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Abstract
Domain adaptation is an important open prob-
lem in deep reinforcement learning (RL). In
many scenarios of interest data is hard to ob-
tain, so agents may learn a source policy in a
setting where data is readily available, with the
hope that it generalises well to the target do-
main. We propose a new multi-stage RL agent,
DARLA (DisentAngled Representation Learning
Agent), which learns to see before learning to act.
DARLA’s vision is based on learning a disen-
tangled representation of the observed environ-
ment. Once DARLA can see, it is able to acquire
source policies that are robust to many domain
shifts - even with no access to the target domain.
DARLA significantly outperforms conventional
baselines in zero-shot domain adaptation scenar-
ios, an effect that holds across a variety of RL en-
vironments (Jaco arm, DeepMind Lab) and base
RL algorithms (DQN, A3C and EC).

1. Introduction
Autonomous agents can learn how to maximise future
expected rewards by choosing how to act based on in-
coming sensory observations via reinforcement learning
(RL). Early RL approaches did not scale well to envi-
ronments with large state spaces and high-dimensional
raw observations (Sutton & Barto, 1998). A commonly
used workaround was to embed the observations in a
lower-dimensional space, typically via hand-crafted and/or
privileged-information features. Recently, the advent of
deep learning and its successful combination with RL has
enabled end-to-end learning of such embeddings directly
from raw inputs, sparking success in a wide variety of pre-
viously challenging RL domains (Mnih et al., 2015; 2016;
Jaderberg et al., 2017). Despite the seemingly universal
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efficacy of deep RL, however, fundamental issues remain.
These include data inefficiency, the reactive nature and gen-
eral brittleness of learnt policies to changes in input data
distribution, and lack of model interpretability (Garnelo
et al., 2016; Lake et al., 2016). This paper focuses on one
of these outstanding issues: the ability of RL agents to deal
with changes to the input distribution, a form of transfer
learning known as domain adaptation (Bengio et al., 2013).
In domain adaptation scenarios, an agent trained on a par-
ticular input distribution with a specified reward structure
(termed the source domain) is placed in a setting where the
input distribution is modified but the reward structure re-
mains largely intact (the target domain). We aim to develop
an agent that can learn a robust policy using observations
and rewards obtained exclusively within the source domain.
Here, a policy is considered as robust if it generalises with
minimal drop in performance to the target domain without
extra fine-tuning.

Past attempts to build RL agents with strong domain adap-
tation performance highlighted the importance of learn-
ing good internal representations of raw observations (Finn
et al., 2015; Raffin et al., 2017; Pan & Yang, 2009; Bar-
reto et al., 2016; Littman et al., 2001). Typically, these ap-
proaches tried to align the source and target domain rep-
resentations by utilising observation and reward signals
from both domains (Tzeng et al., 2016; Daftry et al., 2016;
Parisotto et al., 2015; Guez et al., 2012; Talvitie & Singh,
2007; Niekum et al., 2013; Gupta et al., 2017; Finn et al.,
2017; Rajendran et al., 2017). In many scenarios, such as
robotics, this reliance on target domain information can be
problematic, as the data may be expensive or difficult to
obtain (Finn et al., 2017; Rusu et al., 2016). Furthermore,
the target domain may simply not be known in advance.
On the other hand, policies learnt exclusively on the source
domain using existing deep RL approaches that have few
constraints on the nature of the learnt representations of-
ten overfit to the source input distribution, resulting in poor
domain adaptation performance (Lake et al., 2016; Rusu
et al., 2016).

We propose tackling both of these issues by focusing in-
stead on learning representations which capture an underly-
ing low-dimensional factorised representation of the world
and are therefore not task or domain specific. Many nat-
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Figure 1. Schematic representation of DARLA. Yellow represents
the denoising autoencoder part of the model, blue represents the
β-VAE part of the model, and grey represents the policy learning
part of the model.

uralistic domains such as video game environments, sim-
ulations and our own world are well described in terms of
such a structure. Examples of such factors of variation are
object properties like colour, scale, or position; other exam-
ples correspond to general environmental factors, such as
geometry and lighting. We think of these factors as a set of
high-level parameters that can be used by a world graphics
engine to generate a particular natural visual scene (Kulka-
rni et al., 2015). Learning how to project raw observations
into such a factorised description of the world is addressed
by the large body of literature on disentangled representa-
tion learning (Schmidhuber, 1992; Desjardins et al., 2012;
Cohen & Welling, 2014; 2015; Kulkarni et al., 2015; Hin-
ton et al., 2011; Rippel & Adams, 2013; Reed et al., 2014;
Yang et al., 2015; Goroshin et al., 2015; Kulkarni et al.,
2015; Cheung et al., 2015; Whitney et al., 2016; Karalet-
sos et al., 2016; Chen et al., 2016; Higgins et al., 2017).
Disentangled representations are defined as interpretable,
factorised latent representations where either a single latent
or a group of latent units are sensitive to changes in single
ground truth factors of variation used to generate the vi-
sual world, while being invariant to changes in other factors
(Bengio et al., 2013). The theoretical utility of disentangled
representations for supervised and reinforcement learning
has been described before (Bengio et al., 2013; Higgins
et al., 2017; Ridgeway, 2016); however, to our knowledge,
it has not been empirically validated to date.

We demonstrate how disentangled representations can im-
prove the robustness of RL algorithms in domain adapta-
tion scenarios by introducing DARLA (DisentAngled Rep-
resentation Learning Agent), a new RL agent capable
of learning a robust policy on the source domain that
achieves significantly better out-of-the-box performance in
domain adaptation scenarios compared to various base-
lines. DARLA relies on learning a latent state representa-
tion that is shared between the source and target domains,
by learning a disentangled representation of the environ-
ment’s generative factors. Crucially, DARLA does not re-
quire target domain data to form its representations. Our
approach utilises a three stage pipeline: 1) learning to
see, 2) learning to act, 3) transfer. During the first stage,

DARLA develops its vision, learning to parse the world in
terms of basic visual concepts, such as objects, positions,
colours, etc. by utilising a stream of raw unlabelled obser-
vations – not unlike human babies in their first few months
of life (Leat et al., 2009; Candy et al., 2009). In the second
stage, the agent utilises this disentangled visual represen-
tation to learn a robust source policy. In stage three, we
demonstrate that the DARLA source policy is more robust
to domain shifts, leading to a significantly smaller drop in
performance in the target domain even when no further pol-
icy finetuning is allowed (median 270.3% improvement).
These effects hold consistently across a number of differ-
ent RL environments (DeepMind Lab and Jaco/MuJoCo:
Beattie et al., 2016; Todorov et al., 2012) and algorithms
(DQN, A3C and Episodic Control: Mnih et al., 2015; 2016;
Blundell et al., 2016).

2. Framework
2.1. Domain adaptation in Reinforcement Learning

We now formalise domain adaptation scenarios in a rein-
forcement learning (RL) setting. We denote the source
and target domains as DS and DT , respectively. Each
domain corresponds to an MDP defined as a tuple DS ≡
(SS ,AS , TS , RS) or DT ≡ (ST ,AT , TT , RT ) (we assume
a shared fixed discount factor γ), each with its own state
space S, action space A, transition function T and reward
function R.1 In domain adaptation scenarios the states S
of the source and the target domains can be quite different,
while the action spaces A are shared and the transitions T
and reward functions R have structural similarity. For ex-
ample, consider a domain adaptation scenario for the Jaco
robotic arm, where the MuJoCo (Todorov et al., 2012) sim-
ulation of the arm is the source domain, and the real world
setting is the target domain. The state spaces (raw pixels)
of the source and the target domains differ significantly due
to the perceptual-reality gap (Rusu et al., 2016); that is to
say, SS 6= ST . Both domains, however, share action spaces
(AS = AT ), since the policy learns to control the same set
of actuators within the arm. Finally, the source and tar-
get domain transition and reward functions share structural
similarity (TS ≈ TT and RS ≈ RT ), since in both domains
transitions between states are governed by the physics of
the world and the performance on the task depends on the
relative position of the arm’s end effectors (i.e. fingertips)
with respect to an object of interest.

2.2. DARLA

In order to describe our proposed DARLA framework, we
assume that there exists a set M of MDPs that is the set

1For further background on the notation relating to the RL
paradigm, see Section A.1 in the Supplementary Materials.
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of all natural world MDPs, and each MDP Di is sampled
fromM. We defineM in terms of the state space Ŝ that
contains all possible conjunctions of high-level factors of
variation necessary to generate any naturalistic observation
in any Di ∈ M. A natural world MDP Di is then one
whose state space S corresponds to some subset of Ŝ. In
simple terms, we assume that there exists some shared un-
derlying structure between the MDPsDi sampled fromM.
We contend that this is a reasonable assumption that per-
mits inclusion of many interesting problems, including be-
ing able to characterise our own reality (Lake et al., 2016).

We now introduce notation for two state space variables
that may in principle be used interchangeably within the
source and target domain MDPs DS and DT – the agent
observation state space So, and the agent’s internal latent
state space Sz .2 Soi in Di consists of raw (pixel) observa-
tions soi generated by the true world simulator from a sam-
pled set of data generative factors ŝi, i.e. soi ∼ Sim(̂si).
ŝi is sampled by some distribution or process Gi on Ŝ,
ŝi ∼ Gi(Ŝ).

Using the newly introduced notation, domain adaptation
scenarios can be described as having different sampling
processes GS and GT such that ŝS ∼ GS(Ŝ) and ŝT ∼
GT (Ŝ) for the source and target domains respectively, and
then using these to generate different agent observation
states soS ∼ Sim(̂sS) and soT ∼ Sim(̂sT). Intuitively, con-
sider a source domain where oranges appear in blue rooms
and apples appear in red rooms, and a target domain where
the object/room conjunctions are reversed and oranges ap-
pear in red rooms and apples appear in blue rooms. While
the true data generative factors of variation Ŝ remain the
same - room colour (blue or red) and object type (apples
and oranges) - the particular source and target distributions
GS and GT differ.

Typically deep RL agents (e.g. Mnih et al., 2015; 2016)
operating in an MDP Di ∈ M learn an end-to-end map-
ping from raw (pixel) observations soi ∈ Soi to actions
ai ∈ Ai (either directly or via a value function Qi(soi , ai)
from which actions can be derived). In the process of do-
ing so, the agent implicitly learns a function F : Soi → Szi
that maps the typically high-dimensional raw observations
soi to typically low-dimensional latent states szi ; followed
by a policy function πi : Szi → Ai that maps the latent
states szi to actions ai ∈ Ai. In the context of domain
adaptation, if the agent learns a naive latent state map-
ping function FS : SoS → SzS on the source domain us-
ing reward signals to shape the representation learning, it
is likely that FS will overfit to the source domain and will
not generalise well to the target domain. Returning to our

2Note that we do not assume these to be Markovian i.e. it is not
necessarily the case that p(sot+1|sot ) = p(sot+1|sot , sot−1, . . . , s

o
1),

and similarly for sz . Note the index t here corresponds to time.

intuitive example, imagine an agent that has learnt a pol-
icy to pick up oranges and avoid apples on the source do-
main. Such a source policy πS is likely to be based on
an entangled latent state space SzS of object/room conjunc-
tions: oranges/blue → good, apples/red → bad, since this
is arguably the most efficient representation for maximis-
ing expected rewards on the source task in the absence of
extra supervision signals suggesting otherwise. A source
policy πS(a|szS ; θ) based on such an entangled latent rep-
resentation szS will not generalise well to the target domain
without further fine-tuning, since FS(soS) 6= FS(soT ) and
therefore crucially SzS 6= SzT .

On the other hand, since both ŝS ∼ GS(Ŝ) and ŝT ∼
GT (Ŝ) are sampled from the same natural world state
space Ŝ for the source and target domains respectively, it
should be possible to learn a latent state mapping function
F̂ : So → SzŜ , which projects the agent observation state
space So to a latent state space SzŜ expressed in terms of
factorised data generative factors that are representative of
the natural world i.e. Sz

Ŝ
≈ Ŝ. Consider again our intuitive

example, where F̂ maps agent observations (soS : orange
in a blue room) to a factorised or disentangled representa-
tion expressed in terms of the data generative factors (szŜ :
room type = blue; object type = orange). Such a disen-
tangled latent state mapping function should then directly
generalise to both the source and the target domains, so that
F̂(soS) = F̂(soT ) = szŜ . Since SzŜ is a disentangled repre-
sentation of object and room attributes, the source policy
πS can learn a decision boundary that ignores the irrele-
vant room attributes: oranges→ good, apples→ bad. Such
a policy would then generalise well to the target domain
out of the box, since πS(a|F̂(soS); θ) = πT (a|F̂(soT ); θ) =
πT (a|szŜ ; θ). Hence, DARLA is based on the idea that a

good quality F̂ learnt exclusively on the source domain
DS ∈ M will zero-shot-generalise to all target domains
Di ∈ M, and therefore the source policy π(a|SzŜ ; θ) will
also generalise to all target domains Di ∈ M out of the
box.

Next we describe each of the stages of the DARLA pipeline
that allow it to learn source policies πS that are robust to
domain adaptation scenarios, despite being trained with no
knowledge of the target domains (see Fig. 1 for a graphical
representation of these steps):

1) Learn to see (unsupervised learning of FU ) – the task
of inferring a factorised set of generative factors SzŜ = Ŝ
from observations So is the goal of the extensive disentan-
gled factor learning literature (e.g. Chen et al., 2016; Hig-
gins et al., 2017). Hence, in stage one we learn a mapping
FU : SoU → SzU , where SzU ≈ SzŜ (U stands for ‘unsu-
pervised’) using an unsupervised model for learning dis-
entangled factors that utilises observations collected by an
agent with a random policy πU from a visual pre-training
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MDP DU ∈ M. Note that we require sufficient variabil-
ity of factors and their conjunctions in DU in order to have
SzU ≈ SzŜ ;

2) Learn to act (reinforcement learning of πS in the source
domain DS utilising previously learned FU ) – an agent
that has learnt to see the world in stage one in terms of the
natural data generative factors is now exposed to a source
domain DS ∈ M. The agent is tasked with learning the
source policy πS(a|szS ; θ), where szS = FU (soS) ≈ szŜ , via
a standard reinforcement learning algorithm. Crucially, we
do not allow FU to be modified (e.g. by gradient updates)
during this phase;

3) Transfer (to a target domain DT ) – in the final step, we
test how well the policy πS learnt on the source domain
generalises to the target domain DT ∈ M in a zero-shot
domain adaptation setting, i.e. the agent is evaluated on the
target domain without retraining. We compare the perfor-
mance of policies learnt with a disentangled latent state SzŜ
to various baselines where the latent state mapping func-
tion FU projects agent observations so to entangled latent
state representations sz .

2.3. Learning disentangled representations

In order to learn FU , DARLA utilises β-VAE (Higgins
et al., 2017), a state-of-the-art unsupervised model for au-
tomated discovery of factorised latent representations from
raw image data. β-VAE is a modification of the varia-
tional autoencoder framework (Kingma & Welling, 2014;
Rezende et al., 2014) that controls the nature of the learnt
latent representations by introducing an adjustable hyper-
parameter β to balance reconstruction accuracy with latent
channel capacity and independence constraints. It max-
imises the objective:

L(θ, φ;x, z, β) =Eqφ(z|x)[log pθ(x|z)]
− β DKL(qφ(z|x)||p(z)) (1)

where φ, θ parametrise the distributions of the encoder and
the decoder respectively. Well-chosen values of β - usually
larger than one (β > 1) - typically result in more disentan-
gled latent representations z by limiting the capacity of the
latent information channel, and hence encouraging a more
efficient factorised encoding through the increased pressure
to match the isotropic unit Gaussian prior p(z) (Higgins
et al., 2017).

2.3.1. PERCEPTUAL SIMILARITY LOSS

The cost of increasing β is that crucial information about
the scene may be discarded in the latent representation z,
particularly if that information takes up a small proportion
of the observations x in pixel space. We encountered this
issue in some of our tasks, as discussed in Section 3.1.
The shortcomings of calculating the log-likelihood term

Eqφ(z|x)[log pθ(x|z)] on a per-pixel basis are known and
have been addressed in the past by calculating the recon-
struction cost in an abstract, high-level feature space given
by another neural network model, such as a GAN (Good-
fellow et al., 2014) or a pre-trained AlexNet (Krizhevsky
et al., 2012; Larsen et al., 2016; Dosovitskiy & Brox,
2016; Warde-Farley & Bengio, 2017). In practice we found
that pre-training a denoising autoencoder (Vincent et al.,
2010) on data from the visual pre-training MDP DU ∈ M
worked best as the reconstruction targets for β-VAE to
match (see Fig. 1 for model architecture and Sec. A.3.1 in
Supplementary Materials for implementation details). The
new β-VAEDAE model was trained according to Eq. 2:

L(θ, φ;x, z, β) =Eqφ(z|x) ‖J(x̂)− J(x)‖
2
2

− β DKL(qφ(z|x)||p(z)) (2)

where x̂ ∼ pθ(x|z) and J : RW×H×C → RN is the func-
tion that maps images from pixel space with dimensionality
W ×H × C to a high-level feature space with dimension-
ality N given by a stack of pre-trained DAE layers up to a
certain layer depth. Note that by replacing the pixel based
reconstruction loss in Eq. 1 with high-level feature recon-
struction loss in Eq. 2 we are no longer optimising the vari-
ational lower bound, and β-VAEDAE with β = 1 loses its
equivalence to the Variational Autoencoder (VAE) frame-
work as proposed by (Kingma & Welling, 2014; Rezende
et al., 2014). In this setting, the only way to interpret β is as
a mixing coefficient that balances the capacity of the latent
channel z of β-VAEDAE against the pressure to match the
high-level features within the pre-trained DAE.

2.4. Reinforcement Learning Algorithms

We used various RL algorithms (DQN, A3C and Episodic
Control: Mnih et al., 2015; 2016; Blundell et al., 2016) to
learn the source policy πS during stage two of the pipeline
using the latent states sz acquired by β-VAE based models
during stage one of the DARLA pipeline.

Deep Q Network (DQN) (Mnih et al., 2015) is a variant of
the Q-learning algorithm (Watkins, 1989) that utilises deep
learning. It uses a neural network to parametrise an ap-
proximation for the action-value function Q(s, a; θ) using
parameters θ.

Asynchronous Advantage Actor-Critic (A3C) (Mnih et al.,
2016) is an asynchronous implementation of the advantage
actor-critic paradigm (Sutton & Barto, 1998; Degris & Sut-
ton, 2012), where separate threads run in parallel and per-
form updates to shared parameters. The different threads
each hold their own instance of the environment and have
different exploration policies, thereby decorrelating param-
eter updates without the need for experience replay. There-
fore, A3C is an online algorithm, whereas DQN learns its
policy offline, resulting in different learning dynamics be-
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tween the two algorithms.

Model-Free Episodic Control (EC) (Blundell et al., 2016)
was proposed as a complementary learning system to the
other RL algorithms described above. The EC algorithm
relies on near-determinism of state transitions and rewards
in RL environments; in settings where this holds, it can ex-
ploit these properties to memorise which action led to high
returns in similar situations in the past. Since in its simplest
form EC relies on a lookup table, it learns good policies
much faster than value-function-approximation based deep
RL algorithms like DQN trained via gradient descent - at
the cost of generality (i.e. potentially poor performance in
non-deterministic environments).

We also compared our approach to that of UNREAL (Jader-
berg et al., 2017), a recently proposed RL algorithm which
also attempts to utilise unsupervised data in the environ-
ment. The UNREAL agent takes as a base an LSTM A3C
agent (Mnih et al., 2016) and augments it with a number of
unsupervised auxiliary tasks that make use of the rich per-
ceptual data available to the agent besides the (sometimes
very sparse) extrinsic reward signals. This auxiliary learn-
ing tends to improve the representation learnt by the agent.
See Sec. A.6 in Supplementary Materials for further details
of the algorithms above.

3. Tasks
We evaluate the performance of DARLA on different task
and environment setups that probe subtly different aspects
of domain adaptation. As a reminder, in Sec. 2.2 we defined
Ŝ as a state space that contains all possible conjunctions
of high-level factors of variation necessary to generate any
naturalistic observation in any Di ∈ M. During domain
adaptation scenarios agent observation states are generated
according to soS ∼ SimS(̂sS) and soT ∼ SimT(̂sT) for the
source and target domains respectively, where ŝS and ŝT
are sampled by some distributions or processes GS and GT
according to ŝS ∼ GS(Ŝ) and ŝT ∼ GT (Ŝ).

We use DeepMind Lab (Beattie et al., 2016) to test a ver-
sion of domain adaptation setup where the source and target
domain observation simulators are equal (SimS = SimT),
but the processes used to sample ŝS and ŝT are differ-
ent (GS 6= GT ). We use the Jaco arm with a matching
MuJoCo simulation environment (Todorov et al., 2012) in
two domain adaptation scenarios: simulation to simula-
tion (sim2sim) and simulation to reality (sim2real). The
sim2sim domain adaptation setup is relatively similar to
DeepMind Lab i.e. the source and target domains differ
in terms of processes GS and GT . However, there is a sig-
nificant point of difference. In DeepMind Lab, all values of
factors in the target domain, ŝT , are previously seen in the
source domain; however, ŝS 6= ŝT as the conjunctions of

Figure 2. A: DeepMind Lab (Beattie et al., 2016) transfer task
setup. Different conjunctions of {room, object1, object2} were
used during different parts of the domain adaptation curriculum.
During stage one, DU (shown in yellow), we used a minimal set
spanning all objects and all rooms whereby each object is seen
in each room. Note there is no extrinsic reward signal or notion
of ‘task’ in this phase. During stage two, DS (shown in green),
the RL agents were taught to pick up cans and balloons and avoid
hats and cakes. The objects were always presented in pairs hat/can
and cake/balloon. The agent never saw the hat/can pair in the pink
room. This novel room/object conjunction was presented as the
target domain adaptation condition DT (shown in red) where the
ability of the agent to transfer knowledge of the objects’ value to
a novel environment was tested. B: β-VAE reconstructions (bot-
tom row) using frames from DeepMind Lab (top row). Due to
the increased β > 1 necessary to disentangle the data genera-
tive factors of variations the model lost information about objects.
See Fig. 3 for a model appropriately capturing objects. C: left –
sample frames from MuJoCo simulation environments used for
vision (phase 1, SU ) and source policy training (phase 2, SS);
middle – sim2sim domain adaptation test (phase 3, ST ); and right
– sim2real domain adaptation test (phase 3, ST ).

these factor values are different. In sim2sim, by contrast,
novel factor values are experienced in the target domain
(this accordingly also leads to novel factor conjunctions).
Hence, DeepMind Lab may be considered to be assessing
domain interpolation performance, whereas sim2sim tests
domain extrapolation.

The sim2real setup, on the other hand, is based on identical
processes GS = GT , but different observation simulators
SimS 6= SimT corresponding to the MuJoCo simulation
and the real world, which results in the so-called ‘percep-
tual reality gap’ (Rusu et al., 2016). More details of the
tasks are given below.

3.1. DeepMind Lab

DeepMind Lab is a first person 3D game environment with
rich visuals and realistic physics. We used a standard seek-
avoid object gathering setup, where a room is initialised
with an equal number of randomly placed objects of two
different types. One of the object varieties is ‘good’ (its col-
lection is rewarded +1), while the other is ‘bad’ (its collec-
tion is punished -1). The full state space Ŝ consisted of all
conjunctions of two room types (pink and green based on
the colour of the walls) and four object types (hat, can, cake
and balloon) (see Fig. 2A). The source domain DS con-
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tained environments with hats/cans presented in the green
room, and balloons/cakes presented in either the green or
the pink room. The target domain DT contained hats/cans
presented in the pink room. In both domains cans and bal-
loons were the rewarded objects.

1) Learn to see: we used β-VAEDAE to learn the disen-
tangled latent state representation sz that includes both the
room and the object generative factors of variation within
DeepMind Lab. We had to use the high-level feature space
of a pre-trained DAE within the β-VAEDAE framework
(see Section 2.3.1), instead of the pixel space of vanilla β-
VAE , because we found that objects failed to reconstruct
when using the values of β necessary to disentangle the
generative factors of variation within DeepMind Lab (see
Fig. 2B).

β-VAEDAE was trained on observations soU collected by
an RL agent with a simple wall-avoiding policy πU (oth-
erwise the training data was dominated by close up im-
ages of walls). In order to enable the model to learn
F(soU ) ≈ Ŝ, it is important to expose the agent to at least
a minimal set of environments that span the range of val-
ues for each factor, and where no extraneous correlations
are added between different factors3(see Fig. 2A, yellow).
See Section A.3.1 in Supplementary Materials for details
of β-VAEDAE training.

2) Learn to act: the agent was trained with the algo-
rithms detailed in Section 2.4 on a seek-avoid task us-
ing the source domain (DS) conjunctions of object/room
shown in Fig. 2A (green). Pre-trained β-VAEDAE from
stage one was used as the ‘vision’ part of various RL al-
gorithms (DQN, A3C and Episodic Control: Mnih et al.,
2015; 2016; Blundell et al., 2016) to learn a source policy
πS that picks up balloons and avoids cakes in both the green
and the pink rooms, and picks up cans and avoids hats in
the green rooms. See Section A.3.1 in Supplementary Ma-
terials for more details of the various versions of DARLA
we have tried, each based on a different base RL algorithm.

3) Transfer: we tested the ability of DARLA to transfer the
seek-avoid policy πS it had learnt on the source domain in
stage two using the domain adaptation condition DT illus-
trated in Figure 2A (red). The agent had to continue picking
up cans and avoid hats in the pink room, even though these
objects had only been seen in the green room during source
policy training. The optimal policy πT is one that maintains
the reward polarity from the source domain (cans are good
and hats are bad). For further details, see Appendix A.2.1.

3In our setup of DeepMind Lab domain adaptation task, the
object and environment factors are supposed to be independent. In
order to ensure that β-VAEDAE learns a factorised representation
that reflects this ground truth independence, we present observa-
tions of all possible conjunctions of room and individual object
types.

3.2. Jaco Arm and MuJoCo

We used frames from an RGB camera facing a robotic
Jaco arm, or a matching rendered camera view from a
MuJoCo physics simulation environment (Todorov et al.,
2012) to investigate the performance of DARLA in two
domain adaptation scenarios: 1) simulation to simula-
tion (sim2sim), and 2) simulation to reality (sim2real).
The sim2real setup is of particular importance, since the
progress that deep RL has brought to control tasks in sim-
ulation (Schulman et al., 2015; Mnih et al., 2016; Levine
& Abbeel, 2014; Heess et al., 2015; Lillicrap et al., 2015;
Schulman et al., 2016) has not yet translated as well to re-
ality, despite various attempts (Tobin et al., 2017; Tzeng
et al., 2016; Daftry et al., 2016; Finn et al., 2015; Rusu
et al., 2016). Solving control problems in reality is hard due
to sparse reward signals, expensive data acquisition and the
attendant danger of breaking the robot (or its human min-
ders) during exploration.

In both sim2sim and sim2real, we trained the agent to per-
form an object reaching policy where the goal is to place
the end effector as close to the object as possible. While
conceptually the reaching task is simple, it is a hard control
problem since it requires correct inference of the arm and
object positions and velocities from raw visual inputs.

1) Learn to see: β-VAE was trained on observations col-
lected in MuJoCo simulations with the same factors of
variation as in DS . In order to enable the model to learn
F(soU ) ≈ ŝ, a reaching policy was applied to phantom ob-
jects placed in random positions - therefore ensuring that
the agent learnt the independent nature of the arm position
and object position (see Fig. 2C, left);

2) Learn to act: a feedforward-A3C based agent with the
vision module pre-trained in stage one was taught a source
reaching policy πS towards the real object in simulation
(see Fig. 2C (left) for an example frame, and Sec. A.4
in Supplementary Materials for a fuller description of the
agent). In the source domain DS the agent was trained on
a distribution of camera angles and positions. The colour
of the tabletop on which the arm rests and the object colour
were both sampled anew every episode.

3) Transfer: sim2sim: in the target domain, DT , the agent
was faced with a new distribution of camera angles and po-
sitions with little overlap with the source domain distribu-
tions, as well as a completely held out set of object colours
(see Fig. 2C, middle). sim2real: in the target domain DT

the camera position and angle as well as the tabletop colour
and object colour were sampled from the same distribu-
tions as seen in the source domain DS , but the target do-
main DT was now the real world. Many details present
in the real world such as shadows, specularity, multiple
light sources and so on are not modelled in the simulation;



DARLA: Improving Zero-Shot Transfer in Reinforcement Learning

3

-3

0

z1 z2 z3 z4 z5 z6

ObjectEnvironment
room id turn left distance rotationleft objectturn right

-3

0

z1 z2 z3 z4

Disentangled Entangled
ig t obje object id

3z7

Figure 3. Plot of traversals of various latents of an entangled and
a disentangled version of β-VAEDAE using frames from Deep-
Mind Lab (Beattie et al., 2016).
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Figure 4. Plot of traversals of β-VAE on MuJoCo. Using a disen-
tangled β-VAE model, single latents directly control for the fac-
tors responsible for the object or arm placements.

the physics engine is also not a perfect model of reality.
Thus sim2real tests the ability of the agent to cross the
perceptual-reality gap and generalise its source policy πS
to the real world (see Fig. 2C, right). For further details,
see Appendix A.2.2.

4. Results
We evaluated the robustness of DARLA’s policy πS learnt
on the source domain to various shifts in the input data dis-
tribution. In particular, we used domain adaptation sce-
narios based on the DeepMind Lab seek-avoid task and
the Jaco arm reaching task described in Sec. 3. On each
task we compared DARLA’s performance to that of var-
ious baselines. We evaluated the importance of learning
‘good’ vision during stage one of the pipeline, i.e one that
maps the input observations so to disentangled represen-
tations sz ≈ ŝ. In order to do this, we ran the DARLA
pipeline with different vision models: the encoders of a

disentangled β-VAE 4 (the original DARLA), an entan-
gled β-VAE (DARLAENT), and a denoising autoencoder
(DARLADAE). Apart from the nature of the learnt rep-
resentations sz , DARLA and all versions of its baselines
were equivalent throughout the three stages of our pro-
posed pipeline in terms of architecture and the observed
data distribution (see Sec. A.3 in Supplementary Materials
for more details).

Figs. 3-4 display the degree of disentanglement learnt by
the vision modules of DARLA and DARLAENT on Deep-
Mind Lab and MuJoCo. DARLA’s vision learnt to inde-
pendently represent environment variables (such as room
colour-scheme and geometry) and object-related variables
(change of object type, size, rotation) on DeepMind Lab
(Fig. 3, left). Disentangling was also evident in MuJoCo.
Fig. 4, left, shows that DARLA’s single latent units zi learnt
to represent different aspects of the Jaco arm, the object,
and the camera. By contrast, in the representations learnt
by DARLAENT, each latent is responsible for changes to
both the environment and objects (Fig. 3, right) in Deep-
Mind Lab, or a mixture of camera, object and/or arm move-
ments (Fig. 4, right) in MuJoCo.

The table in Fig. 5 shows the average performance (across
different seeds) in terms of rewards per episode of the var-
ious agents on the target domain with no fine-tuning of the
source policy πS . It can be seen that DARLA is able to
zero-shot-generalise significantly better than DARLAENT
or DARLADAE, highlighting the importance of learning a
disentangled representation sz = szŜ during the unsuper-
vised stage one of the DARLA pipeline. In particular, this
also demonstrates that the improved domain transfer per-
formance is not simply a function of increased exposure to
training observations, as both DARLAENT and DARLADAE
were exposed to the same data. The results are mostly con-
sistent across target domains and in most cases DARLA is
significantly better than the second-best-performing agent.
This holds in the sim2real task 5, where being able to per-
form zero-shot policy transfer is highly valuable due to the
particular difficulties of gathering data in the real world.

DARLA’s performance is particularly surprising as it actu-
ally preserves less information about the raw observations
so than DARLAENT and DARLADAE. This is due to the
nature of the β-VAE and how it achieves disentangling; the
disentangled model utilised a significantly higher value of
the hyperparameter β than the entangled model (see Ap-
pendix A.3 for further details), which constrains the ca-

4In this section of the paper, we use the term β-VAE to re-
fer to a standard β-VAE for the MuJoCo experiments, and a
β-VAEDAE for the DeepMind Lab experiments (as described in
stage 1 of Sec. 3.1).

5See https://youtu.be/sZqrWFl0wQ4 for example sim2sim
and sim2real zero-shot transfer policies of DARLA and baseline
A3C agent.
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Table 1. Transfer performance

DEEPMIND LAB JACO (A3C)
VISION TYPE DQN A3C EC SIM2SIM SIM2REAL

BASELINE AGENT 1.86 ± 3.91 5.32 ± 3.36 -0.41 ± 4.21 97.64 ± 9.02 94.56 ± 3.55
UNREAL - 4.13 ± 3.95 - - -
DARLAFT 13.36 ± 5.8 1.4 ± 2.16 - 86.59 ± 5.53 99.25 ± 2.3
DARLAENT 3.45 ± 4.47 15.66 ± 5.19 5.69 ± 3.73 84.77 ± 4.42 59.99 ± 15.05
DARLADAE 7.83 ± 4.47 6.74 ± 2.81 5.59 ± 3.37 85.15 ± 7.43 100.72 ± 4.7

DARLA 10.25 ± 5.46 19.7 ± 5.43 11.41 ± 3.52 100.85 ± 2.92 108.2 ± 5.97
DARLA’S PERFORMANCE IS SIGNIFICANTLY DIFFERENT FROM ALL BASELINES UNDER WELCH’S UNEQUAL VARIANCES T-TEST WITH p < 0.01 (N ∈ [60, 150]).

Figure 5. Table: Zero-shot performance (avg. reward per episode) of the source policy πS in target domains within DeepMind Lab and
Jaco/MuJoCo environments. Baseline agent refers to vanilla DQN/A3C/EC (DeepMind Lab) or A3C (Jaco) agents. See main text for
more detailed model descriptions. Figure: Correlation between zero-shot performance transfer performance on the DeepMind Lab task
obtained by EC based DARLA and the level of disentanglement as measured by the transfer/disentanglement score (r = 0.6, p < 0.001)

pacity of the latent channel. Indeed, DARLA’s β-VAE
only utilises 8 of its possible 32 Gaussian latents to store
observation-specific information for MuJoCo/Jaco (and 20
in DeepMind Lab), whereas DARLAENT utilises all 32 for
both environments (as does DARLADAE).

Furthermore, we examined what happens if DARLA’s vi-
sion (i.e. the encoder of the disentangled β-VAE ) is al-
lowed to be fine-tuned via gradient updates while learning
the source policy during stage two of the pipeline. This
is denoted by DARLAFT in the table in Fig. 5. We see
that it exhibits significantly worse performance than that
of DARLA in zero-shot domain adaptation using an A3C-
based agent in all tasks. This suggests that a favourable
initialisation does not make up for subsequent overfitting
to the source domain for the on-policy A3C. However, the
off-policy DQN-based fine-tuned agent performs very well.
We leave further investigation of this curious effect for fu-
ture work.

Finally, we compared the performance of DARLA to an
UNREAL (Jaderberg et al., 2017) agent with the same ar-
chitecture. Despite also exploiting the unsupervised data
available in the source domain, UNREAL performed worse
than baseline A3C on the DeepMind Lab domain adap-
tation task. This further demonstrates that use of unsu-
pervised data in itself is not a panacea for transfer per-
formance; it must be utilised in a careful and structured
manner conducive to learning disentangled latent states
sz = szŜ .

In order to quantitatively evaluate our hypothesis that dis-
entangled representations are essential for DARLA’s per-
formance in domain adaptation scenarios, we trained vari-
ous DARLAs with different degrees of learnt disentangle-
ment in sz by varying β (of β-VAE) during stage one of
the pipeline. We then calculated the correlation between
the performance of the EC-based DARLA on the Deep-
Mind Lab domain adaptation task and the transfer metric,
which approximately measures the quality of disentangle-
ment of DARLA’s latent representations sz (see Sec. A.5.2

in Supplementary Materials). This is shown in the chart in
Fig. 5; as can be seen, there is a strong positive correlation
between the level of disentanglement and DARLA’s zero-
shot domain transfer performance (r = 0.6, p < 0.001).

Having shown the robust utility of disentangled represen-
tations in agents for domain adaptation, we note that there
is evidence that they can provide an important additional
benefit. We found significantly improved speed of learning
of πS on the source domain itself, as a function of how dis-
entangled the model was. The gain in data efficiency from
disentangled representations for source policy learning is
not the main focus of this paper so we leave it out of the
main text; however, we provide results and discussion in
Section A.7 in Supplementary Materials.

5. Conclusion
We have demonstrated the benefits of using disentangled
representations in a deep RL setting for domain adaptation.
In particular, we have proposed DARLA, a multi-stage RL
agent. DARLA first learns a visual system that encodes the
observations it receives from the environment as disentan-
gled representations, in a completely unsupervised manner.
It then uses these representations to learn a robust source
policy that is capable of zero-shot domain adaptation.

We have demonstrated the efficacy of this approach in a
range of domains and task setups: a 3D naturalistic first-
person environment (DeepMind Lab), a simulated graphics
and physics engine (MuJoCo), and crossing the simulation
to reality gap (MuJoCo to Jaco sim2real). We have also
shown that the effect of disentangling is consistent across
very different RL algorithms (DQN, A3C, EC), achieving
significant improvements over the baseline algorithms (me-
dian 2.7 times improvement in zero-shot transfer across
tasks and algorithms). To the best of our knowledge, this
is the first comprehensive empirical demonstration of the
strength of disentangled representations for domain adap-
tation in a deep RL setting.
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A. Supplementary Materials
A.1. The Reinforcement Learning Paradigm

The reinforcement learning (RL) paradigm consists of an agent re-
ceiving a sequence of observations sot which are some function of
environment states st ∈ S and may be accompanied by rewards
rt+1 ∈ R conditional on the actions at ∈ A, chosen at each time
step t (Sutton & Barto, 1998). We assume that these interactions
can be modelled as a Markov Decision Process (MDP) (Puterman,
1994) defined as a tuple D ≡ (S,A, T , R, γ). T = p(s|st, at)
is a transition function that models the distribution of all possible
next states given action at is taken in state st for all st ∈ S and
at ∈ A. Each transition st

at→ st+1 may be accompanied by a
reward signal rt+1(st, at, st+1). The goal of the agent is to learn
a policy π(at|st), a probability distribution over actions at ∈ A,
that maximises the expected return i.e. the discounted sum of fu-
ture rewards Rt = E[

∑T−t
τ=1 γ

τ−1rt+τ ]. T is the time step at
which each episode ends, and γ ∈ [0, 1) is the discount factor
that progressively down-weights future rewards. Given a policy
π(a|s), one can define the value function Vπ(s) = E[Rt|st =
s, π], which is the expected return from state s following policy π.
The action-value function Qπ(s, a) = E[Rt|st = s, at = a, π]
is the expected return for taking action a in state s at time t, and
then following policy π from time t+ 1 onward.

A.2. Further task details

A.2.1. DEEPMIND LAB

As described in Sec 3.1, in each source episode of DeepMind Lab
the agent was presented with one of three possible room/object
type conjunctions, chosen at random. These are marked DS in
Fig 2. The setup was a seek-avoid style task, where one of the
two object types in the room gave a reward of +1 and the other
gave a reward of -1. The agent was allowed to pick up objects for
60 seconds after which the episode would terminate and a new one
would begin; if the agent was able to pick up all the ‘good’ objects
in less than 60 seconds, a new episode was begun immediately.
The agent was spawned in a random location in the room at the
start of each new episode.

During transfer, the agent was placed into the held out conjunction
of object types and room background; see DT in Fig 2.

Visual pre-training was performed in other conjunctions of object
type and room background denoted DU in Fig 2.

The observation size of frames in the DeepMind Lab task was
84x84x3 (HxWxC).

A.2.2. MUJOCO/JACO ARM EXPERIMENTS

As described in Sec 3.2, the source task consisted of an agent
learning to control a simulated arm in order to reach toward an
object. A shaping reward was used, with a maximum value of
1 when the centre of the object fell between the pinch and grip
sites of the end effector, or within a 10cm distance of the two.
Distances on the x and y dimensions counted double compared to
distances on the z dimension.

During each episode the object was placed at a random drop point
within a 40x40cm area, and the arm was set to a random ini-
tial start position high above the work-space, independent of the
object’s position. Each episode lasted for 150 steps, or 7.5 sec-
onds, with a control step of 50ms. Observations soU were sampled

http://arxiv.org/pdf/1602.06822.pdf
http://arxiv.org/pdf/1602.06822.pdf
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randomly across episodes. Overall, 4 million frames of dimen-
sions 64x64x3 (HxWxC) were used for this stage of the curricu-
lum. For each episode the camera position and orientation were
randomly sampled from an isotropic normal distribution centred
around the approximate position and orientation of the real cam-
era, with standard deviation 0.01. No precise measurements were
used to match the two. Work-space table colour was sampled
uniformly between −5% and +5% around the midpoint, inde-
pendently for each RGB channel; object colours were sampled
uniformly at random in RGB space, rejecting colours which fell
within a ball around 10 held-out intensities (radius 10% of range);
the latter were only used for simulated transfer experiments, i.e.
in DT in the sim2sim experiments. Additionally, Gaussian noise
with standard deviation 0.01 was added to the observations soT in
the sim2sim task.

For the real Jaco arm and its MuJoCo simulation counterpart, each
of the nine joints could independently take 11 different actions (a
linear discretisation of the continuous velocity action space). In
simulation Gaussian noise with standard deviation 0.1 was added
to each discrete velocity output; delays in the real setup between
observations and action execution were simulated by randomly
mixing velocity outputs from two previous steps instead of emit-
ting the last output directly. Speed ranges were between −50%
and 50% of the Jaco arm’s top speed on joints 1 through 6 start-
ing at the base, while the fingers could use a full range. For safety
reasons the speed ranges have been reduced by a factor of 0.3
while evaluating agents on the Jaco arm, without significant per-
formance degradation.

A.3. Vision model details

A.3.1. DENOISING AUTOENCODER FOR β-VAE

A denoising autoencoder (DAE) was used as a model to provide
the feature space for the β-VAE reconstruction loss to be com-
puted over (for motivation, see Sec. 2.3.1). The DAE was trained
with occlusion-style masking noise in the vein of (Pathak et al.,
2016), with the aim for the DAE to learn a semantic representation
of the input frames. Concretely, two values were independently
sampled from U [0,W ] and two from U [0, H] where W and H
were the width and height of the input frames. These four values
determined the corners of the rectangular mask applied; all pixels
that fell within the mask were set to zero.

The DAE architecture consisted of four convolutional layers, each
with kernel size 4 and stride 2 in both the height and width di-
mensions. The number of filters learnt for each layer was {32,
32, 64, 64} respectively. The bottleneck layer consisted of a fully
connected layer of size 100 neurons. This was followed by four
deconvolutional layers, again with kernel sizes 4, strides 2, and
{64, 64, 32, 32} filters. The padding algorithm used was ‘SAME’
in TensorFlow (Abadi et al., 2015). ReLU non-linearities were
used throughout.

The model was trained with loss given by the L2 distance of the
outputs from the original, un-noised inputs. The optimiser used
was Adam (Kingma & Ba, 2014) with a learning rate of 1e-3.

A.3.2. β-VAE WITH PERCEPTUAL SIMILARITY LOSS

After training a DAE, as detailed in the previous section6, a
β-VAEDAE was trained with perceptual similarity loss given by

6In principle, the β-VAEDAE could also have been trained
end-to-end in one pass, but we did not experiment with this.

Eq. 2, repeated here:

L(θ, φ;x, z, β) =Eqφ(z|x) ‖J(x̂)− J(x)‖
2
2

− β DKL(qφ(z|x)||p(z)) (3)

Specifically, the input was passed through the β-VAE and a sam-
pled7 reconstruction was passed through the pre-trained DAE up
to a designated layer. The L2 distance of this representation from
the representation of the original input passed through the same
layers of the DAE was then computed, and this formed the train-
ing loss for the β-VAE part of the β-VAEDAE 8. The DAE
weights remained frozen throughout.

The β-VAE architecture consisted of an encoder of four convolu-
tional layers, each with kernel size 4, and stride 2 in the height
and width dimensions. The number of filters learnt for each layer
was {32, 32, 64, 64} respectively. This was followed by a fully
connected layer of size 256 neurons. The latent layer comprised
64 neurons parametrising 32 (marginally) independent Gaussian
distributions. The decoder architecture was simply the reverse of
the encoder, utilising deconvolutional layers. The decoder used
was Gaussian, so that the number of output channels was 2C,
where C was the number of channels that the input frames had.
The padding algorithm used was ‘SAME’ in TensorFlow. ReLU
non-linearities were used throughout.

The model was trained with the loss given by Eq. 3. Specifically,
the disentangled model used for DARLA was trained with a β hy-
perparameter value of 1 and the layer of the DAE used to compute
the perceptual similarity loss was the last deconvolutional layer.
The entangled model used for DARLAENT was trained with a β
hyperparameter value of 0.1 with the last deconvolutional layer of
the DAE was used to compute the perceptual similarity loss.

The optimiser used was Adam with a learning rate of 1e-4.

A.3.3. β-VAE

For the MuJoCo/Jaco tasks, a standard β-VAE was used rather
than the β-VAEDAE used for DeepMind Lab. The architecture of
the VAE encoder, decoder and the latent size were exactly as de-
scribed in the previous section A.3.2. β for the the disentangled β-
VAE in DARLA was 175. β for the entangled model DARLAENT
was 1, corresponding to the standard VAE of (Kingma & Welling,
2014).

The optimizer used was Adam with a learning rate of 1e-4.

A.3.4. DENOISING AUTOENCODER FOR BASELINE

For the baseline model DARLADAE, we trained a denoising au-
toencoder with occlusion-style masking noise as described in Ap-
pendix Section A.3.1. The architecture used matched that exactly
of the β-VAE described in Appendix Section A.3.2 - however, all
stochastic nodes were replaced with deterministic neurons.

The optimizer used was Adam with a learning rate of 1e-4.

7It is more typical to use the mean of the reconstruction dis-
tribution, but this does not induce any pressure on the Gaussians
parametrising the decoder to reduce their variances. Hence full
samples were used instead.

8The representations were taken after passing through the
layer but before passing through the following non-linearity. We
also briefly experimented with taking the L2 loss post-activation
but did not find a significant difference.
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A.4. Reinforcement Learning Algorithm Details

A.4.1. DEEPMIND LAB

The action space in the DeepMind Lab task consisted of 8 discrete
actions.

DQN: in DQN, the convolutional (or ‘vision’) part of the Q-net
was replaced with the encoder of the β-VAEDAE from stage 1
and frozen. DQN takes four consecutive frames as input in order
to capture some aspect of environment dynamics in the agent’s
state. In order to match this in our setup with a pre-trained vision
stack FU , we passed each observation frame so{1..4} through the
pre-trained model sz{1..4} = FU (so{1..4}) and then concatenated
the outputs together to form the k-dimensional (where k = 4|sz|)
input to the policy network. In this case the size of sz was 64 for
DARLA as well as DARLAENT, DARLADAE and DARLAFT.

On top of the frozen convolutional stack, two ‘policy’ layers of
512 neurons each were used, with a final linear layer of 8 neurons
corresponding to the size of the action space in the DeepMind
Lab task. ReLU non-linearities were used throughout. All other
hyperparameters were as reported in (Mnih et al., 2015).

A3C: in A3C, as with DQN, the convolutional part of the net-
work that is shared between the policy net and the value net was
replaced with the encoder of the β-VAEDAE in DeepMind Lab
tasks. All other hyperparameters were as reported in (Mnih et al.,
2016).

Episodic Control: for the Episodic Controller-based DARLA we
used mostly the same hyperparameters as in the original paper by
(Blundell et al., 2016). We explored the following hyperparameter
settings: number of nearest neighbours ∈ {10, 50}, return hori-
zon ∈ {100, 400, 800, 1800, 500000}, kernel type ∈ {inverse,
gaussian}, kernel width ∈ {1e− 6, 1e− 5, 1e− 4, 1e− 3, 1e−
2, 1e − 1, 0.5, 0.99} and we tried training EC with and without
Peng’s Q(λ) (Peng, 1993). In practice we found that none of the
explored hyperparameter choices significantly influenced the re-
sults of our experiments. The final hyperparameters used for all
experiments reported in the paper were the following: number of
nearest neighbours: 10, return horizon: 400, kernel type: inverse,
kernel width: 1e-6 and no Peng’s Q(λ) (Peng, 1993).

UNREAL: We used a vanilla version of UNREAL, with parame-
ters as reported in (Jaderberg et al., 2017).

A.4.2. MUJOCO/JACO ARM EXPERIMENTS

For the real Jaco arm and its MuJoCo simulation, each of the nine
joints could independently take 11 different actions (a linear dis-
cretisation of the continuous velocity action space). Therefore the
action space size was 99.

DARLA for MuJoCo/Jaco was based on feedforward A3C (Mnih
et al., 2016). We closely followed the simulation training setup of
(Rusu et al., 2016) for feed-forward networks using raw visual-
input only. In place of the usual conv-stack, however, we used the
encoder of the β-VAE as described in Appendix A.3.3. This was
followed by a linear layer with 512 units, a ReLU non-linearity
and a collection of 9 linear and softmax layers for the 9 indepen-
dent policy outputs, as well as a single value output layer that
outputted the value function.

Transfer metric score:
0.457 0.0650.196

Figure 6. Traversals of the latent corresponding to room back-
ground for models with different transfer metric scores (shown
top). Note that in the entangled model, many other objects appear
and blue hat changes shape in addition to the background chang-
ing. For the model with middling transfer score, both the object
type and background alter; whereas for the disentangled model,
very little apart from the background changes.

A.5. Disentanglement Evaluation

A.5.1. VISUAL HEURISTIC DETAILS

In order to choose the optimal value of β for the β-VAE -DAE
models and evaluate the fitness of the representations szU learnt in
stage 1 of our pipeline (in terms of disentanglement achieved), we
used the visual inspection heuristic described in (Higgins et al.,
2017). The heuristic involved clustering trained β-VAE based
models based on the number of informative latents (estimated as
the number of latents zi with average inferred standard deviation
below 0.75). For each cluster we examined the degree of learnt
disentanglement by running inference on a number of seed im-
ages, then traversing each latent unit z{i} one at a time over three
standard deviations away from its average inferred mean while
keeping all other latents z{\i} fixed to their inferred values. This
allowed us to visually examine whether each individual latent unit
zi learnt to control a single interpretable factor of variation in the
data. A similar heuristic has been the de rigueur method for ex-
hibiting disentanglement in the disentanglement literature (Chen
et al., 2016; Kulkarni et al., 2015).

A.5.2. TRANSFER METRIC DETAILS

In the case of DeepMind Lab, we were able to use the ground truth
labels corresponding to the two factors of variation of the object
type and the background to design a proxy to the disentanglement
metric proposed in (Higgins et al., 2017). The procedure used
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consisted of the following steps:

1) Train the model under consideration on observations soU to
learn FU , as described in stage 1 of the DARLA pipeline.

2) Learn a linear model L : SzV → M × N from the represen-
tations szV = FV (soV ), where M ∈ {0, 1} corresponds to the
set of possible rooms and N ∈ {0, 1, 2, 3} corresponds to the set
of possible objects9. Therefore we are learning a low-VC dimen-
sion classifier to predict the room and the object class from the
latent representation of the model. Crucially, the linear model L
is trained on only a subset of the Cartesian productM×N e.g. on
{{0, 0}, {0, 3}, {1, 1}, {1, 2}}. In practice, we utilised a softmax
classifier each for M and N and trained this using backpropaga-
tion with a cross-entropy loss, keeping the unsupervised model
(and therefore FU ) fixed.

3) The trained linear model L’s accuracy is evaluated on the held
out subset of the Cartesian product M ×N .

Although the above procedure only measures disentangling up to
linearity, and only does so for the latents of object type and room
background, we nevertheless found that the metric was highly cor-
related with disentanglement as determined via visual inspection
(see Fig. 6).

A.6. Background on RL Algorithms

In this Appendix, we provide background on the different RL al-
gorithms that the DARLA framework was tested on in this paper.

A.6.1. DQN

(DQN) (Mnih et al., 2015) is a variant of the Q-learning algo-
rithm (Watkins, 1989) that utilises deep learning. It uses a neu-
ral network to parametrise an approximation for the action-value
function Q(s, a; θ) using parameters θ. These parameters are up-
dated by minimising the mean-squared error of a 1-step looka-
head loss LQ = E

[
(rt + γmaxa′Q(s′, a′; θ−)−Q(s, a; θ))2

]
,

where θ− are parameters corresponding to a frozen network and
optimisation is performed with respect to θ, with θ− being synced
to θ at regular intervals.

A.6.2. A3C

Asynchronous Advantage Actor-Critic (A3C) (Mnih et al., 2016)
is an asynchronous implementation of the advantage actor-critic
paradigm (Sutton & Barto, 1998; Degris & Sutton, 2012), where
separate threads run in parallel and perform updates to shared pa-
rameters. The different threads each hold their own instance of
the environment and have different exploration policies, thereby
decorrelating parameter updates without the need for experience
replay.

A3C uses neural networks to approximate both policy π(a|s; θ)
and value Vπ(s; θ) functions using parameters θ using n-
step look-ahead loss (Peng & Williams, 1996). The algo-
rithm is trained using an advantage actor-critic loss func-
tion with an entropy regularisation penalty: LA3C ≈
LV R + Lπ − Es∼π [αH(π(a|s; θ))], where H is entropy.
The parameter updates are performed after every tmax ac-
tions or when a terminal state is reached. LV R =

9For the purposes of this metric, we utilised rooms with only
single objects, which we denote by the subscript V e.g. the obser-
vation set SoV .

Es∼π
[
(Rt:t+n + γnV (st+n+1; θ)− V (st; θ))

2
]

and Lπ =
Es∼π [log π(a|s; θ)(Qπ(s, a; θ)− V π(s; θ))]. Unlike DQN,
A3C uses an LSTM core to encode its history and therefore has
a longer term memory permitting it to perform better in partially
observed environments. In the version of A3C used in this pa-
per for the DeepMind Lab task, the policy net additionally takes
the last action at−1 and last reward rt−1 as inputs along with the
observation sot , as introduced in (Jaderberg et al., 2017).

A.6.3. UNREAL

The UNREAL agent (Jaderberg et al., 2017) takes as a base an
LSTM A3C agent (Mnih et al., 2016) and augments it with a
number of unsupervised auxiliary tasks that make use of the rich
perceptual data available to the agent besides the (sometimes very
sparse) extrinsic reward signals. This auxiliary learning tends to
improve the representation learnt by the agent. While training the
base agent, its observations, rewards, and actions are stored in a
replay buffer, which is used by the auxiliary learning tasks. The
tasks include: 1) pixel control the agent learns how to control the
environment by training auxiliary policies to maximally change
pixel intensities in different parts of the input; 2) reward predic-
tion - given a replay buffer of observations within a short time
period of an extrinsic reward, the agent has to predict the reward
obtained during the next unobserved timestep using a sequence of
three preceding steps; 3) value function replay - extra training of
the value function to promote faster value iteration.

A.6.4. EPISODIC CONTROL

In its simplest form EC is a lookup table of states and actions
denoted as QEC(s, a). In each state EC picks the action with
the highest QEC value. At the end of each episode QEC(s, a)
is set to Rt if (st, at) /∈ QEC , where Rt is the discounted re-
turn. Otherwise QEC(s, a) = max

{
QEC(s, a), Rt

}
. In order

to generalise its policy to novel states that are not in QEC , EC
uses a non-parametric nearest neighbours search Q̂EC(s, a) =
1
k

∑k
i=1Q

EC(si, a), where si, i = 1, ..., k are k states with the
smallest distance to the novel state s. Like DQN, EC takes a con-
catenation of four frames as input.

The EC algorithm is proposed as a model of fast hippocampal
instance-based learning in the brain (Marr, 1971; Sutherland &
Rudy, 1989), while the deep RL algorithms described above are
more analogous to slow cortical learning that relies on generalised
statistical summaries of the input distribution (McClelland et al.,
1995; Norman & O’Reilly, 2003; Tulving et al., 1991).

A.7. Source Task Performance Results

The focus of this paper is primarily on zero-shot domain adapta-
tion performance. However, it is also interesting to analyse the
effect of the DARLA approach on source domain policy perfor-
mance. In order to compare the models’ behaviour on the source
task, we examined the training curves (see Figures 7-10) and
noted in particular their:

1. Asymptotic task performance, i.e. the rewards per episode
at the point where πS has converged for the agent under
consideration.

2. Data efficiency, i.e. how quickly the training curve was able
to achieve convergence.
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Figure 7. Source task training curves for DQN. Curves show av-
erage and standard deviation over 20 random seeds.
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Figure 8. Source task performance training curves for A3C and
UNREAL. DARLA shows accelerated learning of the task com-
pared to other architectures. Results show average and standard
deviation over 20 random seeds, each using 16 workers.
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Figure 9. Source task training curves for EC. Results show aver-
age and standard deviation over 20 random seeds.

We note the following consistent trends across the results:

1. Using DARLA provided an initial boost in learning perfor-
mance, which depended on the degree of disentanglement of
the representation. This was particularly observable in A3C,
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Figure 10. Training curves for various baselines on the source
MuJoCo reaching task

see Fig. 8.

2. Baseline algorithms where F could be fine-tuned to the
source task were able to achieve higher asymptotic perfor-
mance. This was particularly notable on DQN and A3C (see
Figs. 7 and 8) in DeepMind Lab. However, in both those
cases, DARLA was able to learn very reasonable policies
on the source task which were on the order of 20% lower
than the fine-tuned models – arguably a worthwhile sacri-
fice for a subsequent median 270% improvement in target
domain performance noted in the main text.

3. Allowing DARLA to fine-tune its vision module
(DARLAFT) boosted its source task learning speed,
and allowed the agent to asymptote at the same level as
the baseline algorithms. As discussed in the main text, this
comes at the cost of significantly reduced domain transfer
performance on A3C. For DQN, however, finetuning
appears to offer the best of both worlds.

4. Perhaps most relevantly for this paper, even if solely exam-
ining source task performance, DARLA outperforms both
DARLAENT and DARLADAE on both asymptotic perfor-
mance and data efficiency – suggesting that disentangled
representations have wider applicability in RL beyond the
zero-shot domain adaptation that is the focus of this paper.


