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Abstract

We propose a novel class of Bayesian nonparametric models for sequential data
called fragmentation-coagulation processes (FCPs). FCPs model a set of se-
quences using a partition-valued Markov process which evolves by splitting and
merging clusters. An FCP is exchangeable, projective, stationary and reversible,
and its equilibrium distributions are given by the Chinese restaurant process. As
opposed to hidden Markov models, FCPs allow for flexible modelling of the num-
ber of clusters, and they avoid label switching non-identifiability problems. We
develop an efficient Gibbs sampler for FCPs which uses uniformization and the
forward-backward algorithm. Our development of FCPs is motivated by applica-
tions in population genetics, and we demonstrate the utility of FCPs on problems
of genotype imputation with phased and unphased SNP data.

1 Introduction

We are interested in probablistic models for sequences arising from the study of genetic variations
in a population of organisms (particularly humans). The most commonly studied class of genetic
variations in humans are single nucleotide polymorphisms (SNPs), with large quantities of data now
available (e.g. from the HapMap [1] and 1000 Genomes projects [2]). SNPs play an important role
in our understanding of genetic processes, human historical migratory patterns, and in genome-wide
association studies for discovering the genetic basis of diseases, which in turn are useful in clinical
settings for diagnoses and treatment recommendations.

A SNP is a specific location in the genome where a mutation has occurred to a single nucleotide at
some time during the evolutionary history of a species. Because the rate of such mutations is low
in human populations the chances of two mutations occurring in the same location is small and so
most SNPs have only two variants (wild type and mutant) in the population. The SNP variants on
a chromosome of an individual form a sequence, called a haplotype, with each entry being binary
valued coding for the two possible variants at that SNP. Due to the effects of gene conversion and
recombination, the haplotypes of a set of individuals often has a “mosaic” structure where contigu-
ous subsequences recur across multiple individuals [3]. Hidden Markov Models (HMMs) [4] are
often used as the basis of existing models of genetic variations that exploit this mosaic structure
(e.g. [3, 5]). However, HMMs, as dynamic generalisations of finite mixture models, cannot flexibly
model the number of states needed for a particular dataset, and suffer from the same label switching
non-identifiability problems of finite mixture models [6] (see Section 3.2). While nonparametric
generalisations of HMMs [7, 8, 9] allow for flexible modelling of the number of states, they still
suffer from label switching problems.

In this paper we propose alternative Bayesian nonparametric models for genetic variations called
fragmentation-coagulation processes (FCPs). An FCP defines a Markov process on the space of par-
titions of haplotypes, such that the random partition at each time is marginally a Chinese restaurant
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process (CRP). The clusters of the FCP are used in the place of HMM states. FCPs do not require
the number of clusters in each partition to be specified, and do not have explicit labels for clusters
thus avoid label switching problems. The partitions of FCPs evolve via a series of events, each of
which involves either two clusters merging into one, or one cluster splitting into two. We will see
that FCPs are natural models for the mosaic structure of SNP data since they can flexibly accommo-
date varying numbers of subsequences and they do not have the label switching problems inherent
in HMMs. Further, computations in FCPs scale well.

There is a rich literature on modelling genetic variations. The standard coalescent with recombina-
tion (also known as the ancestral recombination graph) model describes the genealogical history of
a set of haplotypes using coalescent, recombination and mutation events [10]. Though an accurate
model of the genetic process, inference is unfortunately highly intractable. PHASE [11, 12] and IM-
PUTE [13] are a class of HMM based models, where each HMM state corresponds to a haplotype
in a reference panel (training set). This alleviates the label switching problem, but incurs higher
computational costs than the normal HMMs or our FCP since there are now as many HMM states
as reference haplotypes. BEAGLE [14] introduces computational improvements by collapsing the
multiple occurrences of the same mosaic subsequence across the reference haplotypes into a single
node of a graph, with the graph constructed in a very efficient but somewhat ad hoc manner.

Section 2 introduces preliminary notation and describes random partitions and the CRP. In Section 3
we introduce FCPs, discuss their more salient properties, and describe how they are used to model
SNP data. Section 4 describes an auxiliary variables Gibbs sampler for our model. Section 5 presents
results on simulated and real data, and Section 6 concludes.

2 Random Partitions

Let S denote a set of n SNP sequences. Label the sequences by the integers 1, . . . , n so that S can
be taken to be [n] = {1, . . . , n}. A partition γ of S is a set of disjoint non-empty subsets of S
(called clusters) whose union is S. Denote the set of partitions of S by ΠS . If a ⊂ S, define the
projection γ|a of γ onto a to be the partition of a obtained by removing the elements of S\a as well
as any resulting empty subsets from γ. The canonical distribution over ΠS is the Chinese restaurant
process (CRP) [15, 16]. It can be described using an iterative generative process: n customers
enter a Chinese restaurant one at a time. The first customer sits at some table and each subsequent
customer sit at a table withm current customers with probability proportional tom, or at a new table
with probability proportional to α, where α is a parameter of the CRP. The seating arrangement of
customers around tables forms a partition γ of S, with occupied tables corresponding to the clusters
in γ. We write γ ∼ CRP(α, S) if γ ∈ ΠS is a CRP distributed random partition over S. Multiplying
the conditional probabilities together gives the probability mass function of the CRP:

fα,S(γ) =
α|γ|Γ(α)

Γ(n+ α)

∏
a∈γ

Γ(|a|) (1)

where Γ is the gamma function. The CRP is exchangeable (invariant to permutations of S), and
projective (the probability of the projection γ|a is simply fα,a(γ|a)), so can be extended in a natural
manner to partitions of N and is related via de Finetti’s theorem to the Dirichlet process [17].

3 Fragmentation-Coagulation Processes

A fragmentation-coagulation process (FCP) is a continuous-time Markov process π ≡ (π(t), t ∈
[0, T ]) over a time interval [0, T ] where each π(t) is a random partition in ΠS . Since the space of
partitions for a finite S is finite, the FCP is a Markov jump process (MJP) [18] : it evolves according
to a discrete series of random events (or jumps) at which it changes state and at all other times
the state remains unchanged. In particular, the jump events in an FCP are either fragmentations or
coagulations. A fragmentation at time t involves a cluster c ∈ π(t−) splitting into exactly two non-
empty clusters a, b ∈ π(t) (all other clusters stay unchanged; the t− notation means an infinitesimal
time before t), and a coagulation at t involves two clusters a, b ∈ π(t−) merging to form a single
cluster c = a ∪ b ∈ π(t) (see Figure 1). Note that fragmentations and coagulations are converses of
each other; as we will see later, this will lead to some important properties of the FCP.
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Figure 1: FCP cartoon. Each line is a sequence
and bundled lines form clusters. C: coagula-
tion event. F: fragmentation event. Fractions
are, for the orange sequence, from left to right:
probability of joining cluster c at time 0, prob-
ability of following cluster a at a fragmentation
event, rate of starting a new table (creating a
fragmentation), and rate of joining with an ex-
isting table (creating a coagulation).

Following the various popular culinary processes in Bayesian nonparametrics, we will start by de-
scribing the law of π in terms of the conditional distribution of the cluster membership of each
sequence i given those of 1, . . . , i − 1. Since we have a Markov process with a time index, the
metaphor is of a Chinese restaurant operating from time 0 to time T , where customers (sequences)
may move from one table (cluster) to another and tables may split and merge at different points
in time, so that the seating arrangements (partition structures) at different times might not be the
same. To be more precise, define π|[i−1] = (π|[i−1](t), t ∈ [0, T ]) to be the projection of π onto
the first i − 1 sequences. π|[i−1] is piecewise constant, with π|[i−1](t) ∈ Π[i−1] describing the
partitioning of the sequences 1, . . . , i − 1 (the seating arrangement of customers 1, . . . , i − 1) at
time t. Let ai(t) = c\{i}, where c is the unique cluster in π|[i](t) containing i. Note that either
ai(t) ∈ π|[i−1](t), meaning customer i sits at an existing table in π|[i−1](t), or ai(t) = ∅, which will
mean that customer i sits at a new table. Thus the function ai describes customer i’s choice of table
to sit at through times [0, T ]. We define the conditional distribution of ai given π|[i−1] as a Markov
jump process evolving from time 0 to T with two parameters µ > 0 and R > 0 (see Figure 1):

i = 1: The first customer sits at a table for the duration of the process, i.e. a1(t) = ∅ ∀t ∈ [0, T ].
t = 0: Each subsequent customer i starts at time t = 0 by sitting at a table according to CRP

probabilities with parameter µ. So, ai(0) = c ∈ π|[i−1](0) with probability proportional to
|c|, and ai(0) = ∅ with probability proportional to µ.

F1: At time t > 0, if customer i is sitting at table ai(t−) = c ∈ π|[i−1](t−), and the table c
fragments into two tables a, b ∈ π|[i−1](t), customer i will move to table a with probability
|a|/|c|, and to table b with probability |b|/|c|.

C1: If the table c merges with another table at time t, the customer simply follows the other
customers to the resulting merged table.

F2: At all other times t, if customer i is sitting at some existing table ai(t−) = c ∈ π|[i−1](t),
then the customer will move to a new empty table (ai(t) = ∅) with rate R/|c|.

C2: Finally, if i is sitting by himself (ai(t−) = ∅), then he will join an existing table ai(t) =
c ∈ π|[i−1](t) with rate R/µ. The total rate of joining any existing table is |π|[i−1](t)|R/µ.

Note that when customer i moves to a new table in step F2, a fragmentation event is created, and
all subsequent customers who end up in the same table will have to decide at step F1 whether to
move to the original table or to the table newly created by i. The probabilities in steps F1 and F2
are exactly the same as those for a Dirichlet diffusion tree [19] with constant divergence function
R. Similarly step C2 creates a coagulation event in which subsequent customers seated at the two
merging tables will move to the merged table in step C1, and the probabilities are exactly the same
as those for Kingman’s coalescent [20, 21]. Thus our FCP is a combination of the Dirichlet diffusion
tree and Kingman’s coalescent. Theorem 3 below shows that this combination results in FCPs being
stationary Markov processes with CRP equilibrium distributions. Further, FCPs are reversible, so in
a sense the Dirichlet diffusion tree and Kingman’s coalescent are duals of each other.

Given π|[i−1], π|[i] is uniquely determined by ai and vice versa, so that the seating of all n customers
through times [0, T ], a1, . . . , an, uniquely determines the sequential partition structure π. We now
investigate various properties of π that follows from the iterative construction above. The first is
an alternative characterisation of π as an MJP whose transitions are fragmentations or coagulations,
an unsurprising observation since both the Dirichlet diffusion tree and Kingman’s coalescent, as
partition-valued processes, are Markov.
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Theorem 1. π is an MJP with initial distribution π(0)∼CRP(µ, S) and stationary transit rates,

q(γ, ρ) = R
Γ(|a|)Γ(|b|)

Γ(|c|)
q(ρ, γ) =

R

µ
(2)

where γ, ρ ∈ ΠS are such that ρ is obtained from γ by fragmenting a cluster c ∈ γ into two clusters
a, b ∈ ρ (at rate q(γ, ρ)), and conversely γ is obtained from ρ by coagulating a, b into c (at rate
q(ρ, γ)). The total rate of transition out of γ is:

q(γ, ·) = R
∑
c∈γ

H|c|−1 +
R

µ

|γ|(|γ| − 1)

2
(3)

where H|c|−1 is the |c| − 1st harmonic number.

Proof. The initial distribution follows from the CRP probabilities of step t = 0. For every i, ai is
Markov and ai(t) depends only on ai(t−) and π|[i−1](t), thus (ai(s), s ∈ [0, t]) depends only on
(aj(s), s ∈ [0, t], j < i) and the Markovian structure of π follows by induction. Since ΠS is finite,
π is an MJP. Further, the probabilities and rates in steps F1, F2, C1 and C2 do not depend explicitly
on t so π has stationary transit rates. By construction, q(γ, ρ) is only non-zero if γ and ρ are related
by a complimentary pair of fragmentation and coagulation events, as in the theorem.

To derive the transition rates (2), recall that a transition rate r from state s to state s′ means that if
the MJP is in state s at time t then it will transit to state s′ by an infinitesimal time later t + δ with
probability δr. For the fragmentation rate q(γ, ρ), the probability of transiting from γ to ρ in an
infinitesimal time δ is δ times the rate at which a customer starts his own table in step F2, times the
probabilities of subsequent customers choosing either table in step F1 to form the two tables a and
b. Dividing this product by δ forms the rate q(γ, ρ). Without loss of generality suppose that the table
started by the customer eventually becomes a and that there were j other customers at the existing
table which eventually becomes b. Thus, the rate of the customer starting his own table is R/j and
the product of probabilities of subsequent customer choices in step F1 is then 1·2···(|a|−1)×j···(|b|−1)

(j+1)···(|c|−1) .
Multiplying these together gives q(γ, ρ) in (2). Similarly, the coagulation rate q(ρ, γ) is a product
of the rate R

µ at which a customer moves from his own table to an existing table in step C2 and the
probability of all subsequent customers in either table moving to the merged table (which is just 1).

Finally, the total transition rate q(γ, ·) is a sum over all possible fragmentations and coagulations of
γ. There are |γ|(|γ|−1)

2 possible pairs of clusters to coagulate, giving the second term. The first term
is obtained by summing over all c ∈ γ, and over all unordered pairs a, b resulting from fragmenting
c, and using the identity

∑
{a,b}

Γ(|a|)Γ(|b|)
Γ(|c|) = H|c|−1.

Theorem 2. π is projective and exchangeable. Thus it can be extended naturally to a Markov
process over partitions of N.

Proof. Both properties follow from the fact that both the initial distribution CRP(µ, S) and the
transition rates (2) are projective and exchangeable. Here we will give more direct arguments for the
theorem. Projectivity is a direct consequence of the iterative construction, showing that the law of
π|[i] does not depend on the clustering trajectories aj of subsequent customers j > i. We can show
exchangeability of π by deriving the joint probability density of a sample path of π (the density
exists since both ΠS and T are finite so π has a finite number of events on [0, T ]), and seeing that
it is invariant to permutations of S. For an MJP the probability of a sample path is the probability
of the initial state (fµ,S(π(0))) times, for each subsequent jump, the probability of staying in the
current state γ until the jump (the holding time is exponential distributed with rate q(γ, ·)) and the
transition from γ to the next state ρ (this is the ratio q(γ, ρ)/q(γ, ·)), and finally the probability of
not transiting from the last jump time to T . Multiplying these probabilities together gives, after
simplification:

p(π) = R|C|+|F |µ|A|−2|C|−2|F | Γ(µ)

Γ(µ+ n)
exp

(
−
∫ T

0

q(π(t), ·)dt

) ∏
a∈A<> Γ(|a|)∏
a∈A>< Γ(|a|)

(4)

with |C| the number of coagulations, |F | number of fragmentations, and A,A<>, A>< are sets of
paths in π. A path is a cluster created either at time 0 or a coagulation or fragmentation, and exists
for a definite amount of time until it is terminated at time T or another event (these are the horizontal
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bundles of lines in Figure 1). A is the set of all paths in π, A<> the set of paths created either at
time 0 or by a fragmentation and terminated either at time T or by a coagulation, and A>< the set
of paths created by a coagulation and terminated by a fragmentation or at time T .

Theorem 3. π is ergodic and has equilibrium distribution CRP(µ, S). Further, it is reversible with
(π(T − t), t ∈ [0, T ]) having the same law as π.

Proof. Ergodicity follows from the fact that for any T > 0 and any two partitions γ, ρ ∈ ΠS ,
there is positive probability that if it starts at π(0) = γ, it will end with π(T ) = ρ. For example,
it may undergo a sequence of fragmentations until each sequence belong to its own cluster, then a
sequence of coagulations forming the clusters in ρ. Reversibility and the equilibrium distribution
can be demonstrated by detailed balance. Suppose γ, ρ ∈ ΠS and a, b, c are related as in Theorem 1,

fµ,S(γ)q(γ, ρ) =µ|γ|Γ(µ)
Γ(n+µ)

∏
k∈γ Γ(|k|)×RΓ(|a|)Γ(|b|)

Γ(|c|) (5)

=µ|γ|+1Γ(µ)
Γ(n+µ) Γ(|a|)Γ(|b|)

∏
k∈γ,k 6=c Γ(|k|)× R

µ = fµ,S(ρ)q(ρ, γ)

Finally, the terms in (4) are invariant to time reversals, i.e. p((π(T − t), t ∈ [0, T ])) = p(π).

Theorem 3 shows that the µ parameter controls the marginal distributions of π(t), while (2) indicates
that the R parameter controls the rate at which π evolves.

3.1 A Model of SNP Sequences

We model the n SNP sequences (haplotypes) with an FCP π over partitions of S = [n]. Let the
m assayed SNP locations on a chunk of the chromosome be at positions t1 < t2 · · · < tm. The
ith haplotype consists of observations xi1, . . . , xim ∈ {0, 1} each corresponding to a binary SNP
variant. For j = 1, . . . ,m, and for each cluster c ∈ π(tj) at position tj , we have a parameter
θcj ∼ Bernoulli(βj) which denotes the variant at location tj of the corresponding subsequence. For
each i ∈ c we model xij as equal to θcj with probability 1 − ε, where ε is a noise probability. We
place a prior βj ∼ Beta(αβ̃j , α(1− β̃j)) with mean β̃j given by the empirical mean of variant 1 at
SNP j among the observed haplotypes. We place uninformative uniform priors on logR, logµ and
logα over a bounded but large range such that the boundaries were never encountered.

The properties of FCPs in Theorems 1-3 are natural in the modelling setting here. Projectivity and
exchangeability relate to the assumption that sequence labels should not have an effect on the model,
while stationarity and reversibility arise from the simplifying assumption that we do not expect the
genetic processes operating in different parts of the genome to be different. These are also properties
of the standard coalescent with recombination model of genetic variations [10]. Incidentally the
coalescent with recombination model is not Markov, though there have been Markov approximations
[22, 23], and all practical HMM based methods are Markov.

3.2 HMMs and the Label Switching Problem

HMMs can also be interpreted as sequential partitioning processes in which each state at time step t
corresponds to a cluster in the partition at t. Since each sequence can be in different states at different
times this automatically induces a partition-structured Markov process, where each partition consists
of at mostK clusters (K being the number of states in the HMM), and where each cluster is labelled
with an HMM state. This labelling of the clusters in HMMs is a significant, but subtle, difference
between HMMs and FCPs. Note that the clusters in FCPs are unlabelled, and defined purely in
terms of the sequences they contain. This labelling of the clusters in HMMs are a significant source
of non-identifiability in HMMs, since the likelihoods of data items (and often even the priors over
transition probabilities) are invariant to the labels themselves so that each permutation over labels
creates a mode in the posterior. This is the so called “label switching problem” for finite mixture
models [6]. Since the FCP clusters are unlabelled they do not suffer from label switching problems.
On the other hand, by having labelled clusters HMMs can share statistical strength among clusters
across time steps (e.g. by enforcing the same emission probabilities from each cluster across time),
while FCPs do not have a natural way of sharing statistical strength across time. This means that
FCPs are not suitable for sequential data where there is no natural correspondence between times
across different sequences, e.g. time series data like speech and video.
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3.3 Discrete Time Markov Chain Construction

FCPs can be derived as continuous time limits of discrete time Markov chains constructed from
fragmentation and coagulation operators [24]. This construction is more intuitive but lacks the
rigour of the development described here. Let CRP(α, d, S) be a generalisation of the CRP on S
with an additional discount parameter d (see [25] for details). For any δ > 0, construct a Markov
chain over π(0), π(δ), π(2δ), . . . as follows: π(0) ∼ CRP(µ, 0, S); then for every m ≥ 1, define
ρ(mδ) to be the partition obtained by fragmenting each cluster c ∈ π((m−1)δ) by a partition drawn
independently from CRP(0, Rδ, c), and π(mδ) is constructed by coagulating into one the clusters of
ρ(mδ) belonging to the same cluster in a draw from CRP(µ/Rδ, 0, ρ(mδ)). Results from [26] (see
also [27]) show that marginally each ρ(mδ) ∼ CRP(µ,Rδ, S) and π(mδ) ∼ CRP(µ, 0, S). The
various properties of FCPs, i.e. Markov, projectivity, exchangeability, stationarity, and reversibility,
hold for this discrete time Markov chain, and the continuous time π can be derived by taking δ → 0.

4 Gibbs Sampling using Uniformization

We use a Gibbs sampler for inference in the FCP given SNP haplotype data. Each iteration of
the sampler involves treating the ith haplotype sequence as the last sequence to be added into the
FCP partition structure (making use of exchangeability), so that the iterative procedure described
in Section 3 gives the conditional prior of ai given π|S\{i}. Coupling with the likelihood terms of
xi1, . . . , xim gives us the desired conditional distribution of ai. Since this conditional distribution
of ai is Markov, we can make use of the forward filtering-backward sampling procedure to sample
it. However, ai is a continuous-time MJP so a direct application of the typical forward-backward
algorithm is not possible. One possibility is to marginalise out the sample path of ai except at a finite
number of locations (corresponding to the jumps in π|S\{i} and the SNP locations). This approach
is computationally expensive as it requires many matrix exponentiations, and does not resolve the
issue of obtaining a full sample path of ai, which may involve jumps at random locations we have
marginalised out.

Instead, we make use of a recently developed MCMC inference method for MJPs [28]. This sampler
introduces as auxiliary variables a set of “potential jump points” distributed according to a Poisson
process with piecewise constant rates, such that conditioned on them the posterior of ai becomes
a Markov chain that can only transition at either its previous jump locations or the potential jump
points, and we can then apply standard forward-backward to sample ai. For each t the state space
of ai(t) is Cit ≡ π|S\{i} ∪ {∅}. For s, s′ ∈ Cit let Qt(s, s′) be the transition rate from state s to s′

given in Section 3, with Qt(s, s) = −
∑
s′ 6=sQt(s, s

′). Let Ωt > maxs∈Cit −Qt(s, s) be an upper
bound on the transition rates of ai at time t, a′i be the previous sample path of ai, J ′ be the jumps in
a′i, and E consists of the m SNP locations and the event times in π|S\{i}. Let Mt(s) be the forward
message at time t and state s ∈ Cit. The resulting forward-backward sampling algorithm is given
below. In addition we update the logarithms of R,µ and α by slice sampling.

1. Sample potential jumps J aux ∼ Poisson(Λ) with rate Λ(t) = Ωt +Qt(a
′
i(t), a

′
i(t))).

2. Compute forward messages by iterating over t ∈ {0} ∪ J aux ∪ J ′ ∪ E from left to right:
2a. At t = 0, set Mt(s) ∝ |s| for s ∈ π|S\{i} and Mt(∅) ∝ µ.
2b. At a fragmentation in π|S\{i}, say of c into a, b, setMt(a)= |a||c|Mt−(c),Mt(b)= |b||c|Mt−(c),

and Mt(k)=Mt−(k) for k 6= a, b, c. Here t− denotes the time of the previous iteration.
2c. At a coagulation in π|S\{i}, say of a, b into c, set Mt(c) = Mt−(a) +Mt−(b).
2d. At an observation, say t = tj , set Mt(s) = p(xij |θsj)Mt−(s). We integrate out θ∅j and βj .
2e. At a potential jump in J aux ∪ J ′, set Mt(s) =

∑
s′∈CitMt−(s′)(1(s′ = s) +Qt(s

′, s)/Ω).
3. Get new sample path ai by backward sampling. This is straightforward and involves reversing

the message computations above. Note that ai can only jump at the times in J aux ∪ J ′, and
change state at times in E if it was involved in the fragmentation or coagulation event.

5 Experiments

Label switching problem Figure 2 demonstrates the label switching problem (Section 3.2) during
block Gibbs sampling of a 2-state Bayesian HMM (BHMM) compared to inference in an FCP. The
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Figure 2: Label switching problem.
Left: Each line is median, over 10 runs, of the normalized log-likelihoods of a Bayesian HMM (blue)
and an FCP (red) at each iteration of MCMC. Lighter polygons are the 25% and 75% percentiles.
Right: Number of MCMC iterations before each model first encounters the optimum states.

observed data comprises 16 sequences of length 16. Eight of the sequences consist of just zeros
and the others consist of just ones. Each of the binary BHMM states, zij ∈ {0, 1}, i indexing
sequence and j indexing position within sequence i, transits to the same state with probability τ ,
with a prior τ ∼ Beta(10.0, 0.1) encouraging self transitions. The observations of the BHMM have
distribution xij ∼ Bernoulli(ρzij ) where ρ1 = 1 − ρ0 and ρ0 ∼ Beta(1.0, 1.0). The optimal
clustering under both models assigns all zero observations to one state and all ones to another state.
As shown in Figure 2, due to the lack of identifiability of its states, the BHMM requires more MCMC
iterations through the data before inference converges upon an optimal state, whilst an FCP is able
to find the correct state much more quickly. This is reflected in both the normalized log-likelihood
of the models in Figure 2(left) and in the number of iterations before reaching the optimal state,
Figure 2(right).
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Figure 3: Accuracy vs proportion of missing
data for imputation from phased data. Lines
are drawn at the means and error bars at the
standard error of the means.

Imputation from phased data To reduce costs,
typically not all known SNPs are assayed for each
participant in a large association study. The prob-
lem of inferring the variants of unassayed SNPs in
a study using a larger dataset (e.g. HapMap or 1000
Genomes) is called genotype imputation [13].

Figure 3 compares the genotype imputation accu-
racy of FCP with that of fastPHASE [5] and BEA-
GLE [14], two state-of-the-art methods. We used
3000 MCMC iterations for inference with the FCP,
with the first 1000 iterations discarded as burn-in.
We used 320 genes from 47 individuals in the Seat-
tle SNPs dataset [29]. Each gene consists of 94 se-
quences, of length between 13 and 416 SNPs. We
held out 10%–50% of the SNPs uniformly among
all haplotypes for testing. Our model had higher ac-
curacy than both fastPHASE and BEAGLE.

Imputation from unphased data In humans,
most chromosomes come in pairs. Current assaying methods are unable to determine from which
of these two chromosomes each variant originates without employing expensive protocols, thus the
data for each individual in large datasets actually consist of sequences of unordered pairs of variants
(called genotypes). This includes the Seattle SNPs dataset (the haplotypes provided by [29] in the
previous experiment were phased using PHASE [11, 12]).

In this experiment, we performed imputation using the original unphased genotypes, using an exten-
sion of the FCP able to handle this sort of data. Figure 4 shows the genotype imputation accuracies
and run-times of the FCP model (with 60, 600 or 3000 MCMC iterations of which 30, 200 or 600
were discarded for burn-in) and state-of-the-art software (fastPHASE [5], IMPUTE2 [30], BEAGLE
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Figure 4: Time and accuracy performance of genotype imputation on 231 Seattle SNPs genes.
Left: Accuracies evaluated by removing 10%–50% of SNPs from 10%–50% of individuals, repeated
five times on each gene with the same hold out proportions. Centers of crosses correspond to median
accuracy and times whilst whiskers correspond to the extent of the inter-quartile range.
Middle: Lines are accuracy averaged over five repetitions of each gene with 30% of shared SNPs
removed from 10%–50% of individuals. Each repetition uses a different subset of SNPs and indi-
viduals. Lighter polygons are standard errors.
Right: As Middle, except with 10%–50% of shared SNPs removed from 30% of individuals.

[14]). We held out 10%–50% of the shared SNPs in 10%–50% of the 47 individuals of the Seat-
tle SNPs dataset. This paradigm mimics a popular experimental setting in which the genotypes of
sparsely assayed individuals are imputed using a densely assayed reference panel [30]. We discarded
89 of the genes as they were unable to be properly pre-processed for use with IMPUTE2.

As can be seen in Figure 4, FCP achieves similar state-of-the-art accuracy to IMPUTE2 and fast-
PHASE. Given enough iterations, the FCP outperforms all other methods in terms of accuracy.
With 600 iterations, FCP has almost the same accuracy and run-time as fastPHASE. With just 60
iterations, FCP performs comparably to IMPUTE2 but is an order of magnitude faster. Note that
IMPUTE2 scales quadratically in the number of genotypes, so we expect FCPs to be more scalable.
Finally, BEAGLE is the fastest algorithm but has worst accuracies.

6 Discussion

We have proposed a novel class of Bayesian nonparametric models called fragmentation-coagulation
processes (FCPs), and applied them to modelling population genetic variations, showing encourag-
ing empirical results on genotype imputation. FCPs are the simplest non-trivial examples of ex-
changeable fragmentation-coalescence processes (EFCP) [31]. In general EFCPs the fragmentation
and coagulation events may involve more than two clusters. They also have an erosion operation,
where a single element of S forms a single element cluster. EFCPs were studied by probabilists for
their theoretical properties, and our work represents the first application of EFCPs as probabilistic
models of real data, and the first inference algorithm derived for EFCPs.

There are many interesting avenues for future research. Firstly, we are currently exploring a number
of other applications in population genetics, including phasing and genome-wide association studies.
Secondly, it would be interesting to explore the discrete time Markov chain version of FCPs, which
although not as elegant will have simpler and more scalable inference. Thirdly, the haplotype graph
in BEAGLE is constructed via a series of cluster splits and merges, and bears striking resemblance
to the partition structures inferred by FCPs. It would be interesting to explore the use of BEAGLE
as a fast initialisation of FCPs, and to use FCPs as a Bayesian interpretation of BEAGLE. Finally,
beyond population genetics, FCPs can also be applied to other time series and sequential data, e.g.
the time evolution of community structure in network data, or topical change in document corpora.
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