taking 10 samples, and slightly below
0.65 when using the posterior mean. In contrast, the model
using MC Dropout (Gal & Ghahramani, 2015) is less well
calibrated and is below 0.58 nats/word. However, when
“turning off” dropout (i.e., using the mean field approxi-
mation), ∆Hp improves to below 0.62 nats/word.

We also note that the absolute entropy of both models is
nowhere near uniform, so future research should strive to
improve further neural networks uncertainty estimates. For
instance, the BBB mean has entropy of 4.48 on the reversed
set, which is still far below 9.2 nats/word (uniform).

7.2. Image Caption Generation

We also applied Bayes by Backprop for RNNs to image
captioning. Our experiments were based upon the model
described in Vinyals et al. (2016), where a state-of-the-art
pre-trained convolutional neural network (CNN) was used
to map an image to a high dimensional space, and this rep-
resentation was taken to be the initial state of an LSTM.
The LSTM model was trained to predict the next word on
a sentence conditioned on the image representation and all

Table 2. Image captioning results on MSCOCO development set.

Model Perplexity BLUE-4 CIDER

Show and Tell 8.3 28.8 89.8
Bayes by Backprop (BBB) 8.1 30.2 96.0

the previous words in the image caption. We kept the CNN
architecture unchanged, and used an LSTM trained using
Bayes by Backprop rather than the traditional LSTM with
dropout regularisation. As in the case for language mod-
elling, this work conveniently provides an open source im-
plementation2.

We used the same prior distribution on the weights of the
network (10) as we did for the language modelling task,
and searched over the same hyper-parameters.

We used the MSCOCO (Lin et al., 2014) data set and report
perplexity, BLUE-4, and CIDER scores on Table 2 com-
pared to the Show and Tell model (Vinyals et al., 2016),
which was the winning entry of the captioning challenge
in 20153. We observe significant improvements in BLUE
and CIDER, outperforming the dropout baseline by a large
margin. Moreover, a random sample of the captions that
were different for both the baseline and BBB is shown in
Figure 3. Besides the clear quantitative improvement, it is
useful to visualise qualitatively the performance of BBB,
which indeed generally outperforms the strong baseline,
winning in most cases.

As in the case of Penn Treebank, we chose a performant,
open source model. Captioning models that use spatial at-

2https://github.com/tensorflow/models/
tree/master/im2txt

3The winning entry was an ensemble of many models, includ-
ing some with fine tuning w.r.t. the image model. In this paper,
though, we report single model performance.

7

https://github.com/tensorflow/models/tree/master/im2txt
https://github.com/tensorflow/models/tree/master/im2txt

Bayesian Recurrent Neural Networks

tention, combined with losses that optimise CIDER directly
(rather than a surrogate loss as we do) achieve over 100
CIDER points (Lu et al., 2016; Liu et al., 2016).

8. Discussion
We have shown how to adapt Bayes by Backprop to Re-
current Neural Networks and then enhanced it further by
introducing the idea of posterior sharpening: a hierarchi-
cal posterior on the weights of neural networks that are pa-
rameterised by a gradient of the model. Posterior sharp-
ening allows a neural network to adapt locally to batches
of data and we have demonstrated that this helps on sev-
eral challenging domains involving sizeable RNNs: lan-
guage modelling and image captioning. We show how
two open source, widely available models can be improved
by adding BBB. We demonstrated that not only do BBB
RNNs often have superior performance to their correspond-
ing baseline model, BBB RNNs are also better regularised
and have superior uncertainty properties in terms of un-
certainty on out-of-distribution data. Furthermore, BBB
RNNs through their uncertainty estimates show signs of
knowing what they know, and when they do not, a criti-
cal property for many real world applications such as self-
driving cars, healthcare, game playing, and robotics.

Everything from our work can be applied on top of other
enhancements to RNN/LSTM models (and other non-
recurrent architectures), and the empirical evidence com-
bined with improvements such as posterior sharpening
makes variational Bayes methods look very promising. We
are exploring further research directions and wider adop-
tion of the techniques presented in our work.

Acknowledgements
We would like to thank Grzegorz Swirszcz, Daan Wier-
stra, Vinod Gopal Nair, Koray Kavukcuoglu, Chris Shal-
lue, James Martens, Danilo J. Rezende, James Kirkpatrick,
Alex Graves, Jacob Menick, Yori Zwols, Frederick Besse
and many others at DeepMind for insightful discussions
and feedback on this work.

References
Amodei, Dario, Anubhai, Rishita, Battenberg, Eric, Case,

Carl, Casper, Jared, Catanzaro, Bryan, Chen, Jingdong,
Chrzanowski, Mike, Coates, Adam, Diamos, Greg, et al.
Deep speech 2: End-to-end speech recognition in english
and mandarin. arXiv preprint arXiv:1512.02595, 2015.

Andrychowicz, Marcin, Denil, Misha, Gomez, Sergio,
Hoffman, Matthew W, Pfau, David, Schaul, Tom, and
de Freitas, Nando. Learning to learn by gradient descent
by gradient descent. number, pp. 3981–3989, 2016.

Bayer, Justin and Osendorfer, Christian. Learning stochas-
tic recurrent networks. arXiv preprint arXiv:1411.7610,
2014.

Beal, Matthew James. University of London United King-
dom, 2003.

Blundell, Charles, Cornebise, Julien, Kavukcuoglu, Koray,
and Wierstra, Daan. Weight uncertainty in neural net-
works. arXiv preprint arXiv:1505.05424, 2015.

Buntine, Wray L and Weigend, Andreas S. Bayesian back-
propagation. Complex systems, 5(6):603–643, 1991.

Chung, Junyoung, Kastner, Kyle, Dinh, Laurent, Goel,
Kratarth, Courville, Aaron C, and Bengio, Yoshua. A
recurrent latent variable model for sequential data. num-
ber, pp. 2980–2988, 2015.

Duchi, John, Hazan, Elad, and Singer, Yoram. Adaptive
subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research,
12(Jul):2121–2159, 2011.

Fabius, Otto and van Amersfoort, Joost R. Variational re-
current auto-encoders. arXiv preprint arXiv:1412.6581,
2014.

Gal, Yarin and Ghahramani, Zoubin. Dropout as a bayesian
approximation: Representing model uncertainty in deep
learning. arXiv preprint arXiv:1506.02142, 2, 2015.

Gal, Yarin and Ghahramani, Zoubin. A theoretically
grounded application of dropout in recurrent neural net-
works. number, pp. 1019–1027, 2016.

Gan, Zhe, Li, Chunyuan, Chen, Changyou, Pu, Yunchen,
Su, Qinliang, and Carin, Lawrence. Scalable bayesian
learning of recurrent neural networks for language mod-
eling. arXiv preprint arXiv:1611.08034, 2016.

Graves, Alex. Practical variational inference for neural net-
works. number, pp. 2348–2356, 2011.

Graves, Alex. Stochastic backpropagation through mixture
density distributions. arXiv preprint arXiv:1607.05690,
2016.

Hasenclever, Leonard, Lienart, Thibaut, Vollmer, Sebas-
tian, Webb, Stefan, Lakshminarayanan, Balaji, Blun-
dell, Charles, and Whye Teh, Yee. Distributed bayesian
learning with stochastic natural-gradient expectation
propagation and the posterior server. arXiv preprint
arXiv:1512.09327, 2015.

Hernández-Lobato, José Miguel and Adams, Ryan.
Probabilistic backpropagation for scalable learning of
bayesian neural networks. number, pp. 1861–1869,
2015.

8

Bayesian Recurrent Neural Networks

Hinton, Geoffrey E and Van Camp, Drew. Keeping the
neural networks simple by minimizing the description
length of the weights. number, pp. 5–13. ACM, 1993.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long short-
term memory. Neural computation, 9(8):1735–1780,
1997.

Hochreiter, Sepp, Schmidhuber, Jürgen, et al. Simplify-
ing neural nets by discovering flat minima. Advances
in Neural Information Processing Systems, pp. 529–536,
1995.

Houthooft, Rein, Chen, Xi, Duan, Yan, Schulman, John,
De Turck, Filip, and Abbeel, Pieter. Curiositydriven ex-
ploration in deep reinforcement learning via bayesian
neural networks. arXiv preprint arXiv:1605.09674,
2016.

Jozefowicz, Rafal, Vinyals, Oriol, Schuster, Mike, Shazeer,
Noam, and Wu, Yonghui. Exploring the limits of
language modeling. arXiv preprint arXiv:1602.02410,
2016.

Kim, Yoon, Jernite, Yacine, Sontag, David, and Rush,
Alexander M. Character-aware neural language models.
arXiv preprint arXiv:1508.06615, 2015.

Kingma, Diederik and Ba, Jimmy. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Kingma, Diederik P and Welling, Max. Auto-encoding
variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Kingma, Diederik P, Salimans, Tim, and Welling, Max.
Variational dropout and the local reparameterization
trick. number, pp. 2575–2583, 2015.

Li, Chunyuan, Chen, Changyou, Carlson, David, and
Carin, Lawrence. Preconditioned stochastic gradient
langevin dynamics for deep neural networks. arXiv
preprint arXiv:1512.07666, 2015.

Li, Ke and Malik, Jitendra. Learning to optimize. arXiv
preprint arXiv:1606.01885, 2016.

Lin, Tsung-Yi, Maire, Michael, Belongie, Serge, Hays,
James, Perona, Pietro, Ramanan, Deva, Dollár, Piotr, and
Zitnick, C Lawrence. Microsoft coco: Common objects
in context. number, pp. 740–755. Springer, 2014.

Lipton, Zachary C, Gao, Jianfeng, Li, Lihong, Li, Xiu-
jun, Ahmed, Faisal, and Deng, Li. Efficient exploration
for dialogue policy learning with bbq networks & replay
buffer spiking. arXiv preprint arXiv:1608.05081, 2016.

Liu, Siqi, Zhu, Zhenhai, Ye, Ning, Guadarrama, Sergio,
and Murphy, Kevin. Optimization of image description
metrics using policy gradient methods. arXiv preprint
arXiv:1612.00370, 2016.

Lu, Jiasen, Xiong, Caiming, Parikh, Devi, and Socher,
Richard. Knowing when to look: Adaptive attention via
a visual sentinel for image captioning. arXiv preprint
arXiv:1612.01887, 2016.

MacKay, David JC. Probable networks and plausible pre-
dictionsa review of practical bayesian methods for super-
vised neural networks. Network: Computation in Neural
Systems, 6(3):469–505, 1995.

Mahsereci, Maren and Hennig, Philipp. Probabilistic line
searches for stochastic optimization. number, pp. 181–
189, 2015.

Marcus, Mitchell P, Marcinkiewicz, Mary Ann, and San-
torini, Beatrice. Building a large annotated corpus of
english: The penn treebank. Computational linguistics,
19(2):313–330, 1993.

Merity, Stephen, Xiong, Caiming, Bradbury, James, and
Socher, Richard. Pointer sentinel mixture models. arXiv
preprint arXiv:1609.07843, 2016.

Mikolov, Tomas, Karafiát, Martin, Burget, Lukas, Cer-
nockỳ, Jan, and Khudanpur, Sanjeev. Recurrent neural
network based language model. In Interspeech, pp. 3,
2010.

Neal, Radford M. Bayesian learning for neural networks.
Springer Science & Business Media, 2012.

Rezende, Danilo Jimenez, Mohamed, Shakir, and Wierstra,
Daan. Stochastic backpropagation and approximate in-
ference in deep generative models. number, pp. 1278–
1286, 2014.

Soudry, Daniel, Hubara, Itay, and Meir, Ron. Expectation
backpropagation: Parameter-free training of multilayer
neural networks with continuous or discrete weights.
number, pp. 963–971, 2014.

Srivastava, Nitish, Hinton, Geoffrey E, Krizhevsky, Alex,
Sutskever, Ilya, and Salakhutdinov, Ruslan. Dropout:
a simple way to prevent neural networks from overfit-
ting. Journal of Machine Learning Research, 15(1):
1929–1958, 2014.

Vinyals, Oriol, Toshev, Alexander, Bengio, Samy, and Er-
han, Dumitru. Show and tell: Lessons learned from the
2015 mscoco image captioning challenge. IEEE transac-
tions on pattern analysis and machine intelligence, 2016.

9

Bayesian Recurrent Neural Networks

Wainwright, Martin J, Jordan, Michael I, et al. Graphical
models, exponential families, and variational inference.
Foundations and Trends R© in Machine Learning, 1(1–2):
1–305, 2008.

Wang, Sida I and Manning, Christopher D. Fast dropout
training. number, pp. 118–126, 2013.

Welling, Max and Teh, Yee W. Bayesian learning via
stochastic gradient langevin dynamics. number, pp. 681–
688, 2011.

Wu, Yonghui, Schuster, Mike, Chen, Zhifeng, Le, Quoc V,
Norouzi, Mohammad, Macherey, Wolfgang, Krikun,
Maxim, Cao, Yuan, Gao, Qin, Macherey, Klaus, et al.
Google’s neural machine translation system: Bridging
the gap between human and machine translation. arXiv
preprint arXiv:1609.08144, 2016.

Zaremba, Wojciech, Sutskever, Ilya, and Vinyals, Oriol.
Recurrent neural network regularization. arXiv preprint
arXiv:1409.2329, 2014.

Zilly, Julian Georg, Srivastava, Rupesh Kumar, Koutnı́k,
Jan, and Schmidhuber, Jürgen. Recurrent highway net-
works. arXiv preprint arXiv:1607.03474, 2016.

10

Bayesian Recurrent Neural Networks

A. Supplementary Material
A.1. Additional Captioning examples

Baseline: a person walking on the beach
with a surfboard
BBB: a person with a surfboard on a beach

Baseline: a man is cooking in a large
kitchen
BBB: a man is putting something in the oven

Baseline: a red double decker bus parked
in a parking lot
BBB: a red double decker bus driving
down a street

Baseline: a man riding a skateboard up
the side of a ramp
BBB: a man flying through the air while
riding a skateboard

Figure 4. Additional Captions from MS COCO validation set.

A.2. Derivation of Free Energy for Posterior
Sharpening

Here we turn to deriving the training loss function we
use for posterior sharpening. The basic idea is to take a
variational approximation to the marginal likelihood p(x)
that factorises hierarchically. In particular, we shall as-
sume a hierarchical prior for the parameters such that
p(x) =

∫
p(x|θ)p(θ|ϕ)p(ϕ)dθdϕ. Then we pick a vari-

ational posterior that conditions upon x, and factorises as
q(θ, ϕ|x) = q(θ|ϕ, x)q(ϕ). The expected lower bound on
p(x) is then as follows:

log p(x) (13)

= log

(∫
p(x|θ)p(θ|ϕ)p(ϕ)dθdϕ

)
(14)

≥ Eq(ϕ,θ|x)
[
log

p(x|θ)p(θ|ϕ)p(ϕ)

q(ϕ, θ|x)

]
(15)

= Eq(θ|ϕ,x)q(ϕ)
[
log

p(x|θ)p(θ|ϕ)p(ϕ)

q(θ|ϕ, x)q(ϕ)

]
(16)

= Eq(ϕ)
[
Eq(θ|ϕ,x)

[
log p(x|θ) + log

p(θ|ϕ)

q(θ|ϕ, x)

]
+ log

p(ϕ)

q(ϕ)

]
(17)

= Eq(ϕ)
[
Eq(θ|ϕ,x) [log p(x|θ)]− KL [q(θ|ϕ, x) || p(θ|ϕ)]

]
− KL [q(ϕ) || p(ϕ)] (18)

A.3. Derivation of Predictions with Posterior
Sharpening

Now we consider making predictions. These are done by
means of Bayesian model averaging over the approximate
posterior. In the case of no posterior sharpening, predic-
tions are made by evaluating: Eq(θ) [log p(x̂|θ)]. For pos-
terior sharpening, we derive a bound on a Bayesian model
average over the approximate posterior of ϕ:

Eq(ϕ) [log p(x̂|ϕ)]

= Eq(ϕ)
[
log

∫
p(x̂|θ)p(θ|ϕ)dθ

]
(19)

≥ Eq(ϕ)
[
Eq(θ|ϕ,x)

[
log

p(x̂|θ)p(θ|ϕ)

q(θ|ϕ, x)

]]
(20)

= Eq(ϕ)
[
Eq(θ|ϕ,x) [log p(x̂|θ)]

−KL [q(θ|ϕ, x) || p(θ|ϕ)]] (21)

11

