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Abstract

Directed acyclic graphs (DAGs) are a popu-
lar framework to express multivariate probabil-
ity distributions. Acyclic directed mixed graphs
(ADMGS) are generalizations of DAGs that can
succinctly capture much richer sets of condi-
tional independencies, and are especially useful
in modeling the effects of latent variables implic-
itly. Unfortunately, there are currently no pa-
rameterizations of general ADMGs. In this pa-
per, we apply recent work on cumulative distribu-
tion networks and copulas to propose one general
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MGs are. Reading off independence constraints from a
ADMG can be done with a procedure essentially identi-
cal to d-separation (Pearl, 1988, Richardson and Spirtes,
2002). Given a graphical structure, the challenge is to pro-
vide a procedure to parameterize models that correspond
to the independence constraints of the graph, as illustrate
below.

Example 1: Bi-directed edges correspond to some hidden
common parent that has been marginalized. In the Gaus-
sian case, this has an easy interpretation as constraints in
the marginal covariance matrix of the remaining variables.
Consider the two graphs below.

construction for ADMG models. We consider ° @ ~
a simple parameter estimation approach, and re- e
port some encouraging experimental results. e @l 5 :

N ‘
1 CONTRIBUTION T
Graphical models provide a powerful framework forencod-In the DAG in the left, we marginalize variables
ing independence constraints in a multivariate distrduti X5 ... Xj, obtaining the (fully bi-directed) ADMG on
(Pearl, 1988, Lauritzen, 1996). Two of the most commonthe right. Consider a Gaussian distribution that is Markov
families, the directed acyclic graph (DAG) and the undi-with respect to this graph. Its covariance matrix will have
rected network, have complementary properties. For inthe following structure:
stance, DAGs are non-monotonic independence models, in
the sense that conditioning on extra variables can also de- 011 012 013 0
stroy independencies (sometimes known as the “explaining s | o1z 02 0 ooy
away” phenomenon (Pearl, 1988)). Undirected networks | o3 0 o033 o34
allow for flexible “symmetric” parameterizations that do 0 o094 034 Oy

not require a particular ordering of the variables.
_ ) That is, the absence of an edge in the fully bi-directed case
More recently, alternative graphical models that allow for,, correspond to a zero in the implied covariance ma-

both directed and.symmetric re!ationships have been introt'rix. This should be contrasted with the undirected Gaus-
duced. Theacyclic directed mixed grapfADMG) has  gjan Markov random field, where zeroes are in the inverse
both directed and bi-directed edges and it is the resu'&ovariance matrix]

of marginalizinga DAG: Figure 1 provides an example. _ _ _ o
Richardson and Spirtes (2002), Richardson (2003) show heoretical properties and practical applications of AD-

that DAGs are not closed under marginalization, but AD-MGs are further discussed in detail by e.g. Bollen (1989),
Spirtes et al. (2000), Drton and Richardson (2008), Zhang

Appearing in Proceedings of thet” International Conference on (2008), Pellet (2008), Silva and Ghahramani (2009), Khare
Artificial Intelligence and Statistics (AISTATS) 2011, Edraud-  and Rajaratnam (2009), Huang and Jojic (2010). One can
ggdlall% Fh' Usﬁ‘- Volume 15 of JMLR: W&CP 15. Copyright g|so have latent variable ADMG models, where only a sub-

y the authors. set of the latent variables have been marginalized. In epars
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models, using bi-directed edges in ADMGs frees us frombi-directed models arenodels of marginal independence
having to specify exactly which latent variables exist and(Drton and Richardson, 2008). Just like in a DAG, condi-
how they might be connected. In the context of Bayesiartioning on a vertex that is the endpoint of two arrowheads
inference, Markov chain Monte Carlo in ADMGs might will make some variables dependent. For instance, for a bi-
have much better mixing properties compared to modelslirected graphX; < X5 < X3, we have thatX; Il Xj3
where all latent variables are explicitly included (Silveda butX; A X35|X». See Drton and Richardson (2003, 2008)
Ghahramani, 2009). for a full discussio.

However, it is hard in general to parameterize a likeli- Current parameterizations of bi-directed graphs have many
hood function that obeys the independence constraints emesirable properties but suffer from a number of impor-
coded in an ADMG. Gaussian likelihood functions andtant practical difficulties. For example, consider binairy b
their variations (e.g., mixture models and probit models)directed graphs, where a complete parameterization was in-
have been the most common families exploited in the literatroduced by Drton and Richardson (2008). iebe a bi-

ture (Richardson and Spirtes, 2002, Silva and Ghahramandirected graph with vertex séfy . Letgs = P(X4 = 0),
2009, Khare and Rajaratnam, 2009, Rothman et al., 2009jor any vertex seX 4 contained inXy . The joint probabil-
More recently, important progress has been made in conity P(X4 = 0, Xy 4 = 1) is given by

structing binary ADMG models (Drton and Richardson,

2008, Richardson, 2009, Evans and Richardson, 2010), al- P(X4 =0, X\ 4 = 1) = Z (-l ()
though it is not clear how to extend such models to infinite B:ACB

discrete spaces (such as treating Poisson random vajiabl
— also important, scalability issues arise, as described
the sequel.

i?ﬁ’ue set{gs : Xg C Xy} is known as the Mobius param-
eterization ofP(Xy ), since relationship (1) is an instance
of the Mdbius inversion operation (Lauritzen, 1996). The
This paper provides a flexible construction procedure formarginal independence properties of the bi-directed graph
probability mass functions and density functions that arémply P(X, = 0, Xp = 0) = P(X4 = 0)P(Xp = 0) if
Markov with respect to an arbitrary ADMG. In the case no element inX 4 is adjacent to any element Kz in G.
where complete parameterizations exist, such as in th&herefore, the set of independent parameters in this param-
multivariate binary case (Richardson, 2009, Evans aneterization is given by{g}, for all X 4 that forms a con-
Richardson, 2010), our construction has complementaryiected set irg. This parameterization is complete, in the
properties: while it provides only a subclass of all binary sense thaanybinary model that is Markov with respect to
ADMG models compatible with a given graph (hence lessg can be represented by an instance of{gaf}. However,
attractive in applications such as joint hypothesis tgstih  this comes at a price: in general, the number of connected
ADMG constraints), it has computational advantages. sets can grow exponentially j&Xy/ | even for a sparse, tree-
structured, graph. Moreover, the det4 } is notvariation
independenfLauritzen, 1996): the parameter space is de-

: fined by exponentially many constraints, unlike more stan-
2008) andcopulas(Nelsen, 2007, Kirshner, 2007). The ' .
usefulness of such parameterizations can then be put ﬁl)ard graphical models (Lauritzen, 1996, Pearl, 1988).
test via some parameter estimation procedure, which in ouCumulative distribution networks (CDNs), introduced by
case will be based on Bayesian learning with Markov chairHuang and Frey (2008) as a convenient family of cumu-
Monte Carlo (MCMC) We review mixed graphs and cumu- lative distribution functions (CDFs), provide a alternati
lative distribution networks in Section 2. The full formal- construction of bi-directed models by indirectly introduc
ism is given in detail in Section 3. An instantiation of the ing additional constraints to reduce the total number of pa-
framework based on copulas is described in Section 4, folrameters. LetXy be a set of random variables, and det
lowed by a short description of a Bayesian parameter learnbe a bi-directed gragtwith C being a set of cliques ig.
ing procedure in Section 5. Experiments are described iThe CDF overXy is given by
Section 6, and we conclude with Section 7.

Our construction is done by exploiting recent workan
mulative distribution networksCDNs (Huang and Frey,

P(Xy <av) = Foy) = [[ Fs(zs)
2 BI-DIRECTED GRAPHS AND CDNS o<
where eachFls is a parametrized CDF oveXg. A suffi-

In this section, we provide a summary of the relevant prop-.Clent condition for (2) to define a valid CDF is that each

erties of mixed graph models and cumulative distribution'> itself a CDF. CDNs satisfy the conditional independence
networks, and the relationship between formalisms. INotice also the difference with respect to the undirected

.. . . . model X; — X> — X3, whereX; ,M_Xg but X lLXngQ.
A bi-directedgraph is a special case of a ADMG with- 2Huang and Frey (2008) describe the model in terms of factor

out directed edges. The absence of an gdge X;) im- graphs, but for our purposes a bi-directed representagiomoie
plies thatX; and X; aremarginally independentHence, appropriate.
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Figure 1: (a) A DAG representing dependencies over a set ridblas (adapted from Spirtes et al. (2000), page 137)
in a medical domain. (b) The ADMG representing conditiomaldpendencies corresponding to (a), but only among
the remaining vertices: pollution and genotype factorsenmarginalized. In general, bi-directed edges emerge from
unspecified variables that have been marginalized bubsti# an effect on the remaining variables. The ADMG is acycli
in the sense that there are no cycles composed of directexd eaidy. In general, a DAG cannot represent the remaining
set of independence constraints after some variables thenDAG have been marginalized.

constraints of bi-directed graphs (Huang and Frey, 2008aumber of parameters grows with the size of the largest
For example, considek; + X, < Xs, with cliques clique, instead of Xy/|. Second, parameters in different
Xs, = {X1,X2} and X, = {X2, X3}. The marginal cliques are variation independent, since (2) is well-define
CDF of X; and X3 is P(X; < z1, X3 < 23) = P(X; < if each individual factor is a CDF. Third, this is a general
21, X2 < 00,X3 < x3) = Fi(x1,00)Fa(00,x3). Since  framework that allows not only for binary variables, but
this factorizes, it follows thafX; and X3 are marginally continuous, ordinal and unbounded discrete variables as
independent. well. Finally, in graphs with low tree-widths, probability
O(;?ensities/masses can be computed efficiently by dynamic

The relationship between the complete parameterization rogramming (Huang and Frey, 2008, Huang et al., 2010).

Drton and Richardson and the CDN parameterization cah
be illustrated in the discrete case. Let edchtake values To summarize, CDNs provide a restricted family of
in {0,1,2,...}. Recall that the relationship between a CDF marginal independence models, but one that has compu-
and a probabiliy mass function is given by the following tational, statistical and modeling advantages. Depending
inclusion-exclusion formula (Joe, 1997): on the application, the extra constraints may not be harm-
ful in practice, as demonstrated by Huang and Jojic (2010),
P(zy,... za) = ®) Huang et al. (2010).

1 1

D D ()P s =20, 3 MIXED CDN MODELS

z1=0 z2q=0
for d = |Xv|. Inthe binary case, sinags = P(X4 =  Inwhat follows, we will extend the CDN family to general
0) = P(Xa <0,Xy\a <1)=F(za =0,2p\a = 1),  acyclic directed mixed graphs: tmeixedcumulative dis-
one can check that (3) and (1) are the same expressioftibution network (MCDN) model. In Section 3.1, we de-
The difference between the CDN parameterization (Huangcribe a higher-level factorization of tigeobability (mass
and Frey, 2008) and the complete parameterization (Dror density)function P(Xy) involving subgraphs of. In
ton and Richardson, 2008) is that, on top of enforcingSection 3.2, we describe cumulative distribution funcsion
qauB = qagp for X4 disconnected fromX 5, we have that can be used to parameterize each factor defined in Sec-
the additional constraints tion 3.1, in the special case where no directed edges exist

A = H " 4) between members of a same subgraph. Finally, in Section

3.3, we describe the general case.
AceC(A)

for each connected séf 4, whereC(A) are the maximal Some important notation and definitions: there are two
A kinds of edges in an ADMG,; eitheX;, — X, or X, <

cliques in the subgraph obtained by keeping only the ver-., -
tices X , and the corresponding edges frgi X;. We usepag(X4) to represent thparentsof a set of

verticesX 4 in graphg. For a giverg, (G) 4 represents the
As a framework for the construction of bi-directed mod- subgraph obtained by removing frofhany vertexnot in

els, CDNs have three major desirable features. First, theet A and the respective edgesj).. is the subgraph ob-
Tproperty was calledhin-independence Huang (2009). timeg bsyzlélr.emo.vlng all dlr(tactled (tafqtg.es'l Wedsaydthattha set
To the best of our knowledge, our exposition linking CDNshe t of nodesA in g is anancestral seff it is closed under the

parameterization (1) was never made explicit in Huang (po@9 ancestral relationship: ik, € A, then all ancestors of,,
elsewhere. in G are also inA. Finally, define thalistrictsof a graphg
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as the (maximal) connected component$®f... Hence
each district is a set of verticeX p, such that ifX; and
X; are inXp then there is a path connectitg and X;

Proposition 2. Given an ADMG G with respective
subgraphs{g;} and districts{Xp,}, any collection of
probability functionsP;(Xp, | pag(Xp,)\Xp,), Markov

composed entirely of bi-directed edges. Because districtwith respect to the respectivg;, implies that (5) is a

are maximal sets, they define a partition)of. Note that
trivial districts are permitted, whet&® p, = { X, }. Further-
more there can be no directed cyclic paths in the ADMG.

Associated with each district p, is a subgraply; consist-
ing of nodesXp, U pag(Xp,). The edges of; are all of
the edges o(g)XDiupag(XDi) excluding all edges among
pag(Xp,)\Xp,. Two examples are shown in Figure 2.

3.1 District factorization

Given any ADMGG with vertex setXy,, we parameterize
its probability mass/density function as:

K
P(Xy) = [[ P(Xp,

i=1

pag(Xp,)\Xp,)  (5)
where{Xp,, Xp,,..., Xp, } is the set of districts of.
That is, each factor is a probability (mass/density) furcti
for Xp, given its set of parents i@ (that are not already in
Xp,). We require that

e EachP;(Xp,
spect tog;,

pag(Xp,)\Xp,) is Markov with re-

where a probability (mass or density) functiBiz | Z’) is
Markov with respecto a ADMG G if any conditional inde-
pendence constraint verifiable 7 | Z’) that is encoded
in G also holds inP(Z | Z")%.

The relevance of this factorization is summarized by thenoX € Xp
v i

following result.

Proposition 1. A probability (mass or density) function
P(Xy) is Markov with respect tg if it can be factorized
according to (5) and eacl;(Xp, | pag(Xp,)\Xbp,) is
Markov with respect to the respectige

The proof of this result is in the Supplementary Material.

Note that (5) is seemingly cyclical:
stance, Figure 2(a) implies the
P (X1, Xs | X9)Pa(X35,X4 | X7). This suggests

for in-

valid probability function (a non-negative function that
integrates to 1).

Proof. There must be som&, with no children ing,
since the graph is acyclic. Those childless vertices can
be marginalized in the usual way, as they do not appear
on the conditioning side of any factaP,(- | -), and
removed from the graph along with all edges adjacent to
them. After all such standard marginalizations, suppose
that in the current marginalized graph, each childless
vertex Xy appears on the conditioning side of some
factor P;(Xs, | pag(Xp,)\Xp,), where Xs, C Xp,.
BecauseX( has no children inXg,, by constructionXg,

are X are independent given the remaining elements in
pag(Xp,)\Xp,. As such,X can be removed from the
right-hand side of all remaining factors, and then marginal
ized. The process is repeated until the last remaining
vertex is marginalized, giving 1 as the result. Moreover, it
is clear that (5) is non-negativiel.

The implication is that one can independently parameterize
each individualP;(- | -) to obtain a validP(Xy ) Markov
with respect to any given ADM@. In the next sections,
we show how to parameterize eaB}(- |-) by factorizing

its corresponding cumulative distribution function.

3.2 Models with barren districts

Consider first the case where districp, is barren that is,
has a parentalso i p, (Richardson, 2009).
For a giveng; with respective districtX p,, consider the
following function:

Fi(zp, | pag(Xp,)) = Ilxsec, Fs(@s [ pag(Xs))

(6)
where(; is the set of cliques ifG;).,. Each term on
the right hand side is a conditional cumulative distribu-
tion function: for sets of random variablés and Z,
Fly|z)=P(Y <y|Z=2).

factorization proposition 3. Fj(zp, | pag(Xp,)) is a CDF for any

choice of {Fs(zs | pag(Xs))}. If, according to each

that there are additional constraints tying parametersy(yg | pag(Xs)), X, € Xs is marginally independent

across different factors.
constraints, as guaranteed through the following result;

However, there are no suclyf any element ipag(Xs)\pag(X;), the corresponding

conditional probability functionF;(zp, | pag(Xp,)) is
Markov with respect tgj;.

“This is a slight generalization of the Markov condition, as

seen in e.g. Spirtes et al. (2000), in the sense that we are exs . . . .
cluding independence statements that cannot logicallyetiéied Proof: Each factor in (6) is a CDF with respect to

from P(Z | Z') alone— such as statements concerning marginal Xp,, With pag(Xp,) fixed, and hence its product
independence of two subsetsof. is also a CDF (Huang and Frey, 2008). To show



Ricardo Silva, Charles Blundell, Yee Whye Teh

Figure 2: (a) The ADMG has two districtX p, = { X1, X»} with singleton parenk,, andX p, = { X3, X4} with parent
Xi. (b) A more complicated example with two districts. Notibattthe district given byXp, = {X1, X2, X3} has as
external parenk 4, but internally some members of the district might be parefibther members. The other district is a
singleton, X p, = {X4}. (c) The two corresponding subgraghsandg, are shown here.

the Markov property, suppose that the graph implies e definethe modeP (X, X7) to have the same factors

Xa AL Xp | X¢ U pag(Xp,) for disjoint setsX 4, X, (5) as P(Xv), but substituting every occurrence of
Xco where: X4 UXe C Xp,, Xp C Xp, Upag(Xp,), X, in pag(Xp,) by the correspondingag«(Xp,).
and paf(Xp,) C pag(Xp,)\Xa U Xp. This means Moreover, define?s (X | X,) such that

there is no (bi-directed) path between any pair of ele-

mentsX, € X, and X, € Xp composed of elements Pi(X;=z|X,=2)=1 (7

of X¢ only (Richardson and Spirtes, 2002, Drton and

Richardson, 2008). This fact, plus the given assump- P(Xv,X}) = HfilPi(Xm | pag«(Xp,)\Xp,)
tion that eachX, € Xgs is marginally independent x Jlx,ex, Pr(Xy | Xo)

of any element inpag(Xp,)\pag(Xs), implies that (8)

any factor containing bothX, and X, when marginal-

ized over Xp \{X,, Xy} U Xc, will factorize as  Since the last group of factors is identically equal to 1ythe

9(Xa, Xc,, pag(Xp,)\Xp)h(Xs, X, pag(Xp,)), can be dropped from the expression.

where no element inX¢, is adjacent to any element _ .

in X¢,. Taking the marginal ofF;(zp, | pag(Xp,)) From (7), it follows thatP(Xy = oy, Xy = Ty) = _

with respect toX 4 U X5 U X (which is equivalent to £ (Xv = @v). Since no two vertices in the same dis-

evaluating (6) at the maximum values of the marginalizeomCt can now have a parent-child relation, all districts in
G* are barren and as such we can parameteriZg, =

variables) and then conditioning of, will result in a i ! i

function that factorizes oveX 4 andX 3, as required] zy, Xy, = wy) according to the results of the previous
section. A similar trick was exploited by Silva and Ghahra-
mani (2009) to reduce a problem of modeling ADMG pro-

To obtain the probability function (5), we calculate eachpit models to Gaussian models.

Pi(Xp, | pag(Xp,)\Xp,) by differentiating the corre- _ _ ,

sponding (6) with respect t& .. Although this opera- Figure 3 provides an exarr_1p|e, afjapted frorr_1 R|chardson

tion, in the discrete case, is in the worst-case exponentidf009)- The graph has a single district containing all ver-

in |Xp. |, it can be performed efficiently for graphs where tices. The corresponding transformed graph generates sev-

(G)o> has low tree-width (Huang and Frey, 2008 Huangeral singleton districts composed of one artificial vamabl
et aT 2010). ' ' either. In Figure 3(c), we rearrange such districts to illus

trate the decomposition described in Section 3.1.

3.3 The general case: reduction to barren case The MCDN formalism inherits the same advantages and
limitations of the CDN construction. In particular, param-
We reduce graphs with general districts to graphs with onlyeter constraints analogous to (4) are extended to the condi-
barren districts by introducing artificial vertices. Creat  tional case (while Richardson (2009) does not require such
graphG* with the same vertex set &and the same bi- constraint®), at the advantage of having the number of pa-
directed edges. For each vert&x in G, perform the fol- rameters growing exponentially in the size of the largest
lowing operation: bi-directed clique (while Richardson (2009) has the num-
ber of parameters growing exponentially|iK |). With
the copula construction introduced in the next Section, the
MCDN formulation provides easy support to a variety of
families of distributions.

e add an artificial verteX(s to G*;

¢ add the edge&X,, — X} to G*, and make the children
of X to be the original children ok, in G; ®See the Supplementary Material for further examples.
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Figure 3: (a) A mixed graph with a single district that inabsdall five vertices. (b) The modified graph after including
artificial vertices (artificial vertices for childless vabiles are ignored). (c) A display of the four districts of thedified
graph in individual boxes. All districts are now barren,,ireo directed edges can be found within a district.

4 COPULA MCDNS CDF F($3,$4 | .%'17.%'2) to be C(U3($1)7U4($2)) where

us = F3(xz | #1) anduy = Fy(z4 | 22). We can see
The main result of Section 3 is that we can param-that X5 1 X, | X;, since the marginal CDF oK3 is
eterize a MCDN model by parameterizing the factorsF(xs, 00 | x1,22) = C(us, 1) = us = F3(z3 | 1) which
Fs(zg|pag(Xp,) in (6) corresponding to each district, is independent ofX;. The construction also allows for
which are then put together using the joint model (8). How-X3 . X> | {X3, X4}, since changing the value df,
ever, we have not yet specified how to construct each fadrom -, to /, might change the value af;, and hence al-
tor Fs as introduced in (8). In this section, we describe alow for P(x3 | 1, x2,x4) # P(xs | z1, 25, 24). O
particularly convenient way of parameterizing such fagtor

which we callcopula MCDNs .
P 4.1 Copula construction

Copulas are a flexible approach to defining dependence

among a set random variables. This is done by specify€onsider the form given by (6) which we wish to paramer-

ing the dependence structure and the marginal distribsitionize. Since the product of copulas is not necessarily a cop-

separately (Nelsen, 2007) (see also Kirshner (2007) for ala, we cannot simply set eadfy(zs | pag(Xp,)) to be a

machine learning perspective). Simply put, a copula funceopula function. Fortunately, the construction providgd b

tion C(u1,...,us) is just the CDF of a set of dependent Liebscher (2008) can be adapted to our context. For each

random variables, each with a uniform marginal distribu-clique X5 in G; let Cs(-) be a|S|-dimensional copula. Let

tion over[0,1]. To define a joint distribution over a set d, be the number of cliques &f; containing variableX,,

of variables{ X, } with arbitrary marginal CDF¥,(z,),  and definas, = u/*, whereu, = Fy(xy | pag(X,)) for

we simply transform each¥, into a uniform variable some independently parameterized univariate conditional

u, over [0,1] usingu, = F,(zy). The resulting joint  CDF F,(z, | pag(X,)). The modified product of copulas,

CDF F(z1,...,2¢) = C(Fi(z1),...,F:(z:)) incorpo-

rates both the dependence encoded’iand the marginal

distributionsF, . P ? Fy(zp, |pag(Xp,)) = [] Cslas) 9)
Xs€C;

The motivation for using copulas is two-fold. First, for its

flexibility. Second, and arguably the more important ad-whereag = {as}ves can be shown to be a copula itself

vantage in our context, is to be able to easily fulfill the con-(Liebscher, 2008). Moreover, the joint CDF (9) has the

ditions of PrOpOSition 3 that eack, < Xs should be in- form (6) required to be Markov with respect@_
dependent of any elementjimg(Xp,)\pag(Xs). Before

giving the general construction, we first give an example. N sSummary, our parameterization of (6) consists of: a pa-

rameterization of each univariate conditional CBF, and
Example 2: Let G be given by a parameterization of a coputds for each cliqueXs.

These parameterizations are variation independent. As a

(X0 = Mo, Xy = Xy, Xo = X, Xy 0 Xa final remark, all required properties still hold if eadly is

It is necessary to enforcEs; 1 X, | X; while allowing  a subset of a clique. In our implementation, we define each
for X3 A X5 | {X1,X4}. Fortunately this follows di- “clique” to correspond to the pair of vertices linked by a
rectly from a copula parameterization. Lit(z5 | 1) be  bi-directed edge. This pairwise bi-directed field makes the
a CDF for X3 conditional onX; = x;, analogously for copula implementation easier, since many copulas are de-
Fy(z4 | z2). Given a copulaC(us,us), define our joint  fined for bivariate distributions only (Nelsen, 2007).
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5 MODEL DETAILS AND LEARNING can also be slow to mix as marginal parameters are highly
correlated in a way not captured by a naive proposal.

The experiments reported in Section 6 include both discret? . :
(j1 our context, we will adopt a two-stage Bayesian proce-

and continuous data. In this section we describe the modg ure: first, the univariate conditionals (i.e, the condiitib

parameterization uged as well as the Ie_arn!ng proce_d_ure | arginals of each district) are individually fit using thespo
more detail. For discrete data, the univariate conditiona] _ . , .
erior expected value estimator. In the continuous case, we

probability function is just a saturated conditional prbiba ; . ; . .
: . . : .. calculate the posterior expectations using Gibbs sampling
ity table (CPT), as is standard in the Bayesian network lit- , A ;

on the mixture of experts. Finally, the estimates of the pa-

erature (Pearl, 1988). For continuous data, we parametrize O o .
N - . . . rametes of the univariate conditionals are treated asyf the
each univariate conditional density function as a mixtudre o

Gaussian experts (Jacobs et al., 1991): were the true parameter values. Given such fixed param-
P " ' eters, we then perform MCMC to generate the posterior
distribution over copula parameters.

K
- . 2
fol@y | pag(X)) = ;ﬁz*”N(I”’ Mo @z0) (100 Given the fixed univariate conditionals, we successfully us

a standard Metropolis-Hastings algorithm with a random

with 7., andp.., depending ompag (X, ): walk proposal to obtain the distribution over copula param-
T eters. Metropolis-Hastings needs the calculation of like-

pz(pag (Xv)) = o + 0, pag(Xy) (11) lihood ratios: these require transformations of CDFs into

T (Pag (X)) o exp(wwo + w, pag(X,)) probability mass or density functions. While the methods

of Huang et al. (2010) could be used, we did a brute-force

We use the bivariate Frank copula in our implementation: implementation akin to (3) since, in our experiments, the
corresponding districts were no larger than half a dozen

Cr (s, s 0) — 1 In (1 n (em % —1)(e™ ™ — 1)) variables and brute-force is both simpler and faster. Pre-
o e~ —1 dictions are performed by using the estimated marginal pa-
rameters and by averaging over the samples of copula pa-
rameters obtained with the MCMC procedure. For the pro-
bit and Gaussian models of Silva and Ghahramani (2009),

It is useful to contrast this model against the Gaus-ull Bayesian learning is performed.

sian/probit models of Silva and Ghahramani (2009), which_. . . . .
is the only Bayesian approach known to us for ADMG Flnal!y we describe the priors us_ed In our experiments. F_or
parameter learning. Such models can be seen as spt(g'-_e discrete CPT parameterization, we use_zaDlrlchIet prior
cial cases of the approach described in this paper, usin ith a psegdo-counts hypgrparameter taking the ‘@'Pe .
or the mixture of Gaussian experts, each coefficient is

Gaussian copulas only, and Gaussian or probit marginals.. aN(0.5) ori ith h ditional vari .
Even in the probit case, the bi-directed dependence stru@Ven (0,5) prior, with each conditional variance given

ture in Silva and Ghahramani (2009) is additive: each ﬁ mvers_(:-[.\ Gﬁmm@’ 2t)h prtlor_ (_the d?ta |_T_hnormall|)zed ]EO
is a discretization of an underlying latent varialif¢ = ave unit variance in the training sets). The number of ex-

6T pag(X,) + €., where the bi-directed dependency comesperts is set at 3 (this worked well; optimizing this number

from a structured covariance matrix for the error teens is b e3:on_d the scopg of thzﬁpg p5er). .Each Frank copula pa-
as in the example in the opening Section. Our parameterf’-ame er is given a Gaussi#n(0, 5) prior.

This copula function allows for arbitrarily strong poseiv
or negative associations (Nelsen, 2007).

zation does not require such an additive structure. For the Gaussian/probit model of Silva and Ghahramani
(2009), each sparse covariance matrix needs a prior, which
5.1 Hybrid Bayesian learning we set to beG-Inverse Wishart with parametefs0,I),

wherel is an identity matrix. We put Gaussia¥ (0, 5)
In our experiments we learn the models and make prepriors for the coefficients in the linear model. The probit
dictions using a framework widely exploited in the cop- model also needs thresholds mapping Gaussian variables
ula literature (e.g., Kirshner (2007)): parameters for theto discrete variables: thresholds are given factorizedsGau

marginals are first fit individually and fixed. Given such sian A/ (0, 5) priors constrained to be increasing in value
marginal parameter estimates, copula parameters are thand renormalized.

learned. While not as statistically efficient as, say, maxi-

mum likelihood estimation, this procedure is still coneit

and computationally attractive. An alternative would be a6 EXPERIMENTS

fully Bayesian treatment. Our intention is to validate the

usefulness of the parameterization, not to develop a cemplin this section we evaluate the usefulness of the MCDN
cated inference method. A simple fully Bayesian approachparameterization of ADMGs by comparing the predictive
would be to use Metropolis-Hastings for the univariate pa-performance of copula MCDNs against that of the Gaus-
rameters jointly. However this is slow computationally and sian/probit parameterization given in Silva and Ghahra-
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Table 1: Characteristics of the data sets used and averggeéddictive probabilities per data point of test set datdas
two different ADMG parameterizations. #V is the number ofighles, #D is the total number of data poirii$#+«] and
E[#—] are the average number of bidirected and direct edges,atdsge, found by MBCS*. The difference between
the 10-fold cross validated copula MCDN and Gaussian/probit neddiey predictive probabilities and standard errors are
given. A star §) next to results indicates the difference was found to hawedian significantly different from zero by the
Wilcoxon signed rank test at= 0.05. A more positive difference indicates copula MCDNSs pregticthe test data better
than the Gaussian/probit model.

Data set Datatype | #V | #D | E[#<] | E[#—] |Gaussian/probitCopula MCDN Difference

SPECT Binary 23 | 267 4.1 25.6 -11.32 -11.11 0.21+ 0.06%
Breast cancer wisconsin  Ordinal 10 | 683 51 16.3 -12.60 -12.77 -0.17+ 0.11

Soybean (large) Ordinal 33 | 266 9.3 39.8 -20.17 -17.71 2.46+ 0.20%
Parkinsons Continuous| 15 | 5875 8.9 18.2 -11.65 -3.48 8.174+ 0.28%
lonosphere Continuous| 32 | 351 12.4 32.8 -41.10 -27.45 13.64+ 0.67%
Wine quality (red) Continuous| 11 | 1599 5.7 7.5 -13.72 -11.25 2474+ 0.10x
Wine quality (white) Continuous| 11 | 4898 7.3 14.5 -13.76 -12.11 1.65+ 0.09%

mani (2009). We used seven data sets from the UCI datd CONCLUSION
set repository (Frank and Asuncion, 2010). Three of the

data sets have only discrete variables, whilst four have jus

continuous variables. All discrete variables were removeq/'\cycIiC directed mixed graphs are a natural generaliza-
) ion of DAGs. While ADMGs date back at least to

from the contmuous d_ata sets, as was one vanable_ TrorUVright (1921), the potential of this framework has only
any pair of variables with a Pearson correlation coefficient

greater tha.95. Statistics are shown in Table 1. recently being translated into practicgl qpplications dge
to advances into complete parameterizations of Gaussian
Following preprocessing, we performéd-fold cross val-  and discrete networks (Richardson and Spirtes, 2002, Dr-
idation on each data set, reporting the test set log predidon and Richardson, 2008, Richardson, 2009). The frame-
tive probabilities. The training regime is as follows: Eirs work of cumulative distribution networks (Huang and Frey,
for continuous data, the training and test data were nor2008, Huang and Jojic, 2010) introduced new approaches
malized so that the training set has zero mean and unfbr flexible parameterizations of bidirected models. Irsthi
standard deviation. Then we find a suitable ADMG us-paper, we extended CDNs to the full ADMG case, intro-
ing the MBCS* algorithm (Pellet, 2008), using thé test  ducing the most flexible class of parameterizations of AD-
for discrete data, and partial linear correlations for sent MGs to date. We expect that ADMGs will be as readily
uous data, both withh = 0.05. Finally, parameters for accessible and as widespread as DAG models in the future.
both the copula MCDN and the Gaussian/probit model areI'here are several directions for future work. While clas-
estimated as in Section 5. We used the same ADMG in. . o
both the copula MCDN and the Gaussian/probit modeI—S'Cal approaches for learning Markov equivalence classes

) L OF ADMGs have been developed by means of multiple hy-
our purpose here is to compare parameterizations on rea

. pothesis tests of conditional independencies (Spirtek,et a
data, not to address the ADMG structure learning problemzooo), a model-based approach based on Bayesian or pe-

The parameter estimation procedures used are describadlized likelihood functions can deliver more robust learn
in Section 5. We used a total @000 MCMC samples, ing procedures and a more natural way of combining data
of which the first400 formed the burn-in period and were with structural prior knowledge. ADMG structures can
not used for estimating the parameters for prediction. Wealso play a role in multivariate supervised learning, teat i
observed that the MCMC sampler converged within thisstructured prediction problems. For instance, Silva et al.
time by plotting the log likelihood of the training data. We (2007) introduced some simple models for relational classi
considered increasing the Dirichlet prior hyperparamteter fication inspired by ADMG models and by the link to seem-
values ofl and10, but did not see an improvement to the ingly unrelated regression (Zellner, 1962). However, effi-
predictive performance (but the performance was alwaysient ADMG-structured prediction methods and new ad-
better than that of the probit model). In future it would be vanced structural learning procedures will need to be de-
interesting to address the problem of selecting the approveloped.

priate amount of smoothing in such discrete models.

Table 1 shows the average log predictive probabilities per
test data point, as well as standard errors. As can b@‘c
seen, the more flexible parameterization afforded by cop-

ula MCDNs over the simpler Gaussian and probit modelsye thank Thomas Richardson from several useful discus-
offers significantly better predictions in most cases. sions.
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