
Deep Exploration via Bootstrapped DQN

Ian Osband1,2 IOSBAND@GOOGLE.COM
Charles Blundell1 CBLUNDELL@GOOGLE.COM
Alexander Pritzel1 APRITZEL@GOOGLE.COM
Benjamin Van Roy2 BVR@STANFORD.EDU
1Google DeepMind, 2Stanford University

Abstract
Efficient exploration in complex environments
remains a major challenge for reinforcement
learning. We propose bootstrapped DQN, a sim-
ple algorithm that explores in a computation-
ally and statistically efficient manner through use
of randomized value functions. Unlike dither-
ing strategies such as ε-greedy exploration, boot-
strapped DQN carries out temporally-extended
(or deep) exploration; this can lead to expo-
nentially faster learning. We demonstrate these
benefits in complex stochastic MDPs and in the
large-scale Arcade Learning Environment. Boot-
strapped DQN substantially improves learning
times and performance across most Atari games.

1. Introduction
We study the reinforcement learning (RL) problem where
an agent interacts with an unknown environment. The
agent takes a sequence of actions and learns from obser-
vations and rewards. The goal is to maximize cumulative
rewards. Unlike standard planning problems, an RL agent
does not begin with perfect knowledge of the environment,
but learns through experience. This leads to a fundamental
trade-off of exploration versus exploitation; the agent may
improve its future rewards by exploring poorly understood
states and actions, but this may require sacrificing immedi-
ate rewards.

To learn efficiently an agent should explore only when there
are valuable learning opportunities. Common heuristics
such as ε-greedy and Boltzmann exploration leave enor-
mous room for improvement. Since such algorithms ex-
plore at random times to balance effort between exploration
and exploitation, we call these dithering strategies. Further,
as the consequences of an action may extend over multiple
timesteps, the agent should reason about the informational
value of possible observation sequences. Without this sort
of temporally extended (deep) exploration, learning times
can worsen by an exponential factor.

The theoretical RL literature offers a variety of provably-
efficient approaches to deep exploration (e.g., Jaksch et al.
(2010); Guez et al. (2012)). However, most of these are de-
signed for Markov decision processes (MDPs) with small
finite state spaces, while others require solving computa-
tionally intractable planning tasks. These algorithms are
not practical in complex environments where an agent must
generalize to operate effectively.

For this reason, large-scale applications of RL have relied
upon dithering exploration strategies which are statistically
inefficient. These methods have lead to several high-profile
applications with groundbreaking results (Tesauro, 1995;
Mnih, 2015). Nevertheless, we might hope to improve
upon these exploration heuristics. We review related lit-
erature in more detail in Section 4.

In this paper, we consider an alternative approach to ex-
ploration based on randomized value functions. Previous
work demonstrated that randomized value functions can
efficiently explore in tandem with linearly-parameterized
value function generalization (Osband et al., 2014). We
present a natural and principled extension of this ap-
proach that enables use of complex non-linear generaliza-
tion methods such as deep neural networks.

Our paper begins with a review of how to represent uncer-
tainty with neural networks. We show that the bootstrap
with random initialization can produce reasonable uncer-
tainty estimates for neural networks at low computational
cost. In Section 3 we present our algorithm, bootstrapped
deep Q networks (DQN), which leverages these uncertainty
estimates for efficient (and deep) exploration. We review
related work in Section 4. Section 5 presents a series of
didactic experiments that are designed to highlight the im-
portance of deep exploration and that are intractable for any
shallow exploration strategy. Bootstrapped DQN succeeds
in tasks that require deep exploration extending over 100
time periods and even in difficult stochastic MDPs. Fi-
nally we demonstrate that these benefits can extend to large
scale problems that are not designed to highlight deep ex-
ploration. Section 6 presents our results from application to

ar
X

iv
:1

60
2.

04
62

1v
1 

 [
cs

.L
G

] 
 1

5 
Fe

b 
20

16



Deep Exploration via Bootstrapped DQN

Atari 2600. Bootstrapped DQN substantially reduces learn-
ing times and improves performance across most games.
This algorithm is computationally efficient and amenable
to parallelization; on a single machine our implementation
runs roughly 20% slower than DQN.

2. Uncertainty for neural networks
Deep neural networks represent the state of the art in many
supervised learning domains (Krizhevsky et al., 2012).
This is largely due to their flexibility, scalability and induc-
tive bias, which allows them to learn effective feature repre-
sentations. The exploration method we study in this paper
is designed to be statistically and computationally efficient
when used in conjunction with neural network representa-
tions of the value function.

To explore efficiently, it is important to quantify uncer-
tainty in value estimates so that the agent can judge po-
tential benefits of exploratory actions. The neural network
literature presents a sizable body of work on uncertainty
quantification founded on parametric Bayesian inference.
These include variational Bayes (Graves, 2011; Blundell
et al., 2015), assumed density filtering (Hernández-Lobato
& Adams, 2015), dropout-based variational inference (Gal
& Ghahramani, 2015; Kingma et al., 2015), and stochastic
gradient Langevin dynamics (Teh et al., 2015). Instead of
appealing to parametric assumptions about the uncertainty
present in RL problems, we use the non-parametric boot-
strap (Efron, 1982) to obtain a distribution over functions
represented by the neural network.

There are several variants of the bootstrap (Efron & Tibshi-
rani, 1994), each of which relies upon data-based simula-
tion. The key idea is to approximate a population distribu-
tion by a sample distribution (Efron & Tibshirani, 1994). In
its most common form, the bootstrap takes as input a data
set D and an estimator ψ. To generate a sample from the
bootstrapped distribution, a data set D̃ of cardinality equal
to that of D is sampled uniformly with replacement from
D. The bootstrap sample estimate is then taken to be ψ(D̃).

The bootstrap is widely hailed as a great advance of 20th
century applied statistics and comes with theoretical guar-
antees (Bickel & Freedman, 1981). Although the boot-
strap was introduced as a frequentist method, several vari-
ants have natural interpretations under Bayesian and em-
pirical Bayes analysis (Rubin et al., 1981). In some set-
tings, when the original data set is augmented with appro-
priate synthetic samples, bootstrap samples are distributed
according to the posterior distribution for an appropriate
prior (Osband & Van Roy, 2015). The bootstrap is highly
parallelizable and, as such, amenable to distributed compu-
tation. The approach can even scale to massive data with
sub-linear computational cost (Kleiner et al., 2014).

In Figure 1 we present an efficient and scalable method for
generating bootstrap samples from a large and deep neu-
ral network. The network consists of a shared architecture
with K bootstrapped “heads” branching off independently.
Each head is trained only on its bootstrapped sub-sample of
the data, which can be generated online (Owen et al., 2012).
Thus each head represents ψ(D̃) in the classical view of
bootstrap. The shared network learns a joint feature rep-
resentation, this can provide significant computational ad-
vantages at the cost of lower diversity between heads. This
type of bootstrap can even be implemented efficiently by a
single forward/backward pass of backpropagation; it can be
thought of as a data-dependent dropout, where the dropout
mask for each head is fixed for each data point (Srivastava
et al., 2014).

Figure 1: An efficient architecture for K bootstrap samples

Figure 2 presents an example of uncertainty estimates from
bootstrapped neural networks on a regression task with
noisy data. We trained a fully-connected 2-layer neural net-
works with 50 rectified linear units (ReLU) in each layer
on 50 bootstrapped samples from the data. As is standard
practice, we initialize these networks with random param-
eter values, this induces an important initial diversity in the
models. We were unable to generate effective uncertainty
estimates for this problem using the dropout approach in
prior literature (Gal & Ghahramani, 2015). Further details
are provided in Appendix A.

(a) Gaussian process posterior

(b) Bootstrapped neural networks
Figure 2: Grey regions depict the mean estimate ±{1, 2} stan-
dard deviations. A single sample is shown in red.



Deep Exploration via Bootstrapped DQN

3. Bootstrapped DQN
For a policy π we define the value of an action a in state s

Qπ(s,a) :=Es,a,π

[
∞∑
t=1

γtrt

]
,

where γ ∈ (0, 1) is a discount factor that balances immedi-
ate versus future rewards rt. This expectation indicates that
the initial state is s, the initial action is a, and thereafter ac-
tions are selected by the policy π. The optimal value is
Q∗(s, a) := maxπ Q

π(s, a). To scale to large problems,
we learn a parameterized estimate of the Q-value function
Q(s, a; θ) rather than a tabular encoding. We use a neural
network to estimate this value.

The Q-learning update after taking action at in state st and
observing reward rt and transitioning to st+1 is given by

θt+1← θt+α(yQt −Q(st,at;θt))∇θQ(st,at;θt) (1)

where α is the scalar learning rate and yQt is the target value
rt+γmaxaQ(st+1,a;θ−). θ− are target network parame-
ters fixed θ−=θt.

Several important modifications to the Q-learning update
improve stability for DQN (Mnih, 2015). First the algo-
rithm learns from sampled transitions from an experience
buffer, rather than learning fully online. Second the algo-
rithm uses a target network with parameters θ− that are
copied from the learning network θ− ← θt only every τ
time steps and then kept fixed in between updates. Double
DQN (DDQN) modifies the target yQt :

yQt ← rt + γmax
a

Q
(
st+1, arg max

a
Q(st+1, a; θt); θ

−).
DDQN can demonstrate improved performance and stabil-
ity (Van Hasselt et al., 2015). In this paper we use the
DDQN update for all DQN variants unless explicitly stated.

Our algorithm, bootstrapped DQN in Algorithm 1, mod-
ifies DQN to produce distribution over Q-values via the
bootstrap. At the start of each episode, bootstrapped DQN
samples a single Q-value function from its approximate
posterior. The agent then follows the policy which is op-
timal for that sample for the duration of the episode. This
is a natural extension of the Thompson sampling heuristic
to RL that allows for temporally extended (or deep) explo-
ration (Strens, 2000; Osband et al., 2013).

In order to implement this algorithm efficiently online we
build up K ∈ N bootstrapped estimates of the Q-value
function in parallel as in Figure 1. Importantly, each one of
these value function function heads Qk(s, a; θ) is trained
against its own target network Qk(s, a; θ−). This means
that each Q1, .., QK provide a temporally extended (and
consistent) estimate of the value uncertainty via TD esti-
mates. We approximate a bootstrap sample by selecting
k ∈ {1, ..,K} uniformly at random and following Qk for

the duration of that episode. Bootstrapped DQN exhibits
deep exploration unlike the naive application of Thompson
sampling to RL which resample every timestep1.

Algorithm 1 Bootstrapped DQN

1: Input: neural network (Qk)
K
k=1, sampling distribution P

2: for each episode do
3: Update network parameters via minibatches
4: Sample k∼Uniform{1,...,K}
5: while not end of episode do
6: Choose at∈argmaxaQk(st,a)
7: Receive state st+1 and reward rt from environment
8: Sample bootstrap mask mk

t∼P for all k
9: Add (at,rt,st+1,mt) to replay buffer

10: end while
11: end for

4. Related work
The observation that temporally extended exploration is
necessary for efficient reinforcement learning is not new.
In fact, for any prior distribution over MDPs, the optimal
exploration strategy is available through dynamic program-
ming in the Bayesian belief state space. However, the exact
solution is intractable even for very simple systems (Bur-
netas & Katehakis, 1997). RL algorithms provide tractable
approximations to this problem.

Most common RL methods focus on generalization and
planning, but address exploration via dithering strategies.
Many successful applications employ only ε-greedy explo-
ration (Tesauro, 1995; Mnih, 2015). However, such explo-
ration strategies can be highly inefficient, as we demon-
strate in Section 5.

Policy gradient methods offer another approach to RL and
induce random exploration since they search over the space
of stochastic policies. Although there are several success-
ful applications of policy gradient methods (e.g., Levine
et al. (2015)), the form of exploration induced by such al-
gorithms can also be highly inefficient (Kakade, 2003).

Other approaches aim to approximate Bayes-optimal ex-
ploration though tree-based search (Wang et al., 2005;
Guez et al., 2014). These approaches are well-founded
and, with unlimited computation will converge to the opti-
mal policy. However, practical implementations with finite
computation may fail dramatically (Munos, 2014).

Many exploration strategies are guided by the principle of
“optimism in the face of uncertainty” (OFU). These algo-
rithms add an exploration bonus to values of state-action
pairs that may lead to useful learning and select actions to
maximize these adjusted values. This approach was first

1We call bootstrapped DQN which resamples a head every
timestep Thompson DQN. This is similar to to the “Thompson
sampling” algorithm of (Gal & Ghahramani, 2015) but uses the
bootstrap in place of dropout as an approximate posterior.



Deep Exploration via Bootstrapped DQN

proposed for finite-armed bandits (Lai & Robbins, 1985),
but the principle has been extended successfully across
bandits with generalization (Rusmevichientong & Tsitsik-
lis, 2010) and tabular RL (Jaksch et al., 2010). Except for
particular deterministic contexts (Wen & Van Roy, 2013),
OFU methods that lead to efficient RL in complex domains
have been computationally intractable. The work of (Stadie
et al., 2015) aims to add an effective bonus through a varia-
tion of DQN. The resulting algorithm relies on a large num-
ber of hand-tuned parameters and is only suitable for appli-
cation to deterministic problems. We compare our results
on Atari to theirs in Appendix C.

Perhaps the oldest heuristic for balancing exploration with
exploitation is given by Thompson sampling (Thompson,
1933). This bandit algorithm takes a single sample from the
posterior at every time step and chooses the action which
is optimal for that time step. Thompson sampling offers
good performance in bandits and several state of the art
guarantees (Russo & Van Roy, 2014).

To apply the Thompson sampling principle to RL, an agent
should sample a value function from its posterior. The
agent must also commit to this sample for several time
steps in order to achieve deep exploration (Strens, 2000;
Guez et al., 2012). The algorithm PSRL does exactly this,
with state of the art guarantees (Osband et al., 2013; Os-
band & Van Roy, 2014b;a; Abbasi-Yadkori & Szepesvári,
2015; Gopalan & Mannor, 2015). However, this algorithm
still requires solving a single known MDP, which will usu-
ally be intractable for large systems.

Our new algorithm, bootstrapped DQN, approximates this
approach to exploration via randomized value functions
sampled from an approximate posterior. Recently, authors
have proposed the RLSVI algorithm which accomplishes
this for linearly parameterized value functions. Surpris-
ingly, this algorithm recovers state of the art guarantees in
the setting with tabular basis functions, but its performance
is crucially dependent upon a suitable linear representation
of the value function (Osband et al., 2014). We extend these
ideas to produce an algorithm that can simultaneously per-
form generalization and exploration with a flexible nonlin-
ear value function representation. Our method is simple,
general and compatible with almost all advances in deep
RL at low computational cost and with few tuning parame-
ters.

5. Deep Exploration
Uncertainty estimates allow an agent to direct its explo-
ration at potentially informative states and actions. In ban-
dits, this choice of directed exploration rather than dither-
ing generally categorizes efficient algorithms. The story in
RL is not as simple, directed exploration is not enough to
guarantee efficiency; the exploration must also be deep.

Deep exploration means exploration which is directed over
multiple time steps; it can also be called “planning to
learn” or “far-sighted” exploration. Unlike bandit prob-
lems, which balance actions which are immediately re-
warding or immediately informative, RL settings require
planning over several time steps (Kakade, 2003). For ex-
ploitation, this means that an efficient agent must consider
the future rewards over several time steps and not simply
the myopic rewards. In exactly the same way, efficient ex-
ploration may require taking actions which are neither im-
mediately rewarding, nor immediately informative.

To illustrate this distinction, consider a simple determin-
istic chain {s−3, .., s+3} with three step horizon starting
from state s0. This MDP is known to the agent a pri-
ori, with deterministic actions “left” and “right”. All states
have zero reward, except for the leftmost state s−3 which
has known reward ε > 0 and the rightmost state s3 which
is unknown. In order to reach either a rewarding state or an
informative state within three steps from s0 the agent must
plan a consistent strategy over several time steps.

Figure 3 depicts the planning and look ahead trees for sev-
eral algorithmic approaches in this example MDP. The ac-
tion “left” is gray, the action “right” is black. Reward-
ing states are depicted as red, informative states as blue.
Dashed lines indicate that the agent can plan ahead for ei-
ther rewards or information. Unlike bandit algorithms, an
RL agent can plan to exploit future rewards. Only an RL
agent with deep exploration can plan to learn.

(a) Bandit algorithm (b) RL + dithering

(c) RL + shallow exploration (d) RL + deep exploration

Figure 3: Planning, learning and exploration in RL.

5.1. Testing for deep exploration

We now present a series of didactic computational experi-
ments designed to highlight the need for deep exploration
in RL. The agents will be placed in an environment made



Deep Exploration via Bootstrapped DQN

up of a long chain of states right next to a small reward. All
other states have zero reward except at the far end of the
chain where they can find a state with much higher reward.

The experiments in this section are toy problems intended
to be expository rather than entirely realistic. However,
they clearly test whether an agent can efficiently balance
the potential benefits of delayed information from deep ex-
ploration. Balancing a well known and mildly successful
strategy versus an unknown, but potentially more reward-
ing, approach can emerge in many practical applications.

5.2. Learning from pixels

The environments in this section may be concisely de-
scribed by a finite tabular MDP, similar to RiverSwim
(Strehl & Littman, 2005). However, we will require our
algorithm to interact with the MDP only through raw pixel
features. For a chain of length N we will define features of
the state φ : {1, .., N} → {0, 1}N . We consider two fea-
ture mappings, “one-hot” φoh(st) := (1{x = st})x=1,..,N

and “thermometer” φtherm(st) := (1{x ≤ st})x=1,..,N .

We find that bootstrapped DQN is able to explore effi-
ciently with either set of features. We focus upon the ther-
mometer encoding, since this better captures generalization
between states. Full details for these experiments are given
in Appendix B.

5.3. Scaling deeper

We consider a family of deterministic chains of lengthN >
3 as in Figure 4. Each episode of interaction lasts N + 9
steps after which point the agent resets to the initial state s2.
We choose this so that the optimal policy is to move right
at every step and receive a return of 10 in each episode.
However, any shallow exploration strategy will take Ω(2N )
episodes to learn the optimal policy (Osband et al., 2014).

Figure 4: Scalable environments that requires deep exploration.

We say that the algorithm has successfully learned the opti-
mal policy when it has successfully completed one hundred
episodes with optimal reward of 10. For each chain length,
we ran each learning algorithm for 2000 episodes across
three seeds. We plot the median time to learn in Figure 5,
together with a conservative lower bound of 99 + 2N−11

on the expected time to learn for any shallow exploration
strategy. Only bootstrapped DQN demonstrates a graceful
scaling to long chains which require deep exploration.

Figure 5: Bootstrapped DQN demonstrates deep exploration.

5.4. A difficult stochastic MDP
Figure 5 shows that bootstrapped DQN can implement ef-
fective (and deep) exploration where similar deep RL ar-
chitectures fail. However, since the underlying system is
a small and finite MDP there may be several other sim-
pler strategies which would also solve this problem. We
will now consider a difficult variant of this chain system
with significant stochastic noise in transitions as depicted
in Figure 6. Action “left” deterministically moves the agent
left, but action “right” is only successful 50% of the time
and otherwise also moves left. The agent interacts with the
MDP in episodes of length 15 and begins each episode at
s1. Once again the optimal policy is to head right.

Figure 6: A stochastic MDP that requires deep exploration.

Bootstrapped DQN is unique amongst scalable approaches
to efficient exploration with deep RL in stochastic do-
mains. For benchmark performance we implement three al-
gorithms which, unlike bootstrapped DQN, will receive the
true tabular representation for the MDP. These algorithms
are based on three state of the art approaches to exploration
via dithering (ε-greedy), optimism (UCRL2; Jaksch et al.,
2010) and posterior sampling (PSRL; Osband et al., 2013).
We discuss the choice of these benchmarks in Appendix B.



Deep Exploration via Bootstrapped DQN

Figure 7: Bootstrapped DQN matches efficient tabular RL.

In Figure 7 we present the empirical regret of each algo-
rithm averaged over 10 seeds over the first two thousand
episodes. The empirical regret is the cumulative differ-
ence between the expected rewards of the optimal policy
and the realized rewards of each algorithm. We find that
bootstrapped DQN achieves similar performance to state
of the art efficient exploration schemes such as PSRL even
without prior knowledge of the tabular MDP structure and
in noisy environments.

Most telling is how much better bootstrapped DQN does
than the state of the art optimistic algorithm UCRL2. Al-
though Figure 7 seems to suggest UCRL2 incurs linear
regret, actually it follows its bounds Õ(S

√
AT ) (Jaksch

et al., 2010) where S is the number of states and A is the
number of actions. We demonstrate this through simulation
in Appendix B, together with extended discussion.

6. Arcade Learning Environment
We now evaluate our algorithm across 49 Atari games on
the Arcade Learning Environment (Bellemare et al., 2012).
Importantly, and unlike the experiments in Section 5, these
domains are not specifically designed to showcase our al-
gorithm. In fact, many Atari games are structured so that
small rewards always indicate part of an optimal policy.
This may be crucial for the strong performance observed
by dithering strategies2. We find that exploration via boot-
strapped DQN produces significant gains versus ε-greedy
in this setting. Bootstrapped DQN reaches peak perfor-
mance roughly similar to DQN. However, our improved
exploration mean we reach human performance on average
30% faster across all games. This translates to significantly
improved cumulative rewards through learning.

We follow the setup of (Van Hasselt et al., 2015) for
our network architecture and benchmark our performance
against their algorithm. Our network structure is identi-
cal to the convolutional structure of DQN (Mnih, 2015)
except we split 10 separate bootstrap heads after the con-
volutional layer as per Figure 1. Recently, several authors
have provided architectural and algorithmic improvements

2By contrast, imagine the agent received a small reward for
dying; dithering strategies would be hopeless, just like Section 5.

to DDQN (Wang et al., 2015; Schaul et al., 2015). We do
not compare our results to these since their advances are
orthogonal to our concern and could easily be incorporated
to our bootstrapped DQN design. Full details of our exper-
imental set up are available in Appendix C.

6.1. Implementing bootstrapped DQN at scale

We now examine how to generate online bootstrap samples
for DQN in a computationally efficient manner. We use
a shared convolutional network architecture with K boot-
strap heads as per Figure 1. This leaves three key questions:
how many heads do we need, how should we pass gradients
to the shared network and how should we bootstrap data
online? Each of these questions involves balancing compu-
tational and statistical considerations.

We found that even a small number of bootstrap heads
was sufficient to incentivize efficient exploration. Figure
8 presents the cumulative reward of bootstrapped DQN on
the game Breakout, for different number of heads K. More
heads leads to faster learning, but even a small number of
heads captures most of the benefits of bootstrapped DQN,
we choose K=10. Due to the shared convolutional net-
work, we find this overall network retains similar compu-
tate speed to DQN.

Figure 8: Decreasing marginal benefit to extra bootstrap heads.

This shared network architecture allows us to train this
combined network via backpropagation. One question is
whether to normalize gradients flowing from the network
heads. Feeding K network heads to the shared convolu-
tional network effectively increases the learning rate for
this portion of the network. In some games, this leads
to premature and sub-optimal convergence. We found the
best final scores by normalizing the gradients by 1/K, but
this also leads to slower early learning. Since much of
the literature focusses best policy after 200m frames, rather
than cumulative rewards during learning, we choose 1/10
rescaling for our shared gradients3.

Finally we have the question of how to implement an on-
line bootstrap for the K network heads. In order to avoid
a significant increase in memory footprint we use an inde-
pendent Bernoulli mask w1, .., wK ∼ Ber(p) for each head

3For more details on gradient rescaling see Appendix C.



Deep Exploration via Bootstrapped DQN

in each episode4. These flags are stored in the memory re-
play buffer and identify which heads are trained on which
data. A smaller p means that fewer data is shared, which
will maintain a higher diversity of bootstrap samples.

However, when trained using a shared minibatch the al-
gorithm will also require an effective 1/p more iterations.
This is undesirable since DQN is already computationally
taxing. Surprisingly, we found the algorithm performed
similarly irrespective of p and all outperformed DQN, as
shown in Figure 9. This is strange, but we present a more
detailed investigation of this phenomenon in Appendix C.
In light of this empirical observation for Atari, we chose
p = 1 to save on minibatch passes. As a result bootstrapped
DQN runs at similar computational speed to vanilla DQN
on identical hardware5.

Figure 9: We found similar performance across a range of p.

6.2. Efficient exploration in Atari
We find that Bootstrapped DQN drives efficient exploration
in several Atari games. This means that, for the same
amount of game experience, bootstrapped DQN generally
outperforms DQN with ε-greedy exploration. Figure 10
demonstrates this effect for a diverse selection of games.

(a) Breakout (b) Hero

(c) Qbert (d) James Bond
Figure 10: Bootstrapped DQN drives more efficient exploration.

To summarize this improvement in learning time we con-
sider the number of frames required to reach human per-
formance. We say algorithm A has a human speedup of x
relative to algorithm B if it reaches human performance in

4p = 0.5 is double-or-nothing bootstrap (Owen et al., 2012).
5Our implementation K=10, p=1 ran with less than a 20%

increase on wall-time versus DQN for the same amount of frames.

1/x as many frames as DQN. We find that, for the majority
of games where DQN reaches human performance, Boot-
strapped DQN reaches human performance significantly
faster. We present these results in Figure 11.

Figure 11: Bootstrapped DQN at human level faster than DQN.

6.3. Understanding bootstrapped DQN

We will now present some insight into how bootstrapped
DQN uses deep exploration to improve upon DQN. First,
we will examine the exploration policies for the game Hero.
In this game the agent controls a rescue mission which trav-
els room to room, blows up obstacles and rescues hostages.
In Figure 12 we show a screenshot for nine different heads
of bootstrapped DQN run from the initial state for 3,200
steps. Although each individual head has learned a good
representation for the value function that leads to a high-
scoring policy, the policies they find are quite distinct.

In fact, this screenshot shows the nine different heads in
five different game rooms. This shows that even after more
than 100m training frames with the data sharing p = 1, we
still maintain significant diversity. By contrast, ε-greedy
strategies are almost indistinguishable for small values of
ε and totally ineffectual for larger values. Our heads ex-
plore a diverse range of policies, but still manage to each
perform well individually. We believe that this deep ex-
ploration is key to the improved learning visible in Fig-
ure 10b, since diverse experiences allow for better gener-
alization. We present videos to highlight this behavior at
https://youtu.be/Zm2KoT82O_M.

Disregarding exploration, bootstrapped DQN may be ben-
eficial as a purely exploitative policy. We can combine all
the heads into a single ensemble policy, for example by
choosing the action with the most votes across heads. This
approach might have several benefits. First, we find that the
ensemble policy can often outperform any individual pol-
icy. Second, the distribution of votes across heads to give a
measure of the uncertainty in the optimal policy.

https://youtu.be/Zm2KoT82O_M


Deep Exploration via Bootstrapped DQN

Figure 12: Diverse exploration policies in Hero.

In Figure 13 we present two screenshots of bootstrapped
DQN playing Breakout according to an ensemble policy.
In this game the agent can choose to move left, move right
or stay. Beneath each screen we depict the number of heads
that pick each action by the length of each arrow. We draw
the action chosen by the ensemble policy in green.

(a) All heads vote right. (b) Heads disagree on policy.

Figure 13: Visualizing uncertainty in an ensemble policy.

When the ball is approaching the bottom of the screen and
all ten heads recognize the optimal policy is to move right
to catch it (Figure 13a). However when the ball is far from
the paddle the we can see the ensemble policy is uncer-
tain on the best action (Figure 13b). We present videos
of this effect at https://youtu.be/0jvEcC5JvGY.
Unlike vanilla DQN, bootstrapped DQN can know what it
doesn’t know. In an application where executing a poorly-
understood action is dangerous this could be crucial.

6.4. Overall performance
We have seen that bootstrapped DQN is able to learn much
faster than DQN. In Figure 14 we see that best perfor-
mance reached by both algorithms is similar across most
games. However, the benefits of efficient exploration mean
that bootstrapped DQN greatly outperforms DQN when
measured in terms of cumulative rewards through learn-
ing. We present these results in Figure 15. In Appendix

C we present full results for our algorithm across all 49
games. Bootstrapped DQN significantly outperforms sev-
eral recent heuristic approaches for improved exploration
on Atari (Stadie et al., 2015), particularly in terms of cu-
mulative rewards.

Figure 14: Bootstrapped DQN attains similar best policy.

Figure 15: Bootstrapped DQN improves cumulative rewards.

7. Closing remarks
In this paper we present bootstrapped DQN as an algorithm
for efficient reinforcement learning in complex environ-
ments. We demonstrate that the bootstrap can produce use-
ful uncertainty estimates for deep neural networks. Boot-
strapped DQN can leverage these uncertainty estimates for
deep exploration even in difficult stochastic systems; it also
produces several state of the art results in Atari 2600.

Bootstrapped DQN is computationally tractable and also
naturally scalable to massive parallel systems as per (Nair
et al., 2015). We believe that, beyond our specific imple-
mentation, randomized value functions represent a promis-
ing alternative to dithering for exploration. Bootstrapped
DQN practically combines efficient generalization with ex-
ploration for complex nonlinear value functions.

https://youtu.be/0jvEcC5JvGY


Deep Exploration via Bootstrapped DQN

References
Abbasi-Yadkori, Yasin and Szepesvári, Csaba. Bayesian optimal

control of smoothly parameterized systems. In Proceedings of
the Conference on Uncertainty in Artificial Intelligence, 2015.

Bellemare, Marc G, Naddaf, Yavar, Veness, Joel, and Bowling,
Michael. The arcade learning environment: An evaluation
platform for general agents. arXiv preprint arXiv:1207.4708,
2012.

Bickel, Peter J and Freedman, David A. Some asymptotic the-
ory for the bootstrap. The Annals of Statistics, pp. 1196–1217,
1981.

Blundell, Charles, Cornebise, Julien, Kavukcuoglu, Koray, and
Wierstra, Daan. Weight uncertainty in neural networks. ICML,
2015.

Brafman, Ronen I. and Tennenholtz, Moshe. R-max - a gen-
eral polynomial time algorithm for near-optimal reinforcement
learning. Journal of Machine Learning Research, 3:213–231,
2002.

Burnetas, Apostolos N and Katehakis, Michael N. Optimal adap-
tive policies for markov decision processes. Mathematics of
Operations Research, 22(1):222–255, 1997.

Dann, Christoph and Brunskill, Emma. Sample complexity of
episodic fixed-horizon reinforcement learning. In Advances in
Neural Information Processing Systems, pp. 2800–2808, 2015.

Efron, Bradley. The jackknife, the bootstrap and other resampling
plans, volume 38. SIAM, 1982.

Efron, Bradley and Tibshirani, Robert J. An introduction to the
bootstrap. CRC press, 1994.

Gal, Yarin and Ghahramani, Zoubin. Dropout as a bayesian ap-
proximation: Representing model uncertainty in deep learning.
arXiv preprint arXiv:1506.02142, 2015.

Gopalan, Aditya and Mannor, Shie. Thompson sampling for
learning parameterized markov decision processes. In Pro-
ceedings of the 28th Conference on Learning Theory (COLT),
pp. 861–898, 2015.

Graves, Alex. Practical variational inference for neural networks.
In Advances in Neural Information Processing Systems, pp.
2348–2356, 2011.

Guez, Arthur, Silver, David, and Dayan, Peter. Efficient bayes-
adaptive reinforcement learning using sample-based search.
In Advances in Neural Information Processing Systems, pp.
1025–1033, 2012.

Guez, Arthur, Heess, Nicolas, Silver, David, and Dayan, Peter.
Bayes-adaptive simulation-based search with value function
approximation. In Advances in Neural Information Process-
ing Systems, pp. 451–459, 2014.

Hernández-Lobato, José Miguel and Adams, Ryan P. Probabilis-
tic backpropagation for scalable learning of bayesian neural
networks. ICML, 2015.

Jaksch, Thomas, Ortner, Ronald, and Auer, Peter. Near-optimal
regret bounds for reinforcement learning. Journal of Machine
Learning Research, 11:1563–1600, 2010.

Kakade, Sham. On the Sample Complexity of Reinforcement
Learning. PhD thesis, University College London, 2003.

Kearns, Michael J. and Singh, Satinder P. Near-optimal reinforce-
ment learning in polynomial time. Machine Learning, 49(2-3):
209–232, 2002.

Kingma, Diederik P, Salimans, Tim, and Welling, Max. Vari-
ational dropout and the local reparameterization trick. arXiv
preprint arXiv:1506.02557, 2015.

Kleiner, Ariel, Talwalkar, Ameet, Sarkar, Purnamrita, and Jordan,
Michael I. A scalable bootstrap for massive data. Journal of the
Royal Statistical Society: Series B (Statistical Methodology),
76(4):795–816, 2014.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E. Ima-
genet classification with deep convolutional neural networks.
In Advances in neural information processing systems, pp.
1097–1105, 2012.

Lai, Tze Leung and Robbins, Herbert. Asymptotically efficient
adaptive allocation rules. Advances in applied mathematics, 6
(1):4–22, 1985.

Levine, Sergey, Finn, Chelsea, Darrell, Trevor, and Abbeel,
Pieter. End-to-end training of deep visuomotor policies. arXiv
preprint arXiv:1504.00702, 2015.

Mnih, Volodymyr et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, 2015.

Munos, Rémi. From bandits to monte-carlo tree search: The op-
timistic principle applied to optimization and planning. 2014.

Nair, Arun, Srinivasan, Praveen, Blackwell, Sam, Alcicek,
Cagdas, Fearon, Rory, De Maria, Alessandro, Panneershelvam,
Vedavyas, Suleyman, Mustafa, Beattie, Charles, Petersen, Stig,
et al. Massively parallel methods for deep reinforcement learn-
ing. arXiv preprint arXiv:1507.04296, 2015.

Osband, Ian and Van Roy, Benjamin. Model-based reinforcement
learning and the eluder dimension. In Advances in Neural In-
formation Processing Systems, pp. 1466–1474, 2014a.

Osband, Ian and Van Roy, Benjamin. Near-optimal reinforcement
learning in factored MDPs. In Advances in Neural Information
Processing Systems, pp. 604–612, 2014b.

Osband, Ian and Van Roy, Benjamin. Bootstrapped thomp-
son sampling and deep exploration. arXiv preprint
arXiv:1507.00300, 2015.

Osband, Ian, Russo, Daniel, and Van Roy, Benjamin. (More) ef-
ficient reinforcement learning via posterior sampling. In NIPS,
pp. 3003–3011. Curran Associates, Inc., 2013.

Osband, Ian, Van Roy, Benjamin, and Wen, Zheng. Generaliza-
tion and exploration via randomized value functions. arXiv
preprint arXiv:1402.0635, 2014.

Owen, Art B, Eckles, Dean, et al. Bootstrapping data arrays of
arbitrary order. The Annals of Applied Statistics, 6(3):895–927,
2012.

Rubin, Donald B et al. The bayesian bootstrap. The annals of
statistics, 9(1):130–134, 1981.



Deep Exploration via Bootstrapped DQN

Rusmevichientong, Paat and Tsitsiklis, John N. Linearly parame-
terized bandits. Math. Oper. Res., 35(2):395–411, 2010.

Russo, Daniel and Van Roy, Benjamin. Learning to optimize via
posterior sampling. Mathematics of Operations Research, 39
(4):1221–1243, 2014.

Schaul, Tom, Quan, John, Antonoglou, Ioannis, and Sil-
ver, David. Prioritized experience replay. arXiv preprint
arXiv:1511.05952, 2015.

Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex, Sutskever,
Ilya, and Salakhutdinov, Ruslan. Dropout: A simple way to
prevent neural networks from overfitting. The Journal of Ma-
chine Learning Research, 15(1):1929–1958, 2014.

Stadie, Bradly C, Levine, Sergey, and Abbeel, Pieter. Incentiviz-
ing exploration in reinforcement learning with deep predictive
models. arXiv preprint arXiv:1507.00814, 2015.

Strehl, Alexander L and Littman, Michael L. A theoretical anal-
ysis of model-based interval estimation. In Proceedings of the
22nd international conference on Machine learning, pp. 856–
863. ACM, 2005.

Strens, Malcolm J. A. A bayesian framework for reinforcement
learning. In ICML, pp. 943–950, 2000.

Sutton, Richard and Barto, Andrew. Reinforcement Learning: An
Introduction. MIT Press, March 1998.

Teh, Yee Whye, Hasenclever, Leonard, Lienart, Thibaut, Vollmer,
Sebastian, Webb, Stefan, Lakshminarayanan, Balaji, and Blun-
dell, Charles. Distributed bayesian learning with stochas-
tic natural-gradient expectation propagation and the posterior
server. arXiv preprint arXiv:1512.09327, 2015.

Tesauro, Gerald. Temporal difference learning and td-gammon.
Communications of the ACM, 38(3):58–68, 1995.

Thompson, W.R. On the likelihood that one unknown probabil-
ity exceeds another in view of the evidence of two samples.
Biometrika, 25(3/4):285–294, 1933.

Van Hasselt, Hado, Guez, Arthur, and Silver, David. Deep re-
inforcement learning with double q-learning. arXiv preprint
arXiv:1509.06461, 2015.

Wang, Tao, Lizotte, Daniel, Bowling, Michael, and Schuurmans,
Dale. Bayesian sparse sampling for on-line reward optimiza-
tion. In Proceedings of the 22nd international conference on
Machine learning, pp. 956–963. ACM, 2005.

Wang, Ziyu, de Freitas, Nando, and Lanctot, Marc. Dueling
network architectures for deep reinforcement learning. arXiv
preprint arXiv:1511.06581, 2015.

Wen, Zheng and Van Roy, Benjamin. Efficient exploration and
value function generalization in deterministic systems. In
NIPS, pp. 3021–3029, 2013.



Deep Exploration via Bootstrapped DQN

APPENDICES

A. Uncertainty for neural networks
In this appendix we discuss some of the experimental setup
to qualitatively evaluate uncertainty methods for deep neu-
ral networks. To do this, we generated twenty noisy regres-
sion pairs xi, yi with:

yi = xi + sin(α(xi + wi)) + sin(β(xi + wi)) + wi

where xi are drawn uniformly from (0, 0.6) ∪ (0.8, 1) and
wi ∼ N(µ = 0, σ2 = 0.032). We set α = 4 and β = 13.
None of these numerical choices were important except to
represent a highly nonlinear function with lots of noise and
several clear regions where we should be uncertain. We
present the regression data together with an indication of
the generating distribution in Figure 16.

Figure 16: Underlying generating distribution. All our algo-
rithms receive the same blue data. Pink points represent other
samples, the mean function is shown in black.

Interestingly, we did not find that using dropout produced
satisfying confidence intervals for this task. We present one
example of this dropout posterior estimate in Figure 17.

Figure 17: Dropout gives strange uncertainty estimates.

These results are unsatisfactory for several reasons. First,
the network extrapolates the mean posterior far outside the
range of any actual data for x = 0.75. We believe this is
because dropout only perturbs locally from a single neural
network fit, unlike bootstrap. Second, the posterior samples
from the dropout approximation are very spiky and do not

look like any sensible posterior sample. Third, the network
collapses to almost zero uncertainty in regions with data.

We spent some time altering our dropout scheme to fix this
effect, which might be undesirable for stochastic domains
and we believed might be an artefact of our implementa-
tion. However, after further thought we believe this to be
an effect which you would expect for dropout posterior ap-
proximations. In Figure 18 we present a didactic example
taken from the author’s website (Gal & Ghahramani, 2015).

Figure 18: Screenshot from accompanying web demo to (Gal &
Ghahramani, 2015). Dropout converges with high certainty to the
mean value.

On the right hand side of the plot we generate noisy data
with wildly different values. Training a neural network us-
ing MSE criterion means that the network will surely con-
verge to the mean of the noisy data. Any dropout samples
remain highly concentrated around this mean. By contrast,
bootstrapped neural networks may include different sub-
sets of this noisy data and so may produce a more intuitive
uncertainty estimates for our settings.

In this paper we focus on the bootstrap approach to uncer-
tainty for neural networks. We like its simplicity, connec-
tions to established statistical methodology and empirical
good performance. However, the key insights of this paper
is the use of deep exploration via randomized value func-
tions. This is compatible with any approximate posterior
estimator for deep neural networks. We believe that this
area of uncertainty estimates for neural networks remains
an important area of research in its own right.

Bootstrapped uncertainty estimates for the Q-value func-
tions have another crucial advantage over dropout which
does not appear in the supervised problem. Unlike random
dropout masks trained against random target networks, our
implementation of bootstrap DQN trains against its own
temporally consistent target network. This means that our
bootstrap estimates (in the sense of (Efron, 1982)), are able
to “bootstrap” (in the TD sense of (Sutton & Barto, 1998))
on their own estimates of the long run value. This is impor-
tant to quantify the long run uncertainty over Q and drive
deep exploration.



Deep Exploration via Bootstrapped DQN

B. Experiments for deep exploration
B.1. Bootstrap methodology

A naive implementation of bootstrapped DQN builds up K
complete networks with K distinct memory buffers. This
method is parallelizable up to many machines, however we
wanted to produce an algorithm that was efficient even on a
single machine. To do this, we implemented the bootstrap
heads in a single larger network, like Figure 1 but without
any shared network. We implement bootstrap by masking
each episode of data according to w1, .., wK ∼ Ber(p).

Figure 19: Bootstrapped DQN performs well even with small
number of bootstrap heads K or high probability of sharing p.

In Figure 19 we demonstrate that bootstrapped DQN can
implement deep exploration even with relatively small val-
ues of K. However, the results are more robust and scal-
able with largerK. We run our experiments on the example
from Figure 4. Surprisingly, this method is even effective
with p = 1 and complete data sharing between heads. This
degenerate full sharing of information turns out to be re-
markably efficient for training large and deep neural net-
works. We discuss this phenomenon more in Appendix C.

Generating good estimates for uncertainty is not enough
for efficient exploration. In Figure 20 we see that other

methods trained with the same network architecture are to-
tally ineffective at implementing deep exploration. The ε-
greedy policy follows just one Q-value estimate. We allow
this policy to be evaluated without dithering. The ensemble
policy is trained exactly as per bootstrapped DQN except at
each stage the algorithm follows the policy which is major-
ity vote of the bootstrap heads. Thompson sampling is the
same as bootstrapped DQN except a new head is sampled
every timestep, rather than every episode.

Figure 20: Shallow exploration methods do not work.

We can see that only bootstrapped DQN demonstrates effi-
cient and deep exploration in this domain.

B.2. Comparison to efficient tabular methods

For the example in Figure 6 we attempted to display our
performance compared to several benchmark tabula rasa
approaches to exploration. There are many other algo-
rithms we could have considered, but for a short paper
we chose to focus against the most common approach (ε-
greedy) the pre-eminent optimistic approach (UCRL2) and
posterior sampling (PSRL).

Other common heuristic approaches, such as optimistic ini-
tialization for Q-learning can be tuned to work well on
this domain, however the precise parameters are sensitive
to the underlying MDP6. To make a general-purpose ver-
sion of this heuristic essentially leads to optimistic algo-
rithms. Famous optimistic algorithms like Rmax (Braf-

6Further, it is difficult to extend the idea of optimistic initial-
ization with function generalization, especially for deep neural
networks.



Deep Exploration via Bootstrapped DQN

man & Tennenholtz, 2002), E3 (Kearns & Singh, 2002) or
MBIE (Strehl & Littman, 2005) can be thought of as earlier
approaches to optimistic exploration that are generally su-
perseded by UCRL2. Since UCRL2 is originally designed
for infinite-horizon MDPs, we use the natural adaptation of
this algorithm, which has state of the art guarantees in finite
horizon MDPs as well (Dann & Brunskill, 2015).

Figure 7 displays the empirical regret of these algorithms
together with bootstrapped DQN on the example from Fig-
ure 6. It is somewhat disconcerting that UCRL2 appears to
incur linear regret, but it is proven to satisfy near-optimal
regret bounds. Actually, as we show in Figure 21, the al-
gorithm produces regret which scales very similarly to its
established bounds (Jaksch et al., 2010). Similarly, even
for this tiny problem size, the recent analysis that proves a
near optimal sample complexity in fixed horizon problems
(Dann & Brunskill, 2015) only guarantees that we will have
fewer than 1010 ε = 1 suboptimal episodes. While these
bounds may be acceptable in worst case Õ(·) scaling, they
are not of much practical use.

Figure 21: The regret bounds for UCRL2 are near-optimal in
Õ(·), but they are still not very practical.

B.3. How/why does this give deep exploration?

In some ways bootstrapped DQN, with K fixed heads
that generate alternative policies, resembles evolutionary or
randomized policy algorithms. However, there are several
key differences. Bootstrapped DQN exhibits deep explo-
ration which allows it to learn exponentially faster. Purely
policy-based methods typically require learning time that
scales with the number of policies. For an MDP with S
states, A actions and H timesteps this is O(ASH), or 2N

2

in the example from Figure 4 and potentially even worse
than dithering strategies O(2N ). If we modified Figure 4
to remove the small reward then, prior to observing the re-
ward there would be zero signal for any policy gradient al-
gorithm. This can be formalized to a proof that policy gra-
dients may take O(2N

2

) episodes to learn (Osband et al.,
2014). In practice, the small reward makes these algorithms
even worse, since it draws the policy away from the opti-
mal. Bootstrapped DQN is a very different algorithm, we
now present some more intuition for why.

Imagine that after L episodes the agent has explored all ac-
tions in states 1 ≤ s ≤ n− 1 < N and has only once taken

an action from s = n < N . Since the agent has never
been to s = n+ 1 then we know that it has never taken ac-
tion right in s = n. For n,L large we can imagine that all
K bootstrap heads will estimate Q∗(s, a) based upon the
observed optimal policy to head left a = 1. However, if
the networks generalize in a diverse way to unknown states
(due to random initialization, different target networks and
different datasets) then they should produce different esti-
mates for Qk(n, 2).

As long as one head k imagines Qk(n, 2) > Qk(n, 1)
then, through the TD bootstrapping in head k this incen-
tive for deep exploration will propagate throughout the en-
tire chain. If this estimate of Qk(n, 2) is high enough, then
when head k is chosen it will produce a policy that leads the
agent to state n+ 1. The expected time for these estimates
at n to propagate to at least one head grows gracefully in
n, even for relatively small K. This is very different from
policy-based or evolutionary algorithms.

It is important to note that for our implementations we rely
on the random initialization of deep neural networks as
some kind of prior to induce diversity. Unlike supervised
learning where all networks fit the same data, the target
networks mean that small differences at initialization are
prone to become bigger as they refit to unique TD errors.
This is effective for our experimental setting, but this will
not work in all situations. In stochastic environments or
with rescaled rewards it may be necessary to augment the
bootstrap heads with artificial prior data to maintain diver-
sity in generalization (Osband & Van Roy, 2015).

B.4. One-hot features

In Figure 22 we include the mean performance of boot-
strapped DQN with one-hot feature encodings. We found
that, using these features, bootstrapped DQN learned the
optimal policy for most seeds, but was somewhat less ro-
bust than the thermometer encoding. Two out of ten seeds
failed to learn the optimal policy within 2000 episodes, this
is presented in Figure 22.

Figure 22: Bootstrapped DQN also performs well with one-hot
features, but learning is less robust.



Deep Exploration via Bootstrapped DQN

C. Experiments for Atari
C.1. Experimental setup

We use the same 49 Atari games as (Mnih, 2015) for our
experiments. Each step of the agent corresponds to four
steps of the emulator, where the same action is repeated, the
reward values of the agents are clipped between -1 and 1 for
stability. We evaluate our agents and report performance
based upon the raw scores.

The convolutional part of the network used is identical to
the one used in (Mnih, 2015). The input to the network
is 4x84x84 tensor with a rescaled, grayscale version of the
last four observations. The first convolutional (conv) layer
has 32 filters of size 8 with a stride of 4. The second conv
layer has 64 filters of size 4 with stride 2. The last conv
layer has 64 filters of size 3. We split the network beyond
the final layer into K = 10 distinct heads, each one is fully
connected and identical to the single head of DQN (Mnih,
2015). This consists of a fully connected layer to 512 units
followed by another fully connected layer to the Q-Values
for each action. The fully connected layers all use Recti-
fied Linear Units(ReLU) as a non-linearity. We normalize
gradients 1/K that flow from each head.

We trained the networks with RMSProp with a momen-
tum of 0.95 and a learning rate of 0.00025 as in (Mnih,
2015). The discount was set to γ = 0.99, the number of
steps between target updates was set to τ = 10000 steps.
We trained the agents for a total of 50m steps per game,
which corresponds to 200m frames. The agents were ev-
ery 1m frames, for evaluation in bootstrapped DQN we use
an ensemble voting policy. The experience replay contains
the 1m most recent transitions. We update the network ev-
ery 4 steps by randomly sampling a minibatch of 32 transi-
tions from the replay buffer to use the exact same minibatch
schedule as DQN. For training we used an ε-greedy policy
with ε being annealed linearly from 1 to 0.01 over the first
1m timesteps.

C.2. Gradient normalization in bootstrap heads

Most literature in deep RL for Atari focuses on learning
the best single evaluation policy, with particular attention
to whether this above or below human performance (Mnih,
2015). This is unusual for the RL literature, which typically
focuses upon cumulative or final performance.

Bootstrapped DQN makes significant improvements to the
cumulative rewards of DQN on Atari, as we display in
Figure 15, while the peak performance is much more We
found that using bootstrapped DQN without gradient nor-
malization on each head typically learned even faster than
our implementation with rescaling 1/K, but it was some-
what prone to premature and suboptimal convergence. We
present an example of this phenomenon in Figure 23.

Figure 23: Normalization fights premature convergence.

We found that, in order to better the benchmark “best” poli-
cies reported by DQN, it was very helpful for us to use the
gradient normalization. However, it is not entirely clear
whether this represents an improvement for all settings. In
Figures 24 and 25 we present the cumulative rewards of the
same algorithms on Beam Rider.

Figure 24: Normalization does not help cumulative rewards.

Figure 25: Even over 200m frames the importance of exploration
dominates the effects of an inferior final policy.

Where an RL system is deployed to learn with real interac-
tions, cumulative rewards present a better measure for per-
formance. In these settings the benefits of gradient normal-
ization are less clear. However, even with normalization
1/K bootstrapped DQN significantly outperforms DQN in
terms of cumulative rewards. This is reflected most clearly
in Figure 15 and Table 2.



Deep Exploration via Bootstrapped DQN

C.3. Sharing data in bootstrap heads

As we report in Section 6 our results on Atari are reported
for a degenerate masking of data p = 17. In this setting
all network heads share all the data, so they are not actu-
ally a traditional bootstrap at all. This is different from the
regression task in Section 2, where bootstrapped data was
essential to obtain meaningful uncertainty estimates. We
have several theories for why the networks maintain sig-
nificant diversity even without data bootstrapping in this
setting. We build upon the intuition of Appendix B.3.

First, they all train on different target networks. This means
that even when facing the same (s, a, r, s′) datapoint this
can still lead to drastically different Q-value updates. Sec-
ond, Atari is a deterministic environment, any transition
observation is the unique correct datapoint for this setting.
Third, the networks are deep and initialized from differ-
ent random values so they will likely find quite diverse
generalization even when they agree on given data. Fi-
nally, since all variants of DQN take many many frames
to update their policy, it is likely that even using p = 0.5
they would still populate their replay memory with identi-
cal datapoints. This means using p = 1 to save on mini-
batch passes seems like a reasonable compromise and it
doesn’t seem to negatively affect performance too much in
this setting. More research is needed to examine exactly
where/when this data sharing is important.

C.4. A note on Montezuma’s revenge

The game Montezuma’s revenge has posed a major chal-
lenge for most RL algorithms. This environment is con-
ceptually similar to Figure 4 for a large N and without
the small reward. This algorithm requires deep exploration
since rewards are extremely sparse. Based on the argu-
ments in this paper we would hope that bootstrap DQN pro-
vides significant benefits here. Figure 26 shows the learn-
ing curves on this game.

Figure 26: Bootstrapped DQN finds a reward in Montezuma.

Importantly, bootstrapped DQN successfully finds a reward
after fewer than 25M frames. DQN with ε-greedy explo-
ration fails to find any reward after 200M frames. However,
bootstrapped DQN does not successfully learn from this

7We do this for computational reasons, however in a dis-
tributed system we can implement bootstrapped DQN in a nat-
urally parallel manner (Nair et al., 2015).

signal to reach sustainably good performance. This is not
entirely surprising, since training on random minibatches
from 1M previous transitions the actual amount of train-
ing signal from this reward will be close to zero. However,
if we paired this exploration with an aggressive prioritized
replay (Schaul et al., 2015) this could provide an avenue
towards efficient learning in Montezuma’s revenge.

C.5. Results tables

In Table 1 the average score achieved by the agents during
the most successful evaluation period, compared to human
performance and a uniformly random policy. DQN is our
implementation of DQN with the hyperparameters speci-
fied above, using the double Q-Learning update.(Van Has-
selt et al., 2015). We find that peak final performance is
similar under bootstrapped DQN to previous benchmarks.

To compare the benefits of exploration via bootstrapped
DQN we benchmark our performance against the most sim-
ilar prior work on incentivizing exploration in Atari (Stadie
et al., 2015). To do this, we compute the AUC-100 measure
specified in this work. We present these results in Table 2
compare to their best performing strategy as well as their
implementation of DQN. Importantly, bootstrapped DQN
outperforms this prior work significantly.



Deep Exploration via Bootstrapped DQN

Random Human Bootstrapped DQN DDQN Nature
Alien 227.8 7127.7 2436.6 4007.7 3069
Amidar 5.8 1719.5 1272.5 2138.3 739.5
Assault 222.4 742.0 8047.1 6997.9 3359
Asterix 210.0 8503.3 19713.2 17366.4 6012
Asteroids 719.1 47388.7 1032.0 1981.4 1629
Atlantis 12850.0 29028.1 994500.0 767850.0 85641
Bank Heist 14.2 753.1 1208.0 1109.0 429.7
Battle Zone 2360.0 37187.5 38666.7 34620.7 26300
Beam Rider 363.9 16926.5 23429.8 16650.7 6846
Bowling 23.1 160.7 60.2 77.9 42.4
Boxing 0.1 12.1 93.2 90.2 71.8
Breakout 1.7 30.5 855.0 437.0 401.2
Centipede 2090.9 12017.0 4553.5 4855.4 8309
Chopper Command 811.0 7387.8 4100.0 5019.0 6687
Crazy Climber 10780.5 35829.4 137925.9 137244.4 114103
Demon Attack 152.1 1971.0 82610.0 98450.0 9711
Double Dunk -18.6 -16.4 3.0 -1.8 -18.1
Enduro 0.0 860.5 1591.0 1496.7 301.8
Fishing Derby -91.7 -38.7 26.0 19.8 -0.8
Freeway 0.0 29.6 33.9 33.4 30.3
Frostbite 65.2 4334.7 2181.4 2766.8 328.3
Gopher 257.6 2412.5 17438.4 13815.9 8520
Gravitar 173.0 3351.4 286.1 708.6 306.7
Hero 1027.0 30826.4 21021.3 20974.2 19950
Ice Hockey -11.2 0.9 -1.3 -1.7 -1.6
Jamesbond 29.0 302.8 1663.5 1120.2 576.7
Kangaroo 52.0 3035.0 14862.5 14717.6 6740
Krull 1598.0 2665.5 8627.9 9690.9 3805
Kung Fu Master 258.5 22736.3 36733.3 36365.7 23270
Montezuma Revenge 0.0 4753.3 100.0 0.0 0
Ms Pacman 307.3 6951.6 2983.3 3424.6 2311
Name This Game 2292.3 8049.0 11501.1 11744.4 7257
Pong -20.7 14.6 20.9 20.9 18.9
Private Eye 24.9 69571.3 1812.5 158.4 1788
Qbert 163.9 13455.0 15092.7 15209.7 10596
Riverraid 1338.5 17118.0 12845.0 14555.1 8316
Road Runner 11.5 7845.0 51500.0 49518.4 18257
Robotank 2.2 11.9 66.6 70.6 51.6
Seaquest 68.4 42054.7 9083.1 19183.9 5286
Space Invaders 148.0 1668.7 2893.0 4715.8 1976
Star Gunner 664.0 10250.0 55725.0 66091.2 57997
Tennis -23.8 -8.3 0.0 11.8 -2.5
Time Pilot 3568.0 5229.2 9079.4 10075.8 5947
Tutankham 11.4 167.6 214.8 268.0 186.7
Up N Down 533.4 11693.2 26231.0 19743.5 8456
Venture 0.0 1187.5 212.5 239.7 380
Video Pinball 0.0 17667.9 811610.0 685911.0 42684
Wizard Of Wor 563.5 4756.5 6804.7 7655.7 3393
Zaxxon 32.5 9173.3 11491.7 12947.6 4977

Table 1: Maximal evaluation Scores achieved by agents



Deep Exploration via Bootstrapped DQN

We now compare our method against the results in (Stadie et al., 2015). In this paper they introduce a new measure of
performance called AUC-100, which is something similar to normalized cumulative rewards up to 20 million frames. Table
2 displays the results for our reference DQN and bootstrapped DQN as Boot-DQN. We reproduce their reference results
for DQN as DQN* and their best performing algorithm, Dynamic AE. We also present bootstrapped DQN without head
rescaling as Boot-DQN+.

DQN* Dynamic AE DQN Boot-DQN Boot-DQN+
Alien 0.15 0.20 0.23 0.23 0.33
Asteroids 0.26 0.41 0.29 0.29 0.55
Bank Heist 0.07 0.15 0.06 0.09 0.77
Beam Rider 0.11 0.09 0.24 0.46 0.79
Bowling 0.96 1.49 0.24 0.56 0.54
Breakout 0.19 0.20 0.06 0.16 0.52
Enduro 0.52 0.49 1.68 1.85 1.72
Freeway 0.21 0.21 0.58 0.68 0.81
Frostbite 0.57 0.97 0.99 1.12 0.98
Montezuma Revenge 0.00 0.00 0.00 0.00 0.00
Pong 0.52 0.56 -0.13 0.02 0.60
Qbert 0.15 0.10 0.13 0.16 0.24
Seaquest 0.16 0.17 0.18 0.23 0.44
Space Invaders 0.20 0.18 0.25 0.30 0.38
Average 0.29 0.37 0.35 0.41 0.62

Table 2: AUC-100 for different agents compared to (Stadie et al., 2015)

We see that, on average, both bootstrapped DQN implementations outperform Dynamic AE, the best algorithm from
previous work. The only game in which Dynamic AE produces best results is Bowling, but this difference in Bowling
is dominated by the implementation of DQN* vs DQN. Bootstrapped DQN still gives over 100% improvement over its
relevant DQN baseline. Overall it is clear that Boot-DQN+ (bootstrapped DQN without rescaling) performs best in terms of
AUC-100 metric. Averaged across the 14 games it is over 50% better than the next best competitor, which is bootstrapped
DQN with gradient normalization.

However, in terms of peak performance over 200m frames Boot-DQN generally reached higher scores. Boot-DQN+
sometimes plateaud early as in Figure 23. This highlights an important distinction between evaluation based on best learned
policy versus cumulative rewards, as we discuss in Appendix C.2. Bootstrapped DQN displays the biggest improvements
over DQN when doing well during learning is important.


