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Abstract

Directed acyclic graphs (DAGs) are a popu-
lar framework to express multivariate probabil-
ity distributions. Acyclic directed mixed graphs
(ADMGs) are generalizations of DAGs that can
succinctly capture much richer sets of condi-
tional independencies, and are especially useful
in modeling the effects of latent variables implic-
itly. Unfortunately, there are currently no pa-
rameterizations of general ADMGs. In this pa-
per, we apply recent work on cumulative distribu-
tion networks and copulas to propose one general
construction for ADMG models. We consider
a simple parameter estimation approach, and re-
port some encouraging experimental results.

1 CONTRIBUTION

Graphical models provide a powerful framework for encod-
ing independence constraints in a multivariate distribution
(Pearl, 1988, Lauritzen, 1996). Two of the most common
families, the directed acyclic graph (DAG) and the undi-
rected network, have complementary properties. For in-
stance, DAGs are non-monotonic independence models, in
the sense that conditioning on extra variables can also de-
stroy independencies (sometimes known as the “explaining
away” phenomenon (Pearl, 1988)). Undirected networks
allow for flexible “symmetric” parameterizations that do
not require a particular ordering of the variables.

More recently, alternative graphical models that allow for
both directed and symmetric relationships have been intro-
duced. Theacyclic directed mixed graph(ADMG) has
both directed and bi-directed edges and it is the result
of marginalizinga DAG: Figure 1 provides an example.
Richardson and Spirtes (2002), Richardson (2003) show
that DAGs are not closed under marginalization, but AD-
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MGs are. Reading off independence constraints from a
ADMG can be done with a procedure essentially identi-
cal to d-separation (Pearl, 1988, Richardson and Spirtes,
2002). Given a graphical structure, the challenge is to pro-
vide a procedure to parameterize models that correspond
to the independence constraints of the graph, as illustrated
below.

Example 1: Bi-directed edges correspond to some hidden
common parent that has been marginalized. In the Gaus-
sian case, this has an easy interpretation as constraints in
the marginal covariance matrix of the remaining variables.
Consider the two graphs below.
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In the DAG in the left, we marginalize variables
X5, . . . , X8, obtaining the (fully bi-directed) ADMG on
the right. Consider a Gaussian distribution that is Markov
with respect to this graph. Its covariance matrix will have
the following structure:

Σ =









σ11 σ12 σ13 0
σ12 σ22 0 σ24

σ13 0 σ33 σ34

0 σ24 σ34 σ44









That is, the absence of an edge in the fully bi-directed case
will correspond to a zero in the implied covariance ma-
trix. This should be contrasted with the undirected Gaus-
sian Markov random field, where zeroes are in the inverse
covariance matrix.�

Theoretical properties and practical applications of AD-
MGs are further discussed in detail by e.g. Bollen (1989),
Spirtes et al. (2000), Drton and Richardson (2008), Zhang
(2008), Pellet (2008), Silva and Ghahramani (2009), Khare
and Rajaratnam (2009), Huang and Jojic (2010). One can
also have latent variable ADMG models, where only a sub-
set of the latent variables have been marginalized. In sparse
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models, using bi-directed edges in ADMGs frees us from
having to specify exactly which latent variables exist and
how they might be connected. In the context of Bayesian
inference, Markov chain Monte Carlo in ADMGs might
have much better mixing properties compared to models
where all latent variables are explicitly included (Silva and
Ghahramani, 2009).

However, it is hard in general to parameterize a likeli-
hood function that obeys the independence constraints en-
coded in an ADMG. Gaussian likelihood functions and
their variations (e.g., mixture models and probit models)
have been the most common families exploited in the litera-
ture (Richardson and Spirtes, 2002, Silva and Ghahramani,
2009, Khare and Rajaratnam, 2009, Rothman et al., 2009).
More recently, important progress has been made in con-
structing binary ADMG models (Drton and Richardson,
2008, Richardson, 2009, Evans and Richardson, 2010), al-
though it is not clear how to extend such models to infinite
discrete spaces (such as treating Poisson random variables)
− also important, scalability issues arise, as described in
the sequel.

This paper provides a flexible construction procedure for
probability mass functions and density functions that are
Markov with respect to an arbitrary ADMG. In the case
where complete parameterizations exist, such as in the
multivariate binary case (Richardson, 2009, Evans and
Richardson, 2010), our construction has complementary
properties: while it provides only a subclass of all binary
ADMG models compatible with a given graph (hence less
attractive in applications such as joint hypothesis testing of
ADMG constraints), it has computational advantages.

Our construction is done by exploiting recent work oncu-
mulative distribution networks, CDNs (Huang and Frey,
2008) andcopulas(Nelsen, 2007, Kirshner, 2007). The
usefulness of such parameterizations can then be put to
test via some parameter estimation procedure, which in our
case will be based on Bayesian learning with Markov chain
Monte Carlo (MCMC) We review mixed graphs and cumu-
lative distribution networks in Section 2. The full formal-
ism is given in detail in Section 3. An instantiation of the
framework based on copulas is described in Section 4, fol-
lowed by a short description of a Bayesian parameter learn-
ing procedure in Section 5. Experiments are described in
Section 6, and we conclude with Section 7.

2 BI-DIRECTED GRAPHS AND CDNS

In this section, we provide a summary of the relevant prop-
erties of mixed graph models and cumulative distribution
networks, and the relationship between formalisms.

A bi-directedgraph is a special case of a ADMG with-
out directed edges. The absence of an edge(Xi, Xj) im-
plies thatXi andXj aremarginally independent. Hence,

bi-directed models aremodels of marginal independence
(Drton and Richardson, 2008). Just like in a DAG, condi-
tioning on a vertex that is the endpoint of two arrowheads
will make some variables dependent. For instance, for a bi-
directed graphX1 ↔ X2 ↔ X3, we have thatX1 ⊥⊥ X3

butX1 6⊥⊥ X3|X2. See Drton and Richardson (2003, 2008)
for a full discussion1.

Current parameterizations of bi-directed graphs have many
desirable properties but suffer from a number of impor-
tant practical difficulties. For example, consider binary bi-
directed graphs, where a complete parameterization was in-
troduced by Drton and Richardson (2008). LetG be a bi-
directed graph with vertex setXV . Let qA ≡ P (XA = 0),
for any vertex setXA contained inXV . The joint probabil-
ity P (XA = 0, XV \A = 1) is given by

P (XA = 0, XV \A = 1) =
∑

B:A⊆B

(−1)|B\A|qB (1)

The set{qS : XS ⊂ XV } is known as the Möbius param-
eterization ofP (XV ), since relationship (1) is an instance
of the Möbius inversion operation (Lauritzen, 1996). The
marginal independence properties of the bi-directed graph
imply P (XA = 0, XB = 0) = P (XA = 0)P (XB = 0) if
no element inXA is adjacent to any element inXB in G.
Therefore, the set of independent parameters in this param-
eterization is given by{qA}, for all XA that forms a con-
nected set inG. This parameterization is complete, in the
sense thatanybinary model that is Markov with respect to
G can be represented by an instance of set{qA}. However,
this comes at a price: in general, the number of connected
sets can grow exponentially in|XV | even for a sparse, tree-
structured, graph. Moreover, the set{qA} is notvariation
independent(Lauritzen, 1996): the parameter space is de-
fined by exponentially many constraints, unlike more stan-
dard graphical models (Lauritzen, 1996, Pearl, 1988).

Cumulative distribution networks (CDNs), introduced by
Huang and Frey (2008) as a convenient family of cumu-
lative distribution functions (CDFs), provide a alternative
construction of bi-directed models by indirectly introduc-
ing additional constraints to reduce the total number of pa-
rameters. LetXV be a set of random variables, and letG
be a bi-directed graph2 with C being a set of cliques inG.
The CDF overXV is given by

P (XV ≤ xV ) ≡ F (xV ) =
∏

S∈C

FS(xS) (2)

where eachFS is a parametrized CDF overXS . A suffi-
cient condition for (2) to define a valid CDF is that eachFS

is itself a CDF. CDNs satisfy the conditional independence

1Notice also the difference with respect to the undirected
modelX1 −X2 −X3, whereX1 6⊥⊥ X3 butX1 ⊥⊥ X3|X2.

2Huang and Frey (2008) describe the model in terms of factor
graphs, but for our purposes a bi-directed representation is more
appropriate.
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Figure 1: (a) A DAG representing dependencies over a set of variables (adapted from Spirtes et al. (2000), page 137)
in a medical domain. (b) The ADMG representing conditional independencies corresponding to (a), but only among
the remaining vertices: pollution and genotype factors were marginalized. In general, bi-directed edges emerge from
unspecified variables that have been marginalized but stillhave an effect on the remaining variables. The ADMG is acyclic
in the sense that there are no cycles composed of directed edges only. In general, a DAG cannot represent the remaining
set of independence constraints after some variables in another DAG have been marginalized.

constraints of bi-directed graphs (Huang and Frey, 2008).
For example, considerX1 ↔ X2 ↔ X3, with cliques
XS1

= {X1, X2} andXS2
= {X2, X3}. The marginal

CDF ofX1 andX3 is P (X1 ≤ x1, X3 ≤ x3) = P (X1 ≤
x1, X2 ≤ ∞, X3 ≤ x3) = F1(x1,∞)F2(∞, x3). Since
this factorizes, it follows thatX1 andX3 are marginally
independent.

The relationship between the complete parameterization of
Drton and Richardson and the CDN parameterization can
be illustrated in the discrete case. Let eachXi take values
in {0, 1, 2, ...}. Recall that the relationship between a CDF
and a probabiliy mass function is given by the following
inclusion-exclusion formula (Joe, 1997):

P (x1, . . . , xd) = (3)

1
∑

z1=0

· · ·
1

∑

zd=0

(−1)z1+z2+...zdF (x1 − z1, . . . , xd − zd),

for d = |XV |. In the binary case, sinceqA = P (XA =
0) = P (XA ≤ 0, XV \A ≤ 1) = F (xA = 0, xV \A = 1),
one can check that (3) and (1) are the same expression.
The difference between the CDN parameterization (Huang
and Frey, 2008) and the complete parameterization (Dr-
ton and Richardson, 2008) is that, on top of enforcing
qA∪B = qAqB for XA disconnected fromXB, we have
the additional constraints

qA =
∏

AC∈C(A)

qAC
(4)

for each connected setXA, whereC(A) are the maximal
cliques in the subgraph obtained by keeping only the ver-
ticesXA and the corresponding edges fromG3.

As a framework for the construction of bi-directed mod-
els, CDNs have three major desirable features. First, the

3This property was calledmin-independencein Huang (2009).
To the best of our knowledge, our exposition linking CDNs to the
parameterization (1) was never made explicit in Huang (2009) or
elsewhere.

number of parameters grows with the size of the largest
clique, instead of|XV |. Second, parameters in different
cliques are variation independent, since (2) is well-defined
if each individual factor is a CDF. Third, this is a general
framework that allows not only for binary variables, but
continuous, ordinal and unbounded discrete variables as
well. Finally, in graphs with low tree-widths, probability
densities/masses can be computed efficiently by dynamic
programming (Huang and Frey, 2008, Huang et al., 2010).

To summarize, CDNs provide a restricted family of
marginal independence models, but one that has compu-
tational, statistical and modeling advantages. Depending
on the application, the extra constraints may not be harm-
ful in practice, as demonstrated by Huang and Jojic (2010),
Huang et al. (2010).

3 MIXED CDN MODELS

In what follows, we will extend the CDN family to general
acyclic directed mixed graphs: themixedcumulative dis-
tribution network (MCDN) model. In Section 3.1, we de-
scribe a higher-level factorization of theprobability (mass
or density)functionP (XV ) involving subgraphs ofG. In
Section 3.2, we describe cumulative distribution functions
that can be used to parameterize each factor defined in Sec-
tion 3.1, in the special case where no directed edges exist
between members of a same subgraph. Finally, in Section
3.3, we describe the general case.

Some important notation and definitions: there are two
kinds of edges in an ADMG; eitherXk → Xj or Xk ↔
Xj . We usepaG(XA) to represent theparentsof a set of
verticesXA in graphG. For a givenG, (G)A represents the
subgraph obtained by removing fromG any vertexnot in
setA and the respective edges;(G)↔ is the subgraph ob-
tained by removing all directed edges. We say that a set
of nodesA in G is anancestral setif it is closed under the
ancestral relationship: ifXv ∈ A, then all ancestors ofXv

in G are also inA. Finally, define thedistrictsof a graphG
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as the (maximal) connected components of(G)↔. Hence
each district is a set of vertices,XD, such that ifXi and
Xj are inXD then there is a path connectingXi andXj

composed entirely of bi-directed edges. Because districts
are maximal sets, they define a partition ofXV . Note that
trivial districts are permitted, whereXD = {Xi}. Further-
more there can be no directed cyclic paths in the ADMG.

Associated with each districtXDi
is a subgraphGi consist-

ing of nodesXDi
∪ paG(XDi

). The edges ofGi are all of
the edges of(G)XDi

∪paG(XDi
) excluding all edges among

paG(XDi
)\XDi

. Two examples are shown in Figure 2.

3.1 District factorization

Given any ADMGG with vertex setXV , we parameterize
its probability mass/density function as:

P (XV ) =

K
∏

i=1

Pi(XDi
| paG(XDi

)\XDi
) (5)

where{XD1
, XD2

, . . . , XDK
} is the set of districts ofG.

That is, each factor is a probability (mass/density) function
for XDi

given its set of parents inG (that are not already in
XDi

). We require that

• EachPi(XDi
| paG(XDi

)\XDi
) is Markov with re-

spect toGi,

where a probability (mass or density) functionP (Z | Z ′) is
Markov with respectto a ADMGG if any conditional inde-
pendence constraint verifiable inP (Z | Z ′) that is encoded
in G also holds inP (Z | Z ′)4.

The relevance of this factorization is summarized by the
following result.

Proposition 1. A probability (mass or density) function
P (XV ) is Markov with respect toG if it can be factorized
according to (5) and eachPi(XDi

| paG(XDi
)\XDi

) is
Markov with respect to the respectiveGi.

The proof of this result is in the Supplementary Material.

Note that (5) is seemingly cyclical: for in-
stance, Figure 2(a) implies the factorization
P1(X1, X2 | X4)P2(X3, X4 | X1). This suggests
that there are additional constraints tying parameters
across different factors. However, there are no such
constraints, as guaranteed through the following result:

4This is a slight generalization of the Markov condition, as
seen in e.g. Spirtes et al. (2000), in the sense that we are ex-
cluding independence statements that cannot logically be verified
from P (Z | Z′) alone− such as statements concerning marginal
independence of two subsets ofZ

′.

Proposition 2. Given an ADMGG with respective
subgraphs{Gi} and districts{XDi

}, any collection of
probability functionsPi(XDi

| paG(XDi
)\XDi

), Markov
with respect to the respectiveGi, implies that (5) is a
valid probability function (a non-negative function that
integrates to 1).

Proof: There must be someXv with no children inG,
since the graph is acyclic. Those childless vertices can
be marginalized in the usual way, as they do not appear
on the conditioning side of any factorPi(· | ·), and
removed from the graph along with all edges adjacent to
them. After all such standard marginalizations, suppose
that in the current marginalized graph, each childless
vertex X∅ appears on the conditioning side of some
factor Pi(XSi

| paG(XDi
)\XDi

), whereXSi
⊂ XDi

.
BecauseX∅ has no children inXSi

, by constructionXSi

areX∅ are independent given the remaining elements in
paG(XDi

)\XDi
. As such,X∅ can be removed from the

right-hand side of all remaining factors, and then marginal-
ized. The process is repeated until the last remaining
vertex is marginalized, giving 1 as the result. Moreover, it
is clear that (5) is non-negative.�.

The implication is that one can independently parameterize
each individualPi(· | ·) to obtain a validP (XV ) Markov
with respect to any given ADMGG. In the next sections,
we show how to parameterize eachPi(· |·) by factorizing
its corresponding cumulative distribution function.

3.2 Models with barren districts

Consider first the case where districtXDi
is barren, that is,

noXv ∈ XDi
has a parent also inXDi

(Richardson, 2009).
For a givenGi with respective districtXDi

, consider the
following function:

Fi(xDi
| paG(XDi

)) ≡
∏

XS∈Ci
FS(xS | paG(XS))

(6)
whereCi is the set of cliques in(Gi)↔. Each term on
the right hand side is a conditional cumulative distribu-
tion function: for sets of random variablesY and Z,
F (y | z) ≡ P (Y ≤ y | Z = z).

Proposition 3. Fi(xDi
| paG(XDi

)) is a CDF for any
choice of{FS(xS | paG(XS))}. If, according to each
FS(xS | paG(XS)), Xs ∈ XS is marginally independent
of any element inpaG(XS)\paG(Xs), the corresponding
conditional probability functionFi(xDi

| paG(XDi
)) is

Markov with respect toGi.

Proof: Each factor in (6) is a CDF with respect to
XDi

, with paG(XDi
) fixed, and hence its product

is also a CDF (Huang and Frey, 2008). To show
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Figure 2: (a) The ADMG has two districts,XD1
= {X1, X2} with singleton parentX4, andXD2

= {X3, X4} with parent
X1. (b) A more complicated example with two districts. Notice that the district given byXD1

= {X1, X2, X3} has as
external parentX4, but internally some members of the district might be parents of other members. The other district is a
singleton,XD2

= {X4}. (c) The two corresponding subgraphsG1 andG2 are shown here.

the Markov property, suppose that the graph implies
XA ⊥⊥ XB | XC ∪ pa⋆G(XDi

) for disjoint setsXA, XB,
XC where:XA ∪ XC ⊆ XDi

, XB ⊆ XDi
∪ paG(XDi

),
and pa⋆G(XDi

) ⊂ paG(XDi
)\XA ∪ XB. This means

there is no (bi-directed) path between any pair of ele-
mentsXa ∈ XA andXb ∈ XB composed of elements
of XC only (Richardson and Spirtes, 2002, Drton and
Richardson, 2008). This fact, plus the given assump-
tion that eachXs ∈ XS is marginally independent
of any element inpaG(XDi

)\paG(Xs), implies that
any factor containing bothXa and Xb when marginal-
ized over XDi

\{Xa, Xb} ∪ XC , will factorize as
g(Xa, XCa

, paG(XDi
)\Xb)h(Xb, XCb

, paG(XDi
)),

where no element inXCa
is adjacent to any element

in XCb
. Taking the marginal ofFi(xDi

| paG(XDi
))

with respect toXA ∪ XB ∪ XC (which is equivalent to
evaluating (6) at the maximum values of the marginalized
variables) and then conditioning ofXC , will result in a
function that factorizes overXA andXB, as required.�

To obtain the probability function (5), we calculate each
Pi(XDi

| paG(XDi
)\XDi

) by differentiating the corre-
sponding (6) with respect toXDi

. Although this opera-
tion, in the discrete case, is in the worst-case exponential
in |XDi

|, it can be performed efficiently for graphs where
(G)↔ has low tree-width (Huang and Frey, 2008, Huang
et al., 2010).

3.3 The general case: reduction to barren case

We reduce graphs with general districts to graphs with only
barren districts by introducing artificial vertices. Create a
graphG⋆ with the same vertex set asG and the same bi-
directed edges. For each vertexXv in G, perform the fol-
lowing operation:

• add an artificial vertexX⋆
v to G⋆;

• add the edgeXv → X⋆
v to G⋆, and make the children

of X⋆
v to be the original children ofXv in G;

• define the modelP (XV , X
⋆
V ) to have the same factors

(5) asP (XV ), but substituting every occurrence of
Xv in paG(XDi

) by the correspondingpaG⋆(XDi
).

Moreover, defineP ⋆
v (X

⋆
v | Xv) such that

P ⋆
v (X

⋆
v = x |Xv = x) = 1 (7)

P (XV , X
⋆
V ) =

∏K
i=1 Pi(XDi

| paG⋆(XDi
)\XDi

)
×

∏

Xv∈XV
P ⋆
v (X

⋆
v |Xv)

(8)

Since the last group of factors is identically equal to 1, they
can be dropped from the expression.

From (7), it follows thatP (XV = xV , X
⋆
V = xV ) =

P (XV = xV ). Since no two vertices in the same dis-
trict can now have a parent-child relation, all districts in
G⋆ are barren and as such we can parameterizeP (XV =
xV , X

⋆
V = xV ) according to the results of the previous

section. A similar trick was exploited by Silva and Ghahra-
mani (2009) to reduce a problem of modeling ADMG pro-
bit models to Gaussian models.

Figure 3 provides an example, adapted from Richardson
(2009). The graph has a single district containing all ver-
tices. The corresponding transformed graph generates sev-
eral singleton districts composed of one artificial variable
either. In Figure 3(c), we rearrange such districts to illus-
trate the decomposition described in Section 3.1.

The MCDN formalism inherits the same advantages and
limitations of the CDN construction. In particular, param-
eter constraints analogous to (4) are extended to the condi-
tional case (while Richardson (2009) does not require such
constraints5), at the advantage of having the number of pa-
rameters growing exponentially in the size of the largest
bi-directed clique (while Richardson (2009) has the num-
ber of parameters growing exponentially in|XV |). With
the copula construction introduced in the next Section, the
MCDN formulation provides easy support to a variety of
families of distributions.

5See the Supplementary Material for further examples.
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Figure 3: (a) A mixed graph with a single district that includes all five vertices. (b) The modified graph after including
artificial vertices (artificial vertices for childless variables are ignored). (c) A display of the four districts of themodified
graph in individual boxes. All districts are now barren, i.e., no directed edges can be found within a district.

4 COPULA MCDNS

The main result of Section 3 is that we can param-
eterize a MCDN model by parameterizing the factors
FS(xS |paG(XDi

) in (6) corresponding to each district,
which are then put together using the joint model (8). How-
ever, we have not yet specified how to construct each fac-
tor FS as introduced in (8). In this section, we describe a
particularly convenient way of parameterizing such factors
which we callcopula MCDNs.

Copulas are a flexible approach to defining dependence
among a set random variables. This is done by specify-
ing the dependence structure and the marginal distributions
separately (Nelsen, 2007) (see also Kirshner (2007) for a
machine learning perspective). Simply put, a copula func-
tion C(u1, . . . , ut) is just the CDF of a set of dependent
random variables, each with a uniform marginal distribu-
tion over [0, 1]. To define a joint distribution over a set
of variables{Xv} with arbitrary marginal CDFsFv(xv),
we simply transform eachXv into a uniform variable
uv over [0, 1] using uv ≡ Fv(xv). The resulting joint
CDF F (x1, . . . , xt) = C(F1(x1), . . . , Ft(xt)) incorpo-
rates both the dependence encoded inC and the marginal
distributionsFv.

The motivation for using copulas is two-fold. First, for its
flexibility. Second, and arguably the more important ad-
vantage in our context, is to be able to easily fulfill the con-
ditions of Proposition 3 that eachXs ∈ XS should be in-
dependent of any element inpaG(XDi

)\paG(Xs). Before
giving the general construction, we first give an example.

Example 2: Let G be given by

{X1 → X2, X1 → X3, X2 → X4, X3 ↔ X4}

It is necessary to enforceX3 ⊥⊥ X2 | X1 while allowing
for X3 6⊥⊥ X2 | {X1, X4}. Fortunately this follows di-
rectly from a copula parameterization. LetF3(x3 | x1) be
a CDF forX3 conditional onX1 = x1, analogously for
F4(x4 | x2). Given a copulaC(u3, u4), define our joint

CDF F (x3, x4 | x1, x2) to beC(u3(x1), u4(x2)) where
u3 = F3(x3 | x1) andu4 = F4(x4 | x2). We can see
that X3 ⊥⊥ X2 | X1, since the marginal CDF ofX3 is
F (x3,∞ | x1, x2) = C(u3, 1) = u3 = F3(x3 | x1) which
is independent ofX2. The construction also allows for
X3 6⊥⊥ X2 | {X1, X4}, since changing the value ofX2

from x2 to x′
2 might change the value ofu4, and hence al-

low for P (x3 | x1, x2, x4) 6= P (x3 | x1, x
′
2, x4). �

4.1 Copula construction

Consider the form given by (6) which we wish to paramer-
ize. Since the product of copulas is not necessarily a cop-
ula, we cannot simply set eachFS(xS | paG(XDi

)) to be a
copula function. Fortunately, the construction provided by
Liebscher (2008) can be adapted to our context. For each
cliqueXS in Gi letCS(·) be a|S|-dimensional copula. Let
dv be the number of cliques ofGi containing variableXv,
and defineav ≡ u

1/dv
v , whereuv ≡ Fv(xv | paG(Xv)) for

some independently parameterized univariate conditional
CDFFv(xv | paG(Xv)). The modified product of copulas,

Fi(xDi
| paG(XDi

)) ≡
∏

XS∈Ci

CS(aS) (9)

whereaS = {av}v∈S can be shown to be a copula itself
(Liebscher, 2008). Moreover, the joint CDF (9) has the
form (6) required to be Markov with respect toGi.

In summary, our parameterization of (6) consists of: a pa-
rameterization of each univariate conditional CDFFv, and
a parameterization of a copulaCS for each cliqueXS .
These parameterizations are variation independent. As a
final remark, all required properties still hold if eachXS is
a subset of a clique. In our implementation, we define each
“clique” to correspond to the pair of vertices linked by a
bi-directed edge. This pairwise bi-directed field makes the
copula implementation easier, since many copulas are de-
fined for bivariate distributions only (Nelsen, 2007).
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5 MODEL DETAILS AND LEARNING

The experiments reported in Section 6 include both discrete
and continuous data. In this section we describe the model
parameterization used as well as the learning procedure in
more detail. For discrete data, the univariate conditional
probability function is just a saturated conditional probabil-
ity table (CPT), as is standard in the Bayesian network lit-
erature (Pearl, 1988). For continuous data, we parametrize
each univariate conditional density function as a mixture of
Gaussian experts (Jacobs et al., 1991):

fv(xv | paG(Xv)) =

K
∑

z=1

πz;vN (xv; µz;v, σ
2
z;v) (10)

with πz;v andµz;v depending onpaG(Xv):

µz;v(paG(Xv)) = θv0 + θTv paG(Xv) (11)

πz;v(paG(Xv)) ∝ exp(wv0 + wT

v paG(Xv))

We use the bivariate Frank copula in our implementation:

CF (ui, uj ;α) = −
1

α
ln

(

1 +
(e−αui − 1)(e−αuj − 1)

e−α − 1

)

This copula function allows for arbitrarily strong positive
or negative associations (Nelsen, 2007).

It is useful to contrast this model against the Gaus-
sian/probit models of Silva and Ghahramani (2009), which
is the only Bayesian approach known to us for ADMG
parameter learning. Such models can be seen as spe-
cial cases of the approach described in this paper, using
Gaussian copulas only, and Gaussian or probit marginals.
Even in the probit case, the bi-directed dependence struc-
ture in Silva and Ghahramani (2009) is additive: eachXv

is a discretization of an underlying latent variableX⋆
v =

θTv paG(Xv) + ǫv, where the bi-directed dependency comes
from a structured covariance matrix for the error termsǫv,
as in the example in the opening Section. Our parameteri-
zation does not require such an additive structure.

5.1 Hybrid Bayesian learning

In our experiments we learn the models and make pre-
dictions using a framework widely exploited in the cop-
ula literature (e.g., Kirshner (2007)): parameters for the
marginals are first fit individually and fixed. Given such
marginal parameter estimates, copula parameters are then
learned. While not as statistically efficient as, say, maxi-
mum likelihood estimation, this procedure is still consistent
and computationally attractive. An alternative would be a
fully Bayesian treatment. Our intention is to validate the
usefulness of the parameterization, not to develop a compli-
cated inference method. A simple fully Bayesian approach
would be to use Metropolis-Hastings for the univariate pa-
rameters jointly. However this is slow computationally and

can also be slow to mix as marginal parameters are highly
correlated in a way not captured by a naive proposal.

In our context, we will adopt a two-stage Bayesian proce-
dure: first, the univariate conditionals (i.e, the conditional
marginals of each district) are individually fit using the pos-
terior expected value estimator. In the continuous case, we
calculate the posterior expectations using Gibbs sampling
on the mixture of experts. Finally, the estimates of the pa-
rametes of the univariate conditionals are treated as if they
were the true parameter values. Given such fixed param-
eters, we then perform MCMC to generate the posterior
distribution over copula parameters.

Given the fixed univariate conditionals, we successfully use
a standard Metropolis-Hastings algorithm with a random
walk proposal to obtain the distribution over copula param-
eters. Metropolis-Hastings needs the calculation of like-
lihood ratios: these require transformations of CDFs into
probability mass or density functions. While the methods
of Huang et al. (2010) could be used, we did a brute-force
implementation akin to (3) since, in our experiments, the
corresponding districts were no larger than half a dozen
variables and brute-force is both simpler and faster. Pre-
dictions are performed by using the estimated marginal pa-
rameters and by averaging over the samples of copula pa-
rameters obtained with the MCMC procedure. For the pro-
bit and Gaussian models of Silva and Ghahramani (2009),
full Bayesian learning is performed.

Finally we describe the priors used in our experiments. For
the discrete CPT parameterization, we use a Dirichlet prior
with a pseudo-counts hyperparameter taking the value0.1.
For the mixture of Gaussian experts, each coefficient is
given aN (0, 5) prior, with each conditional variance given
a inverse Gamma(2, 2) prior (the data is normalized to
have unit variance in the training sets). The number of ex-
perts is set at 3 (this worked well; optimizing this number
is beyond the scope of this paper). Each Frank copula pa-
rameter is given a GaussianN (0, 5) prior.

For the Gaussian/probit model of Silva and Ghahramani
(2009), each sparse covariance matrix needs a prior, which
we set to beG-Inverse Wishart with parameters(10, I),
whereI is an identity matrix. We put GaussianN (0, 5)
priors for the coefficients in the linear model. The probit
model also needs thresholds mapping Gaussian variables
to discrete variables: thresholds are given factorized Gaus-
sianN (0, 5) priors constrained to be increasing in value
and renormalized.

6 EXPERIMENTS

In this section we evaluate the usefulness of the MCDN
parameterization of ADMGs by comparing the predictive
performance of copula MCDNs against that of the Gaus-
sian/probit parameterization given in Silva and Ghahra-
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Table 1: Characteristics of the data sets used and average log-predictive probabilities per data point of test set data under
two different ADMG parameterizations. #V is the number of variables, #D is the total number of data points,E[#↔] and
E[#→] are the average number of bidirected and direct edges, respectively, found by MBCS*. The difference between
the10-fold cross validated copula MCDN and Gaussian/probit models’ log predictive probabilities and standard errors are
given. A star (⋆) next to results indicates the difference was found to have amedian significantly different from zero by the
Wilcoxon signed rank test atp = 0.05. A more positive difference indicates copula MCDNs predicted the test data better
than the Gaussian/probit model.

Data set Data type #V #D E[ #↔] E[ #→] Gaussian/probit Copula MCDN Difference
SPECT Binary 23 267 4.1 25.6 -11.32 -11.11 0.21± 0.06⋆
Breast cancer wisconsin Ordinal 10 683 5.1 16.3 -12.60 -12.77 -0.17± 0.11
Soybean (large) Ordinal 33 266 9.3 39.8 -20.17 -17.71 2.46± 0.20⋆
Parkinsons Continuous 15 5875 8.9 18.2 -11.65 -3.48 8.17± 0.28⋆
Ionosphere Continuous 32 351 12.4 32.8 -41.10 -27.45 13.64± 0.67⋆
Wine quality (red) Continuous 11 1599 5.7 7.5 -13.72 -11.25 2.47± 0.10⋆
Wine quality (white) Continuous 11 4898 7.3 14.5 -13.76 -12.11 1.65± 0.09⋆

mani (2009). We used seven data sets from the UCI data
set repository (Frank and Asuncion, 2010). Three of the
data sets have only discrete variables, whilst four have just
continuous variables. All discrete variables were removed
from the continuous data sets, as was one variable from
any pair of variables with a Pearson correlation coefficient
greater than0.95. Statistics are shown in Table 1.

Following preprocessing, we performed10-fold cross val-
idation on each data set, reporting the test set log predic-
tive probabilities. The training regime is as follows: First,
for continuous data, the training and test data were nor-
malized so that the training set has zero mean and unit
standard deviation. Then we find a suitable ADMG us-
ing the MBCS* algorithm (Pellet, 2008), using theχ2 test
for discrete data, and partial linear correlations for contin-
uous data, both withp = 0.05. Finally, parameters for
both the copula MCDN and the Gaussian/probit model are
estimated as in Section 5. We used the same ADMG in
both the copula MCDN and the Gaussian/probit model—
our purpose here is to compare parameterizations on real
data, not to address the ADMG structure learning problem.

The parameter estimation procedures used are described
in Section 5. We used a total of2, 000 MCMC samples,
of which the first400 formed the burn-in period and were
not used for estimating the parameters for prediction. We
observed that the MCMC sampler converged within this
time by plotting the log likelihood of the training data. We
considered increasing the Dirichlet prior hyperparameterto
values of1 and10, but did not see an improvement to the
predictive performance (but the performance was always
better than that of the probit model). In future it would be
interesting to address the problem of selecting the appro-
priate amount of smoothing in such discrete models.

Table 1 shows the average log predictive probabilities per
test data point, as well as standard errors. As can be
seen, the more flexible parameterization afforded by cop-
ula MCDNs over the simpler Gaussian and probit models
offers significantly better predictions in most cases.

7 CONCLUSION

Acyclic directed mixed graphs are a natural generaliza-
tion of DAGs. While ADMGs date back at least to
Wright (1921), the potential of this framework has only
recently being translated into practical applications due
to advances into complete parameterizations of Gaussian
and discrete networks (Richardson and Spirtes, 2002, Dr-
ton and Richardson, 2008, Richardson, 2009). The frame-
work of cumulative distribution networks (Huang and Frey,
2008, Huang and Jojic, 2010) introduced new approaches
for flexible parameterizations of bidirected models. In this
paper, we extended CDNs to the full ADMG case, intro-
ducing the most flexible class of parameterizations of AD-
MGs to date. We expect that ADMGs will be as readily
accessible and as widespread as DAG models in the future.

There are several directions for future work. While clas-
sical approaches for learning Markov equivalence classes
of ADMGs have been developed by means of multiple hy-
pothesis tests of conditional independencies (Spirtes et al.,
2000), a model-based approach based on Bayesian or pe-
nalized likelihood functions can deliver more robust learn-
ing procedures and a more natural way of combining data
with structural prior knowledge. ADMG structures can
also play a role in multivariate supervised learning, that is,
structured prediction problems. For instance, Silva et al.
(2007) introduced some simple models for relational classi-
fication inspired by ADMG models and by the link to seem-
ingly unrelated regression (Zellner, 1962). However, effi-
cient ADMG-structured prediction methods and new ad-
vanced structural learning procedures will need to be de-
veloped.
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