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Abstract

This paper makes two contributions to Bayesian machine learning algorithms. Firstly, we
propose stochastic natural gradient expectation propagation (SNEP), a novel alternative to
expectation propagation (EP), a popular variational inference algorithm. SNEP is a black box
variational algorithm, in that it does not require any simplifying assumptions on the distribution
of interest, beyond the existence of some Monte Carlo sampler for estimating the moments of the
EP tilted distributions. Further, as opposed to EP which has no guarantee of convergence, SNEP
can be shown to be convergent, even when using Monte Carlo moment estimates. Secondly,
we propose a novel architecture for distributed Bayesian learning which we call the posterior
server. The posterior server allows scalable and robust Bayesian learning in cases where a
dataset is stored in a distributed manner across a cluster, with each compute node containing
a disjoint subset of data. An independent Markov chain Monte Carlo (MCMC) sampler is run
on each compute node, with direct access only to the local data subset, but which targets an
approximation to the global posterior distribution given all data across the whole cluster. This is
achieved by using a distributed asynchronous implementation of SNEP to pass messages across
the cluster. We demonstrate SNEP and the posterior server on distributed Bayesian learning of
logistic regression and neural networks.

Keywords: Distributed Bayesian Learning, Expectation Propagation, Stochastic Approxi-
mation, Natural Gradient, Markov chain Monte Carlo, Posterior Server, Large Scale Learning,
Deep Learning.

1 Introduction

Algorithms and systems for enabling machine learning from large scale datasets are becoming
increasingly important in the era of Big Data. This has driven many developments, including
various forms of stochastic gradient descent, parallel and distributed learning systems, use of GPUs,
sketching, random Fourier features, divide-and-conquer methods, as well as various approximation
schemes. These large scale machine learning systems have in turn driven significant advances across
many data-oriented sciences and technologies, ranging from the biological sciences, neuroscience,
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social sciences, signal processing, speech processing, natural language processing, computer vision
etc.

In this paper we will consider methods for large scale Bayesian machine learning. As opposed to
the more common empirical risk minimisation or maximum likelihood approaches, where learning
is phrased as finding a set of parameters optimal with respect to a dataset and to a loss or likelihood
function, Bayesian machine learning rests upon probabilistic models which capture the dependen-
cies among all observed and unobserved variables, and where learning is phrased as computing the
posterior distribution over unobserved variables (including both latent variables and model param-
eters) given the observed data. The Bayesian framework can more fully capture the uncertainty in
learnt parameters and prevent overfitting, so in principle can allow for the use of more complex and
larger scale models. However, Bayesian approaches are generally more computationally intensive
than optimisation-based ones, and have to date not led to methods which are as scalable.

For complex models, exact computation of the posterior distribution is intractable and approx-
imate schemes such as variational inference (VI) (Wainwright and Jordan, 2008), Markov chain
Monte Carlo (MCMC) (Gilks et al., 1996) and sequential Monte Carlo (Doucet et al., 2001) are
needed. Scalable methods in both traditions include: stochastic variational inference (Hoffman
et al., 2013, Mnih and Gregor, 2014, Rezende et al., 2014) which apply minibatch stochastic gra-
dient descent (Robbins and Monro, 1951) to optimise the variational objective function, stochastic
gradient MCMC (Welling and Teh, 2011, Patterson and Teh, 2013, Ding et al., 2014, Teh et al.,
2015, Leimkuhler and Shang, 2015, Ma et al., 2015) which uses minibatch stochastic gradients
within MCMC, austerity MCMC (Korattikara et al., 2014, Bardenet et al., 2014) which uses data
subsampling to reduce computational cost of Metropolis-Hastings acceptance steps, and embar-
rassingly parallel MCMC (Huang and Gelman, 2005, Scott et al., 2013, Wang and Dunson, 2013,
Neiswanger et al., 2014) which distribute data across a cluster, runs independent MCMC samplers
on each worker and combines samples across the cluster only at the end to reduce network commu-
nication costs. In addition, standard learning schemes have also been successfully deployed in large
scale settings, a particularly successful one being expectation propagation (EP) (Minka, 2001) in
the TrueSkill XBox player rating and matching system (Herbrich et al., 2007).

Our work builds upon prior work on using EP for performing distributed Bayesian learning (Xu
et al., 2014, Gelman et al., 2014). In this framework, a dataset is partitioned into disjoint subsets
with each subset stored on a worker node in a cluster. Learning is performed at each worker based
on the data subset there using MCMC sampling. As opposed to embarrassingly parallel MCMC
methods which only communicate the samples to the master at the end of learning, EP is used to
communicate messages (infrequently) across the cluster. These messages coordinate the samplers
such that the target distributions of all samplers (which coincidentally are the tilted distributions in
EP) on all workers share certain moments, e.g. means and variances, hence the name sampling via
moment sharing (SMS) coined by (Xu et al., 2014). At convergence, it can also be shown that the
target distributions of the samplers also share moments with the EP approximation to the global
posterior distribution given all data, hence the target distributions on the workers can themselves
be treated as approximations to the global posterior.

While SMS works well on simpler models like Bayesian logistic regression and spike-and-slab
linear regression, we have found that it did not work for more complex, high-dimensional, and
non-convex models like Bayesian deep neural networks. This is due to the non-convergence of
EP, particularly as the moments of the tilted distributions needed by EP are estimated using
MCMC sampling, with estimation noise that further compounds the well-known lack of convergence
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Figure 1: The posterior server.

guarantees for EP, and the fact that extremely long MCMC runs are needed for the samplers to
equilibrate due to the complex posterior distribution in these models.

Our first contribution is thus the development of stochastic natural-gradient EP (SNEP), an
alternative algorithm to EP which optimises the same EP variational objective function. SNEP is a
double-loop algorithm with convergence guarantees. The inner loop is a stochastic natural-gradient
descent algorithm which tolerates estimation noise, so that SNEP is convergent even with moments
estimated using MCMC samplers. Our derivation of SNEP improves upon the derivation of the
convergent EP algorithm of (Heskes and Zoeter, 2002) in that ours works for more general class of
models, we make explicit the underlying variational objective function that is being optimised, and
ours use a natural-gradient descent algorithm (Amari and Nagaoka, 2001) more tolerant of Monte
Carlo noise. SNEP generalises to easily power EP (Minka, 2004).

Building upon the development of SNEP, our second contribution is a distributed Bayesian
learning architecture which we call the posterior server. In analogy to the parameter server (Ahmed
et al., 2012) which maintains and serves the parameter to a cluster of workers, the posterior server
maintains and serves (an approximation to) the posterior distribution. Figure 1 gives a schematic
for the steps involved. Each worker has a subset of data, from which we get a likelihood func-
tion. It also maintains a tractable approximation of the likelihood and a cavity distribution which
is effectively a conditional distribution over the parameters given all data on other workers. An
MCMC sampler targets the normalised product of the cavity distribution and the (true) likelihood,
and forms a stochastic estimate of the required moments, which is in turn used to update the like-
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lihood approximation using stochastic natural-gradient descent. Each worker communicates with
the posterior server asynchronously and in a non-blocking manner, sending the current likelihood
approximation and receiving the new cavity distribution. This communication protocol makes more
efficient use of computational resources on workers than SMS, which requires either synchronous
or blocking asynchronous protocols.

Note that the set-up of the distributed learning problem is that each worker has access to a
subset of data, and no worker has access to all data. This situation might occur in situations other
than large scale learning. For example, when working with sensitive patient data which cannot be
shared directly, we might still want to be able to make use of all available data across multiple
sites to improve inference. Typically known as divide-and-conquer or consensus inference (Zhang
et al., pted, Zhao et al., 2014, Kleiner et al., 2014, Battey et al., 2015), it is also well-known that
this situation is harder than typical distributed learning settings where it is assumed that all data
is accessible on all workers (e.g. Dean et al. (2012), Zhang et al. (2015)).

In the following, Section 2 describes our set up of distributed Bayesian learning and reviews
the necessary background on exponential families and convex duality. Section 3 formulates EP and
power EP within the framework of variational inference, while Section 4 derives SNEP. Section 5
describes the posterior server architecture and Section 6 describes additional techniques we used
to make the method work on neural networks. We demonstrate the approach Bayesian logistic
regression and Bayesian neural networks in Section 7. Section 8 concludes with a discussion.

2 Problem Set-up and Background

In this section we set-up the problem of distributed Bayesian learning, using the framework of
variational inference in exponential families. For an excellent introduction to exponential families
and variational inference we refer the interested reader to (Wainwright and Jordan, 2008).

2.1 Exponential Families and Convex Duality

Consider an exponential family described by a d-dimensional sufficient statistics function s(x). A
member pθ of this exponential family is parameterized by a natural parameter θ ∈ Rd, and has
density (with respect to some base measure, say Lebesgue),

pθ(x) = exp
(
θ>s(x)−A(θ)

)
, (1)

A(θ) = log

∫
exp

(
θ>s(x)

)
dx. (2)

The log partition function A(θ) is convex and finite on the natural domain of the exponential family,

Θ := {θ : A(θ) <∞} ⊂ Rd, (3)

which is a convex subset of Rd.
Associated with any distribution p and the d-dimensional sufficient statistics function s(x) is a

mean parameter,

µ := Ep[s(x)], (4)
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where Ep denotes the expectation operator with respect to p. The set of valid mean parametersM
is a closed convex set, which we refer to as the mean domain,

M = {µ : ∃ distribution p with µ = Ep[s(x)]} ⊂ Rd (5)

Given a natural parameter θ ∈ Θ, the exponential family member pθ is also associated with a
mean parameter µ = Eθ[s(x)] (where Eθ denotes the expectation with respect to pθ), which we can
write as a function of the natural parameters, µ(θ). If the exponential family is minimal1, then the
mapping θ 7→ ∇A(θ) is one-to-one and onto the interior ofM, and maps θ to the mean parameter,
µ(θ) = ∇A(θ). We will assume that our exponential family of interest is minimal.

The convex conjugate of A(θ) is,

A∗(µ) := sup
θ∈Θ

θ>µ−A(θ). (6)

Evaluated at the mean parameter µ(θ), the conjugate is the negative entropy of pθ,

A∗(µ(θ)) = Eθ[log pθ(x)]. (7)

Conversely, we have

A(θ) = sup
µ∈M

θ>µ−A∗(µ) (8)

and that the natural parameter associated with µ is θ = θ(µ) = ∇A∗(µ). It is useful to write down
formulae for the KL divergence between two exponential family distributions, parameterized by
natural and mean parameter pairs θ, µ and θ′, µ′ respectively:

KL(pθ‖pθ′) = Eθ[log pθ(x)− log pθ′(x)]

= Eθ[θ>s(x)−A(θ)− (θ′)>s(x) +A(θ′)]

= µ>(θ − θ′)−A(θ) +A(θ′)

= A∗(µ) +A(θ′)− µ>θ′

= A∗(µ)−A∗(µ′) + (µ′ − µ)>θ′. (9)

We will write KL(θ‖θ′),KL(µ‖θ′) etc to refer to the same KL divergence between the same two
distributions.

As an example, for a diagonal covariance Gaussian of dimension d/2, we have

p(x) =

d/2∏
j=1

1√
2πσ2

j

exp

(
− 1

2σ2
j

(xj − uj)2

)

= exp

 d/2∑
j=1

(ujσ
−2
j )(xj) + (−σ−2

j )(1
2x

2
j )− 1

2(u2
jσ
−2
j + log(2πσ2

j ))

 (10)

1The exponential family is minimal if the d 1-dimensional functions making up the sufficient statistics function
s(x) are linearly independent, i.e. θ>s(x) = 0 for all x implies θ = 0.
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So the sufficient statistics are xj and 1
2x

2
j , mean parameters are µj1 = uj and µj2 = 1

2(u2
j + σ2

j )

natural parameters are θj1 = ujσ
−2
j and θj2 = −σ−2

j , and

A(θ) =

d/2∑
j=1

1

2
(u2
jσ
−2
j + log(2πσ2

j )) (11)

A∗(µ) =?? (12)

The conversions between natural and mean parameters are:

uj = µj1 = −θj1θ−1
j2 θj1 = µj1(2µj2 − µ2

j1)−1 µj1 = −θj1θ−1
j2

σ2
j = 2(µj2 − µ2

j1) = −θ−1
j2 θj2 = −(2µj2 − µ2

j1)−1 µj2 =
1

2
(θ2
j1θ
−2
j2 − θ

−1
j2 ) (13)

We will use a diagonal covariance Gaussian as our exponential family in our experiments, due to
the high-dimensionality of the models used.

2.2 Distributed Bayesian Learning

We assume that our model is parameterized by a high-dimensional parameter vector x. Let the
prior distribution p0(x) be a member of a tractable and minimal exponential family distribution,
with natural parameter θ0 ∈ Θ ⊂ Rd, sufficient statistics function s(x) and log partition function
A(θ0). Specifically, we will take p0(x) to be a diagonal covariance Gaussian. We refer to this
exponential family as the base exponential family.

We assume that our training dataset is spread across a cluster of n compute nodes or workers,
with log likelihood `i(x) on compute node i = 1, . . . , n. For example, if we let {Si} be a partition
of the data indices, each compute node i could store the corresponding subset of the data Di =
{yc}c∈Si , so that the log likelihood `i(x) is a sum over terms, each corresponding to the log density
of one data point stored on node i,

`i(x) =
∑
c∈Si

log p(yc|x). (14)

The target posterior distribution is then,

p̃(x) := p(x|{Di}ni=1) ∝ p0(x) exp

(
n∑
i=1

`i(x)

)
. (15)

Using neural networks as an example, x corresponds to all learnable weights and biases in a network,
log p(yc|x) gives the probability of the class of data item c given the corresponding input vector,
and the Gaussian prior corresponds to weight decay.

The learning task is then to compute the posterior distribution. For example we may want
to draw samples distributed according to p̃(x), using these to predict on test data by averaging
the predictive densities over the samples as a Monte Carlo estimate of the marginal predictive
density. Or we may want to estimate the posterior mean or variance of the model parameters x.
In the rest of the paper we will aim to obtain posterior samples, means and variances efficiently
but approximately.
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3 Variational Inference in an Extended Exponential Family

In general, the likelihood functions are intractable and approximations are necessary. In this paper
we will formulate the learning task as variational inference in an extended exponential family. In
particular, we will consider a class of variational methods known as power expectation propagation
(power EP) (Minka, 2004).

To start with, we may trivially formulate the target posterior distribution as an extended ex-
ponential family distribution with sufficient statistics s̃(x) := [s(x), `1(x), . . . , `n(x)] and natural
parameters θ̃ := [θ0,1n] where 1n is a vector of 1’s of length n:

p̃(x) = exp
(
θ̃>s̃(x)− Ã(θ̃)

)
. (16)

The extended log partition function Ã(θ̃) is (up to a constant) the log marginal probability of the
data,

Ã(θ̃) = log

∫
exp

(
θ̃>s̃(x)

)
dx = log

∫
exp

(
θ>0 s(x) +

n∑
i=1

`i(x)

)
dx

= logEθ0

[
exp

(
n∑
i=1

`i(x)

)]
+A(θ0)

= log p({Di}ni=1) +A(θ0). (17)

Denoting the convex conjugate by Ã∗(µ̃) and the extended mean domain by M̃ ⊂ Rd+n, the prob-
lem of posterior computation can be expressed as the following concave variational maximization
problem:

max
µ̃⊂M̃

θ̃>µ̃− Ã∗(µ̃). (18)

For example, if the prior exponential family is a diagonal covariance Gaussian, then the optimal
mean parameter is µ̃∗ := [µ∗, ν∗1 , . . . ν

∗
n], where µ∗ := Eθ̃[s(x)] ∈ Rd corresponds to the posterior

means and variances of the model parameters x, while ν∗i := Eθ̃[`i(x)] is the posterior expectation
of the ith log likelihood `i(x). Hence the extended mean parameters capture the important aspects
of the posterior distribution. As expected, this ideal variational problem is intractable and approx-
imations are needed for tractability. The next section describes one such class of approximations.

3.1 Expectation Propagation and Power Expectation Propagation

In this section we will derive a generalization of expectation propagation (EP) (Minka, 2001) called
power EP (Minka, 2004). The derivation is a straightforward generalisation of the variational
formulation of Wainwright and Jordan (2008) from EP to power EP.

For each worker node i let βi > 0 be a given positive real number. Typically, we take βi = 1
which corresponds to standard EP, while βi → ∞ corresponds to variational Bayes (Wiegerinck
and Heskes, 2003, Minka, 2004). In the formulation of Wainwright and Jordan (2008), EP involves
two approximations; both associated with simpler exponential families, which we refer to as locally
extended exponential families (or sometimes local exponential families). For each i, let the ith locally
extended exponential family be associated with the sufficient statistics function si(x) := [s(x), `i(x)].
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Let Θi, Mi, Ai, A
∗
i be the associated (local) natural domain, mean domain, log partition function

and negative entropy respectively. A distribution in this locally extended exponential family with
natural parameter [θi, ηi] ∈ Θi has the form

pθ,ηi = exp
(
θ>i s(x) + ηi`i(x)−Ai(θ, ηi)

)
, (19)

which is a distribution obtained by tilting a tractable distribution with density proportional to
exp(θ>i s(x)) by a single intractable likelihood exp(`i(x)) raised to the power of ηi. This family can
be thought of as treating the ith likelihood term exactly, while approximating all other likelihood
terms by projecting them onto the tractable base exponential family, the hope being that this
family is still tractable while being closer to the true posterior distribution p̃(x).

For the first approximation, the extended negative entropy Ã∗ is approximated using a tree-like
approximation constructed using only the locally extended negative entropies,

Ã∗([µ, ν1, . . . , νn]) ≈ A∗(µ) +

n∑
i=1

βi(A
∗
i (µ, νi)−A∗(µ)). (20)

This approximation is related to the Bethe entropy of loopy belief propagation (Yedidia et al.,
2001). Secondly, the extended mean domain M̃ is approximated by a local mean domain,

L := {[µ, ν1, . . . , νn] : [µ, νi] ∈Mi for all i = 1, . . . , n}, (21)

The local mean domain is an outer bound, L ⊃ M̃. Intuitively, the constraints described by M̃ are
replaced by the weaker constraints described by the local mean domains. We assume that working
with the local exponential families in these ways will be more tractable than working with the full
extended exponential family.

Let µ0 ∈M be a mean parameter in the base exponential family. For the ith local exponential
family, we denote a mean parameter by [µi, νi] ∈ Mi, and require the marginalization constraint
µi = µ0. The power EP variational problem, which is not in general concave, is,

max
µ0,[µi,νi]ni=1

θ>0 µ0 +
n∑
i=1

1 · νi −A∗(µ0)−
n∑
i=1

βi(A
∗
i (µi, νi)−A∗(µi))

subject to µ0 ∈M
[µi, νi] ∈Mi for i = 1, . . . , n

µ0 = µi for i = 1, . . . , n

(22)

Note in particular that the entropy and mean domain in the original variational problem (18) have
been replaced by their respective approximations.

The updates for EP and power EP can be derived as fixed-point equations that solve the
variational problem. First we introduce Lagrange multipliers λi for the equality constraints µ0 = µi,
so that the above is equivalent to,

max
µ0,[µi,νi]ni=1

min
[λi]ni=1

θ>0 µ0 −A∗(µ0) +

n∑
i=1

(
νi − λ>i (µi − µ0)− βi(A∗i (µi, νi)−A∗(µi))

)
︸ ︷︷ ︸

=:L(µ0,[µi,νi,λi]ni=1)

subject to µ0 ∈M
[µi, νi] ∈Mi for i = 1, . . . , n

(23)
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where the domain of λi is simply Rd. Let the Lagrangian above be denoted L(µ0, [µi, νi, λi]
n
i=1).

The Karush-Kuhn-Tucker (KKT) conditions of the above variational problem has to be satisfied
at an optimum, and simply involve setting the derivatives with respect to µ0, µi, νi, λi to zero:

dL

dλi
= 0 : µi = µ0 (24a)

dL

dµ0
= 0 : θ0 −∇A∗(µ0) +

n∑
j=1

λj = 0

θ0 +

n∑
j=1

λj = ∇A∗(µ0) (24b)

dL

dµi
= 0 : −λi − βi∇µiA∗i (µi, νi) + βi∇A∗(µi) = 0

θ0 +

n∑
j=1

λj − β−1
i λi = ∇µiA∗i (µi, νi) (24c)

dL

dνi
= 0 : β−1

i = ∇νiA∗i (µi, νi) (24d)

Equation (24b) shows that an optimal µ0 has to be the mean parameter corresponding to
a (base) exponential family distribution with natural parameter θ0 +

∑n
j=1 λj . Specifically, the

posterior distribution can be approximated as,

p̃(x) ∝ p0(x) exp

 n∑
j=1

`j(x)

 ≈ exp


θ0 +

n∑
j=1

λj

> s(x)

 . (25)

In other words, we can interpret λj as the natural parameter of an exponential family approximation
to the likelihood exp(`j(x)).

Further, from (24c) and (24d) above, we see that the optimal [µi, νi] is the mean parameter
associated with the local posterior distribution,

pi(x) ∝ exp


θ0 +

n∑
j=1

λj − β−1
i λi

> s(x) + β−1
i `i(x)

 . (26)

For standard EP, where βi = 1, we get,

pi(x) ∝ exp


θ0 +

∑
j 6=i

λj

> s(x) + `i(x)

 . (27)

The above local posterior distribution is what is known as the tilted distribution in EP, with the
term (θ0 +

∑n
j=1 λj − β

−1
i λi)

>s(x) corresponding to the cavity distribution with (the β−1
i th power

of) the exponential family approximation to the ith likelihood removed, and replaced by (the β−1
i th

9



power of) the likelihood factor itself. Each step of EP involves first computing [µi, νi] as the mean
parameter of the tilted distribution, then updating λi, using (24a) and (24b):

λnew
i = ∇A∗(µi)− θ0 −

∑
j 6=i

λj . (28)

The EP update ensures that the expectation of the sufficient statistics function under the tilted
distribution pi(x) and under its exponential family approximation (with natural parameters θ0 +∑n

j=1 λj − β
−1
i λi + β−1

i λnew
i ) match. At convergence, this ensures that the expectations under the

tilted distributions and under the approximated posterior distribution (25) match. Note that the
(power) EP updates are derived as fixed point equations and have no guarantees of convergence.
In practice, if the updates oscillate then damped updates are used instead,

λnew
i = αλi + (1− α)

∇A∗(µi)− θ0 −
∑
j 6=i

λj

 . (29)

where α ∈ [0, 1] is a damping factor. Damping does not affect the fixed points of EP.

3.2 Computing Mean Parameters

Assuming that the base exponential family is tractable, the above steps of EP involve additions,
subtractions, and conversions between mean and natural parameters so are easy to compute. The
only difficulty is in the computation of the mean parameters (expectations of the sufficient statistics
function) of the tilted distributions, which involve the log likelihoods `i(x). In typical applications
of EP to graphical models, these are either obtained analytically or using numerical quadrature.

In more complex and general scenarios, both analytic or quadrature-based methods are ruled
out. A successful and common class of methods for calculating expectations under otherwise
intractable distributions is Monte Carlo. A number of papers have proposed such an approach,
including Barthelmé and Chopin (2011), Heess et al. (2013), Gelman et al. (2014) using importance
sampling and Xu et al. (2014), Gelman et al. (2014) using Markov chain Monte Carlo (MCMC). In
addition, Heess et al. (2013), Eslami et al. (2014), Jitkrittum et al. (2015) use learning techniques
to speed-up the process by directly predicting the natural parameters given properties of the tilted
distribution.

We have explored using the sampling via moment sharing (SMS) algorithm (Xu et al., 2014)
in the context of distributed Bayesian learning of deep neural networks. Unfortunately, the SMS
algorithm did not work even for relatively small neural networks and datasets, partly because of
the high dimensionality and partly because the Monte Carlo estimation is inherently stochastic,
both of which we found affected the convergence of the EP fixed point equations.

4 Stochastic Natural-gradient Expectation Propagation

In this section we will derive a novel convergent stochastic approximation based alternative to EP,
which optimizes the same variational objective but is significantly more tolerant of Monte Carlo
noise. Our algorithm is derived using a modified but equivalent variational objective with addi-
tional auxiliary variables, and solving the dual problem using a stochastic approximation algorithm
(Robbins and Monro, 1951).
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4.1 Auxiliary Variational Problem

For each i, we introduce an auxiliary natural parameter vector θ′i ∈ Θ, and introduce a term
−
∑n

i=1 KL(µi‖θ′i) into the variational objective (23). This results in a lower bound on the original
objective and is reminiscent of the EM algorithm (Dempster et al., 1977, Neal and Hinton, 1999) and
of typical variational Bayes approximations (Beal, 2003, Wainwright and Jordan, 2008). Plugging
the relevant formula for the KL divergence (9) into (23), we have the resulting variational objective

max
µ0,[µi,νi,θ′i]

n
i=1

θ>0 µ0 −A∗(µ0) +

n∑
i=1

(
νi − βi

(
A∗i (µi, νi)− µ>i θ′i +A(θ′i)

))
subject to µ0 ∈M

[µi, νi] ∈Mi for i = 1, . . . , n

θ′i ∈ Θ for i = 1, . . . , n

µ0 = µi for i = 1, . . . , n

(30)

Maximizing over θ′i while keeping the other variables fixed will simply set θ′i = ∇A∗(µi), so that
the KL terms vanish and resulting in the original problem (22). Hence the variational problem is
equivalent with the same optima as (22).

We consider maximizing over [θ′i]
n
i=1 in an outer loop, and the original parameters µ0, [µi, νi]

n
i=1

in an inner loop. Introducing Lagrange multipliers to enforce the equality constraints again, we
have,

max
[θ′i]

n
i=1

max
µ0,[µi,νi]ni=1

min
[λi]ni=1

θ>0 µ0 −A∗(µ0) +

n∑
i=1

(
νi − λ>i (µi − µ0)− βi

(
A∗i (µi, νi)− µ>i θ′i +A(θ′i)

))
subject to µ0 ∈M

[µi, νi] ∈Mi for i = 1, . . . , n

θ′i ∈ Θ for i = 1, . . . , n

(31)

Noticing that the Lagrangian is concave in µ0, [µi, νi]
n
i=1 and that Slater’s condition holds, the

duality gap is zero and we have

max
[θ′i]

n
i=1

min
[λi]ni=1

max
µ0,[µi,νi]ni=1

θ>0 µ0 −A∗(µ0) +
n∑
i=1

(
νi − λ>i (µi − µ0)− βi

(
A∗i (µi, νi)− µ>i θ′i +A(θ′i)

))
subject to µ0 ∈M

[µi, νi] ∈Mi for i = 1, . . . , n

θ′i ∈ Θ for i = 1, . . . , n

(32)

Maximizing over µ0, [µi, νi]
n
i=1, we have the equivalent dual objective,

max
[θ′i]

n
i=1

min
[λi]ni=1

A

(
θ0 +

n∑
i=1

λi

)
+

n∑
i=1

βi
(
Ai
(
θ′i − β−1

i λi, β
−1
i

)
−A(θ′i)

)
subject to θ′i ∈ Θ for i = 1, . . . , n (33)
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4.2 Stochastic Natural Gradient Descent

The dual problem can be solved using a double loop algorithm, in which the dual parameters λi
are minimized by coordinate descent in an inner loop, and the auxiliary variables θ′i are maximized
in an outer loop. It can be shown that this leads to the convergent double loop EP algorithm of
(Heskes and Zoeter, 2002). The novelty of our derivation lies in that a single global variational
problem is described, rather than a sequence of variational problems each obtained by minorizing
around the current parameters and then maximizing, as in the minorization-maximization (MM)
algorithm) (Hunter and Lange, 2004) and the CCCP algorithm (Yuille, 2002).

To deal with the stochasticity inherent in using Monte Carlo estimators, we will instead use
a stochastic gradient descent algorithm as the inner loop. From (33), the gradient of the dual
objective L([θ′j , λj ]

n
j=1) is,

dL

dλi
= ∇A

θ0 +
n∑
j=1

λj

−∇θiAi (θ′i − β−1
i λi, β

−1
i

)
(34)

where we used the notation ∇θiAi for the partial derivative of Ai(·, ·) with respect to its first,
d-dimensional, argument.

The gradients above are not covariant and the algorithm is not expected to perform well. A
better approach is to use natural gradient descent (Amari and Nagaoka, 2001) or, equivalently,
mirror descent (Beck and Teboulle, 2003, Raskutti and Mukherjee, 2015) instead. As noted in the
previous section, the Lagrange multiplier λi can be interpreted as the natural parameters of the
base exponential family approximation to the likelihood exp(`i(x)). Reparameterising using the
corresponding mean parameter γi instead, with λi = ∇A∗(γi), the gradient is,

dL

dγi
=
dλi
dγi

∇A
θ0 +

n∑
j=1

λj

−∇θiAi (θ′i − β−1
i λi, β

−1
i

)
= ∇2A∗(γi)

∇A
θ0 +

n∑
j=1

λj

−∇θiAi (θ′i − β−1
i λi, β

−1
i

) (35)

The appropriate metric in the mean parameter space is simply ∇2A∗(γi), so that its inverse cancels
the ∇2A∗(γi) term (Raskutti and Mukherjee, 2015), and the natural gradient update is simply,

γ
(t+1)
i = γ

(t)
i + εt

∇θiAi (θ′i − β−1
i λ

(t)
i , β

−1
i

)
−∇A

θ0 +

n∑
j=1

λ
(t)
j

 (36)

where the corresponding natural parameter is given as a function of the mean parameter, λ
(t)
i :=

∇A∗(γ(t)
i ), and εt is the step size at iteration t. These updates can be performed in series or

parallel fashion. In our distributed Bayesian learning setting they are performed in an asynchronous
distributed fashion.

Intuitively, the first term of the natural gradient step is the mean parameter of the current local
tilted distribution,

p
(t)
i (x) = exp

(
(θ′i − β−1

i λ
(t)
i )>s(x) + β−1

i `i(x)−Ai(θ′i − β−1
i λ

(t)
i , β

−1
i )
)
, (37)
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while the second term is the mean parameter of the current exponential family approximation to
the global posterior. Their difference gives the update for the mean parameter of the likelihood
approximation. The gradient is zero when both terms are equal, precisely the condition from which
the EP fixed point equation is derived.

In general, the first term cannot be obtained in closed form, and we instead use a Markov
chain Monte Carlo (MCMC) estimate, leading to a stochastic natural-gradient descent algorithm.

Specifically, let Ki(· |x; θ′i − β−1
i λ

(t)
i , βi) be a Markov chain kernel with previous state x whose

invariant distribution is the local tilted distribution (37). Let x
(t)
i be the state of the Markov chain

at iteration t. The next state x
(t+1)
i is obtained by simulating from the Markov chain, using the

current values of the parameters,

x
(t+1)
i ∼ Ki

(
· |x(t)

i ; θ′i − β−1
i λ

(t)
i , βi

)
. (38)

In summary, the stochastic natural gradient update is,

γ
(t+1)
i = γ

(t)
i + εt

s(x(t+1)
i

)
−∇A

θ0 +
n∑
j=1

λ
(t)
j

 (39)

Technically, the stochastic natural-gradient descent algorithm requires unbiased estimates of gra-
dients, and the mean parameter estimates obtained using MCMC updates are only unbiased if
the Markov chain equilibrates in between gradient updates. In practice, we find the following to

work well: We initialise the Markov chains by having x
(1)
i be distributed according to the initial

base exponential family approximation with natural parameters θ0 +
∑n

j=1 λ
(1)
j , so that the Markov

chain will in general drift from the exponential family approximation to the tilted distribution, and
the gradient (39) obtained even after one step of the Markov chain will in general point in the right
direction. This is reminiscent of the intuition behind contrastive divergence (Hinton, 2002) and
persistent contrastive divergence (Tieleman, 2008).

Supposing that the inner loop has converged, in the outer loop we can simply set θ′i to be
the natural parameter corresponding to the mean parameter µi of the local tilted distribution.
Assuming that the inner loop has converged, this and the mean parameters of all other tilted
distributions would be equal to µ0, so that the t′th outer loop update is,

(θ′i)
(t′+1) = ∇A∗(µi) = ∇A∗

(
∇θiAi

(
(θ′i)

(t′) − β−1
i λ

(∞)
i , β−1

i

))
= θ0 +

n∑
j=1

λ
(∞)
j (40)

where λ
(∞)
j is the converged value of the dual parameters in the inner loop. In practice, we simply

perform the outer loop update infrequently (and before the inner loop has fully converged). In our
experiments we do not see instabilities resulting from this.

In the extreme case where the outer loop update is performed after every inner loop update,
we can roll both updates into the following update,

γ
(t+1)
i = γ

(t)
i + εt

∇θiAi
θ0 +

n∑
j=1

λ
(t)
j − β

−1
i λ

(t)
i , β

−1
i

−∇A
θ0 +

n∑
j=1

λ
(t)
j

 (41)
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It is interesting to contrast the above with a damped EP update, which in our notation is given by,

λ
(t+1)
i = λ

(t)
i + εt

∇A∗
∇θiAi

θ0 +

n∑
j=1

λ
(t)
j − β

−1
i λ

(t)
i , β

−1
i

−
θ0 +

n∑
j=1

λ
(t)
j

 (42)

Note that ∇A∗(·) converts from mean parameters to natural parameters, so that the first term in
parentheses can be read as first computing the moments (mean parameters) of the tilted distribution
then converting into the corresponding natural parameter. Hence each term in the damped EP
update is obtained by converting the corresponding term in (41) from mean to natural parameters,
i.e. applying ∇A∗(·). In other words the update (41) can be thought of as a mean parameter space
version of a damped EP update.

4.3 Discussion and Related Works

We refer to the resulting algorithm above as Stochastic Natural-gradient EP, or SNEP in short.
While we developed SNEP in the context of distributed Bayesian learning, it is clear that is is
generally applicable, since the distribution (15) targeted is simply a product of factors, each of
which is approximated by a factor in the base exponential family, precisely the setting of EP.
SNEP can be used in place of EP in situations where Monte Carlo moment estimates are used,
including graphical models (Heess et al., 2013, Eslami et al., 2014, Jitkrittum et al., 2015, Lienart
et al., 2015), hierarchical Bayesian models (Gelman et al., 2014), embarrassingly parallel MCMC
sampling (Xu et al., 2014) and approximate Bayesian computation (Barthelmé and Chopin, 2011).

Since Minka (2001), there have been a substantial number of extensions and alternatives to
EP proposed. Stochastic EP (Li et al., 2015) and averaged EP (Dehaene and Barthelmé, 2015)
assume that all factors can be well approximated by the same exponential family factor. This saves
memory storage and was shown to work surprisingly well. It is possible to apply this idea to the
SNEP setting as well. Convergent EP (Heskes and Zoeter, 2002) is a double loop convergent EP
alternative, but with coordinate descent as its inner loop, rather than stochastic natural-gradient
descent in SNEP. This means that convergent EP cannot easily make use of Monte Carlo estimated
moments.

The key advantage of SNEP is that because it uses a stochastic natural-gradient descent inner
loop, it allows for the use of Monte Carlo estimators for the mean parameters of the tilted distri-
bution. This allows it to be used in black-box settings, where the only requirement is the existence
of MCMC samplers targeting the tilted distributions. Black-box methods have recently been de-
veloped for variational Bayes (Ranganath et al., 2014) and for power EP (Hernandez-Lobato et al.,
2015). In these prior works on black-box variational inference, Näıve Monte Carlo estimators are
used, with samples drawn from the approximating distribution. The resulting estimators have high
variance, requiring control variates for variance reduction. In contrast SNEP uses MCMC samplers
targeting the tilted distribution. It is generally accepted that in high-dimensional settings MCMC
samplers often have lower variance than näıve Monte Carlo and as a result work better, with the
trade-off that MCMC samplers need to equilibrate. Stochastic natural-gradient descent was also
used in stochastic variational inference (Hoffman et al., 2013).
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5 The Posterior Server

Our development of SNEP is motivated by the problem of distributed Bayesian learning outlined
in Section 2.2, where each log likelihood term `i(x) corresponds to the log probability/density of
the data subset on worker node i. Using SNEP, each worker node iteratively learns an exponen-
tial family approximation of `i(x), with a master node coordinating the learning across workers.
We call the master node the posterior server, as it maintains and serves the exponential family
approximation of the posterior distribution, obtained by combining the prior with the likelihood
approximations at the workers.

In more detail, worker node i maintains the mean and natural parameters γi, λi of the likelihood
approximation and the state of the MCMC sampler xi. It also maintains the auxiliary parameter
θ′i used in the outer loop. Learning at the worker proceeds by alternating between the MCMC (38)
and inner loop updates (39), with periodic outer loop updates (40). These updates require access
to the data subset at the node, as well as the cavity distribution, with natural parameters θ−i :=
θ0 +

∑
j 6=i λj , which is obtained by communicating with the posterior server. The posterior server

maintains the natural parameter θposterior := θ0 +
∑n

j=1 λj of the global posterior approximation.

Communication between the worker node and the posterior server involves the worker first
sending the posterior server the difference ∆i := λnew

i −λold
i between the current natural parameters

λnew
i and the one during the previous communication with the server, λold

i . The posterior server
updates its global posterior approximation via θnew

posterior = θold
posterior + ∆i, and sends the new value

θnew
posterior back to the worker. The worker in turn uses this to update the cavity, θnew

−i = θnew
posterior −

λnew
i . Note that communication on the cluster is asynchronous and non-blocking, so that the worker

continues its updates in between it sending the message to the posterior server and receiving the
return message, so that the λnew

i use above to compute θnew
−i should be the natural parameter used

previously to compute ∆i, not the most recent natural parameter.

The pseudocode for the overall algorithm is given in Algorithm 1. Note that all communica-
tions are performed asynchronously and in a non-blocking fashion. In particular, Steps 11-17 are
performed in a separate coroutine from the main loop (Steps 7-18), and Step 15 can happen several
iterations of the main loop after Step 14. This is so that compute nodes can spend most of their
time learning (Steps 8-10) and do not have to wait for network communications to complete. We
also note that faster compute nodes need not wait for slower ones since they each learn their own
separate likelihood approximation parameters. It would be interesting for future research to explore
adaptive methods to allow faster compute nodes to increase the data subsets that they learn from,
and slower ones to decrease, to balance the learning progress across compute nodes more evenly.

5.1 Discussion

Our naming of the posterior server contrasts with that of the parameter server (Ahmed et al., 2012)
which is typically used for maximum likelihood (or minimum empirical risk) estimation of model
parameters. Note however that our algorithmic contribution is effectively orthogonal to (Ahmed
et al., 2012), who proposed a generic and robust computational architecture for distributed machine
learning. We believe it is possible to implement our algorithm using the parameter server software
framework.

One of the difficulties of the parameter server architecture is that learning happens at the level
of parameters, with a single set of parameters being maintained across the cluster. Since the data
subsets on workers are disjoint, the learning on each worker tends to make the local copy of the
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Algorithm 1 Posterior Server: Distributed Bayesian Learning via SNEP

1: for each compute node i = 1, . . . , n asynchronously do

2: let γ
(1)
i be the initial mean parameter of local likelihood approximation.

3: let λold
i := λ

(1)
i := ∇A∗(γ(1)

i ) be the initial natural parameter of local likelihood approxima-
tion.

4: let θ−i := θ0 +
∑

j 6=i λ
(1)
j be the initial natural parameter of cavity distribution

5: let θ′i := θ−i + λ
(1)
i be the initial auxiliary parameter.

6: let x
(1)
i ∼ pθ−i+λ

(1)
i

be the initial state of MCMC sampler.

7: for t = 1, 2, . . . until convergence do
8: update local state via MCMC:

x
(t+1)
i ∼ Ki

(
·|x(t)

i ; θ′i − β−1
i λ

(t)
i , β

−1
i

)
9: update local likelihood approximation:

γ
(t+1)
i := γ

(t)
i + εt

(
s(x

(t+1)
i )−∇A

(
θ−i + λ

(t)
i

))
λ

(t+1)
i := ∇A∗(γ(t+1)

i )

10: every Nouter iterations do: update auxiliary parameter:

θ′i := θ−i + λ
(t)
i

11: every Nsync iterations asynchronously do: communicate with posterior server:

12: let ∆i := λ
(t)
i − λold

i .

13: update λold
i := λ

(t)
i .

14: send ∆i to posterior server.
15: receive θposterior from posterior server.
16: update θ−i := θposterior − λold

i .
17: end for
18: end for
19: for the posterior server do

20: let θposterior := θ0 +
∑n

j=1 λ
(1)
i be the initial natural parameter of the posterior approximation.

21: maintain a queue of messages from workers.
22: for each message ∆i received from some worker i do
23: update θposterior := θposterior + ∆i.
24: send θposterior to worker i.
25: end for
26: end for
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parameters diverge from those on the parameter server and on other workers. As a result, frequent
synchronisation with the parameter server is necessary to prevent stale parameters and gradients.
As an example, in the DistBelief method (Dean et al., 2012), experiments were conducted where the
communication with the master was performed after every iteration, which can significantly slow
down the learning process. On the other hand, one of the interesting aspects of the posterior server
is that it lifts learning from the level of parameters to the level of distributions over parameters.
As a result each worker can maintain a distinct parameter set in the MCMC sampler and a distinct
likelihood approximation (since the likelihoods on different workers are indeed different as they
have different data subsets) without requiring frequent communication with the posterior server.
The only role of communication here is for the cavity distributions, which can be thought of as way
for the system to focus the learning happening on workers on the relevant regions of the parameter
space. Empirically, the precise parameterisation of the cavity distribution is not very important.
For an extreme example, suppose both the prior and likelihood terms are close to being Gaussians
and the tractable family is also Gaussian. Then the likelihood approximation will not in fact
depend on the cavity distribution at all, and will converge to the true likelihood on each worker
independently. See also Zhang et al. (2015) for a similar idea of allowing each worker a separate
parameter vector, using an ADMM-like methodology.

Our application of SNEP to distributed Bayesian learning applies one exponential family ap-
proximation per subset of data on each worker node. This contrasts with typical applications of EP
and variational inference in general, which applies one approximation per data item. This is made
possible due to the black-box flexibility of our approach, since the likelihood associated with a data
subset is more complex than for a single data item. In cases where the subset is itself quite large,
and the Bernstein-von Mises theorem holds, the likelihood will be close to a Gaussian, so that if we
use a (full-covariance) Gaussian as the base exponential family, the approximation will introduce
negligible biases. For a recent study of EP in the large data limit, see (Dehaene and Barthelmé,
2015). We can think of our approach as a hybrid which interpolates between a pure variational
approach (when n = N) and a pure MCMC approach (when n = 1), with smaller n corresponding
to less bias introduced by approximations but higher variance/computational costs.

6 Additional Techniques for Bayesian Neural Networks

In the next section we will investigate the use of SNEP and the posterior server for distributed
Bayesian learning of neural networks. To get the method working well on the notoriously compli-
cated posterior distributions for neural networks, a number of additional techniques are needed,
which we describe here. This section may be skipped if the reader is not interested in applications
to neural networks.

6.1 Initial Mode Agreement

The learning landscape of neural networks are highly multimodal, with significant non-identifiabilities
associated with, e.g. permutations of the units or filters in each layer of the network. If the network
parameters are initialised randomly, in a distributed setting the initial learning phase can be very
slow because the parameters on different workers are attracted to different modes, and communi-
cation across the cluster can take a while for all nodes to agree on a single mode. We address this
issue by simply having a single compute node learn for a small number Ninit of iterations, then
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using its learnt parameters to initialise all workers.

6.2 Adaptive Stochastic Gradient Langevin Dynamics

Most of the computational costs associated with the algorithm involve the MCMC updates to the
state xi. When the number of data points stored on each compute node is large, standard MCMC
updates are infeasible as each update requires computations involving every data point. In our
experiments we used the stochastic gradient Langevin dynamics (SGLD) algorithm proposed by
Welling and Teh (2011) which scales well to large datasets.

SGLD uses mini-batches of data to provide unbiased estimates of gradients which are used in a
time discretized Langevin dynamics simulation whose stationary distribution is the desired tilted
distribution (37). The discretization introduces errors which go to zero as the discretization step
sizes decreases to zero; see (Teh et al., 2015, Vollmer et al., 2016). Recall that the data points on
compute node i is Di = {yc}c∈Si , and the log likelihood is

`i(xi) =
∑
c∈Si

log p(yc|xi). (43)

Let B(t) ⊂ Si be a mini-batch of data, chosen uniformly at random with fixed size. Each SGLD
update is,

x
(t+1)
i = x

(t)
i + κt(M

(t))−1

∇s(x(t)
i )>(θ′i − β−1

i λ
(t)
i ) + β−1

i

|Si|
|B(t)|

∑
c∈B(t)

∇ log p(yc|x(t)
i )

+ ηt,

ηt ∼ N (0, 2κt(M
(t))−1). (44)

The term inside the parentheses is an unbiased estimate of the gradient of the log density of the
tilted distribution (37), κt is the discretization step size, M (t) is (an adaptive) diagonal mass matrix,
while ηt is an injected normally-distributed noise, which prevents SGLD from converging to a mode
of the distribution and distinguishes it from stochastic gradient descent. See Welling and Teh (2011)
for details.

In (44) (M (t)) is a mass matrix which effectively controls the length scale of updates to each
dimension of xi. It is well known that in neural networks the length scales of gradients differ
significantly across different parameters and adaptation of learning rates specific to each parameter
is crucial for successful deployment of stochastic gradient descent learning. We have found that
this is the case for SGLD as well, and used an adaptation scheme for the mass matrix reminiscent
of Adagrad (Duchi et al., 2011), RMSProp (Tieleman and Hinton, 2012) and Adam (Kingma and
Ba, 2015). At iteration t let gt be the gradient estimate in (44). We use a diagonal mass matrix.

Suppose its kth entry at iteration t− 1 is M
(t−1)
kk , then this is updated at iteration t using:

(M
(t)
kk )2 = (1− t−

1
2 )(M

(t−1)
kk )2 + t−

1
2 g2
tk (45)

In addition, as in RMSProp, we set a minimum value Mmin for the diagonal entries of the mass
matrix (we used 10−5 in our experiments). If instead of t−

1
2 we used a step size of t−1 for the

adaptation, the above would simply be an average over the square of all previous gradients, and it
would basically be Adagrad (except that the SGLD step sizes κt are set separately (and in fact kept
constant)). We prefer this adaptation schedule over the one in Adagrad as it decreases more slowly
and is less sensitive to the gradients at the initial iterations. We also prefer it over the constant
one used in RMSProp as it decreases over time so that the adaptation stabilizes.
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6.3 Shifting MCMC States After Communication with Posterior Server

After each communication with the posterior server, the target distribution of the MCMC sampler
on the worker, say i, is changed, because of θ−i being updated in Step 16 of Algorithm 1. Assuming
that the MCMC sampler was previously converged, it will now not be anymore because of this shift
in the target distribution, and a number of burn-in iterations may be needed before the mean
parameter estimates can be used for SNEP updates again.

For Gaussian base exponential families, we can shift the MCMC state along with the target
distribution when θ−i is updated in the following way. Suppose µold

i , Σold
i , µnew

i , Σnew
i are the means

and covariances of the approximate Gaussian posterior before and after the update to θ−i (with
natural parameters λi+θold

−i , λi+θnew
−i respectively where λi is the current natural parameter of the

Gaussian likelihood approximation). Suppose xold
i is the MCMC state before the update. Then we

shift the MCMC state as follows:

xnew
i = µnew

i + (Σnew
i )

1
2 (Σold

i )−
1
2 (xold

i − µold
i ). (46)

The idea is that xnew
i should be at the same location relative to the new Gaussian approximation to

the posterior as xold
i is relative to the old Gaussian approximation. We have found that no burn-in

is needed with this shift in the MCMC state after each communication.

6.4 Averaging across Iterations

To stabilize the learning, we average the posterior estimates across iterations using Polyak averaging
(Polyak and Juditsky, 1992). Specifically, we keep a running average of the natural parameter
θposterior of the posterior approximation. We find this this improves the stability and quality of the
posterior approximation.

7 Experiments

In this section we report on some initial experiments on SNEP and the posterior server. Our exper-
iments were performed where each worker is a separate core on a server. As the MCMC sampler on
workers, we chose an adaptive version of stochastic gradient Langevin dynamics (SGLD)(Welling
and Teh, 2011) related to Adagrad (Duchi et al., 2011) and Adam (Kingma and Ba, 2015), which is
more computationally scalable to larger models and datasets than standard MCMC. See Appendix
6 for details.

7.1 Comparison to SMS on Bayesian Logistic Regression

We start with a comparison of SNEP/posterior server to EP/SMS. Recall that SMS is an algo-
rithm for distributed Bayesian learning whereby each worker has a separate MCMC sampler and
coordination across workers is achieved using EP (Xu et al., 2014). It was originally proposed to
scale up MCMC methods and as such it assumes that MCMC chains can be run to convergence
in between communications with the master. Here we used SGLD in place of the No-U-Turns
sampler (NUTS) (Hoffman and Gelman, 2014), with a relatively small number of SGLD iterations
per communication. We have found that the moment estimates are quite noisy which adversely
affected SMS much more than SNEP. While damping tends to improve SMS performance, it still
exhibits more erratic dynamics.
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Figure 2: Comparison of MSE between ground truth and approximate posterior mean of SNEP
(blue) and SMS (red) as function of iteration on a two-dimensional (left) and a ten-dimensional
(right) example.

We illustrate the differing dynamics of SMS and SNEP using Bayesian logistic regression on
a simulated dataset with 1000 data items, using the MATLAB codebase and experimental setup
(except we use a diagonal covariance prior) of Xu et al. (2014). For both algorithms we use
Nworker = 4 and diagonal covariance Gaussians as the base exponential family. We initialise both
algorithms at identical points and use 5000 iterations of SGLD. We set Nouter = Nsync = 50,
performing each outer loop iteration in SNEP at the same time as communication with master.
We used 50 SGLD iterations for each moment estimation needed for SMS.

First, we present results on a two-dimensional problem. Figure 2 (left) shows the mean squared
error (MSE) between the approximate posterior mean and the ground truth. we observe that
both SNEP and SMS achieve similar MSE. Next, Figure 3 shows the dynamics of SNEP (left)
and SMS (right). The red cross denotes the ground truth posterior mean (as estimated using a
long run of NUTS), the blue curve shows the evolution of the estimated posterior mean, with the
blue circle being the final approximation. Each black curve shows the evolution of the mean of
the Gaussian approximation at one worker, with the black square being the final approximation.
While the MSE of SMS and SNEP are comparable, we observe that SNEP factor approximations
are more stable compared to SMS factor approximations. Next, we compare the results on a ten-
dimensional example. Figure 2 (right) shows the MSE and Figure 4 shows the dynamics of the first
two dimensions. We see that while EP displays faster initial convergence, SNEP is more robust
and stable, resulting in better approximation of the ground truth posterior mean.

7.2 Bayesian Neural Networks

In this section we report preliminary experimental results applying SNEP and the posterior server to
distributed Bayesian learning of neural networks, with an implementation using the Julia technical
computing language2 which will be made publicly available at http://bigbayes.github.com/

PosteriorServer. We have found that the SMS algorithm exhibited significant instabilities and

2http://julialang.org.
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Figure 3: Comparison of dynamics of SNEP (left) and SMS (right) on a two-dimensional example.
Green diamond shows prior mean, red cross shows ground truth, blue line show the evolution of
the approximate posterior mean, and black lines show the evolution of the mean of the Gaussian
likelihood approximations. Blue circle and black squares show the values at the end of the simulation
(5000 iterations of SGLD).

0.5 1 1.5 2 2.5 3 3.5

0.8

1

1.2

1.4

1.6

1.8

2

0.8 1 1.2 1.4 1.6 1.8
−10

−5

0

5

Figure 4: Comparison of dynamics of SNEP (left) and SMS (right) on a ten-dimensional example,
where the x and y axes show the first two dimensions only. Green diamond shows prior mean, red
cross shows ground truth, blue line show the evolution of the approximate posterior mean, and
black lines show the evolution of the mean of the Gaussian likelihood approximations. Blue circle
and black squares show the values at the end of the simulation (5000 iterations of SGLD).
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Figure 5: Learning curves as Ninit is varied, with values in {0, 50, 100, 200, 300, 400}. Colours
correspond to different values, with blue being 0 and red being 400. Each thick curve is obtained
by averaging 10 runs (thin lines). An epoch corresponds to 600 SNEP inner loop iterations.

was not suitable for these larger scale problems. Instead our aim here is to explore the behaviour of
SNEP when varying various key hyperparameters. We will also compare our distributed learning
method to a state-of-the-art stochastic gradient descent (SGD) algorithm with access to the whole
dataset on a single computer.

7.2.1 MNIST, Fully Connected Network

In this section we look at training a fully connected neural network on the MNIST dataset3, which
consists of 60000 training images of handwritten digits of size 28 × 28 and 10000 test images, the
task being to classify each image into one of ten classes. The network has two hidden layers with
500 and 300 leaky ReLU units respectively and softmax output units.

In the first set of experiments, we varied a number of hyperparameters of the learning regime
while keeping the rest kept at default values, to investigate the sensitivity of the learning to these
hyperparameters. The default values were chosen by hand in a rough initial round of experimen-
tation as follows: the number of workers is Nworker = 8, the minibatch size is 100, the number of
initial single worker iterations is Ninit = 200, the learning rate for SNEP and step size for SGLD
are both 0.01, the number of iterations per communication is Nsync = 10, the number of inner loop
iterations per outer loop update is Nouter = 50, and each parameter initialised with iid N (0, 1)
draws. Test curves were produced by evaluating networks based on the approximate posterior
means.

Figure 5 shows the learning curves as Ninit is varied. Note that runs with Ninit = 0 performed
significantly worse (blue lines are in the top right corner), demonstrating that the initial phase of
learning is crucial for workers to agree on a good initial local mode. In practice a small number of
initial iterations were sufficient. Larger numbers seem to be slightly detrimental, possibly because
the initial iterations have converged to suboptimal local optima. Some runs with Ninit = 400 were

3http://yann.lecun.com/exdb/mnist/.

22

http://yann.lecun.com/exdb/mnist/


Figure 6: Learning curves as Nsync is varied in range {10, 20, 30, 40, 50, 60} (left) and Nouter is
varied in range {1, 10, 20, 50, 100, 200}. Colours correspond to different values, with blue being
lower values and red being higher. Each thick curve is obtained by averaging 10 runs (thin lines).
An epoch corresponds to 600 SNEP inner loop iterations.

terminated before completion due to external circumstances.

Figure 6 shows behaviour as Nsync and Nouter are varied, showing that the method is insensitive
to these hyperparameters over reasonably large range of values. Note in particular that infrequent
communications with the posterior server (up to once every 60 iterations in the experiment) did not
significantly deteriorate the learning process at all. In fact, the related SMS algorithm (Xu et al.,
2014) effectively involves communications with the master once every thousands of iterations.

Finally, Figure 7 shows behaviour as Nworker is varied. We see that increasing the number of
workers improves performance. In particular, distributed learning with 8 to 12 workers performed
significantly better than the corresponding method with a single worker. This is possibly due to
more effective use of computational resources, or better exploration of the learning landscape due
to more varied workers, similar to the effect observed by Zhang et al. (2015). Beyond 12 workers
performance decreases, possibly due to smaller number of data items per worker so the variational
approximation is more severe.

In Figure 7 we also compared against Adam (Kingma and Ba, 2015), a non-distributed SGD
algorithm where a single worker has access to the whole dataset. With the same initialisation as our
method, we see that Adam performed significantly worse, although with an alternative initialisation
(Glorot and Bengio, 2010) Adam was able to converge faster to a better local mode. We expect
that with further exploration of initialisation schemes our method can be further improved. It is
worthwhile emphasising that our method works in situations where data is distributed across a
cluster with no worker having access to the whole dataset. This is inherently a harder learning
problem than one where each worker has access to the whole dataset, so it is not surprising for our
method to perform worse, and it is encouraging for our method to achieve close to start-of-the-art
performance efficiently.
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Figure 7: Learning curves as Nworker is valued in range {1, 2, 4, 8, 12, 16}, plotted against number
of epochs (left) and wall-clock time (right). Colours correspond to different values, with blue being
lower values and red being higher. Each thick curve is obtained by averaging 10 runs (thin lines).
An epoch corresponds to 600 SNEP inner loop iterations. As comparison, we also plot learning
curves for Adam with two different initialisations: N (0, 1) matching the initialisation used for our
method and Xavier initialisation (Glorot and Bengio, 2010).

7.3 CIFAR-10, Convolutional Network

We also experimented with distributed Bayesian learning of convolutional neural networks, applying
these to the CIFAR-10 dataset (Krizhevsky, 2009) which consists of 50000 training instances and
10000 test instances from 10 classes, each instance being a 32x32 colour natural image. The
network used is the one described in Alex Krizhesky’s CIFAR tutorial4 and consists of 8 layers:
a first convolutional layer followed by max-pooling and local response normalization, a second
convolutional layer also followed by max-pooling and local response normalization, and a third
convolutional layer followed by a fully connected layer.

For the posterior server, we used the following settings: Nworker = 8, Nsync = 10, Nouter = 10,
Ninit = 2000, mini-batch size 100, weights initialised withN (0, 0.01) draws, and SNEP learning rate
and SGLD step sizes of 0.001. Learning curves for 10 runs are shown in Figure 8, along with learning
curve for a run of Adam. The learning curves for the distributed phase are based on a running
average of the approximated posterior mean, using Polyak averaging (Polyak and Juditsky, 1992)
in the natural parameterisation; we found that averaging in the mean parameterisation produced
the same results. Averaging produced more stable and slightly better results. The posterior server
produced comparable but slightly worse results than Adam, in spite of the distributed data learning
problem being harder. We did not investigate improving performance by building in invariances
using data perturbations or having multiple learning phases with different learning rates.

We also investigated using the approximate posterior samples obtained at the workers to form
predictive probabilities, averaging these over samples and workers. Figure 9 shows a learning curve

4https://code.google.com/p/cuda-convnet/wiki/Methodology
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Figure 8: Learning curves for 10 runs of the posterior server (multi-coloured) and a run of Adam
(red). The initial one-worker and distributed phases are separated by a gap.

in comparison with using the approximate posterior mean. This improved the test accuracy slightly.

8 Discussion

We have proposed a novel alternative to expectation propagation called stochastic natural-gradient
expectation propagation (SNEP). SNEP is demonstrably convergent, even when using Monte Carlo
estimates of the moments/mean parameters of tilted distributions. Experimentally, we find that
SNEP converges more stably, particularly when Monte Carlo noise is high, although convergence
is slower than EP. In future, it would be interesting to develop novel convergent alternatives to EP
with faster convergence, and to apply such methods to other settings where Monte Carlo estimates
are used within EP. It would also be interesting to investigate relationships of SNEP to other
black-box variational algorithms.

Using SNEP, we have proposed the posterior server architecture for distributed Bayesian learn-
ing using an asynchronous non-blocking message-passing protocol. The architecture uses a separate
MCMC sampler on each worker, and SNEP to coordinate the samplers across the cluster so that
the target distributions agree on the moments which characterise the base exponential family. In
contrast with typical maximum likelihood parameter server architectures, the posterior server al-
lows each worker to learn separate variational parameters, and as a result requires less frequent
synchronisation across the cluster. We believe that this insight can allow for significant advances
to distributed learning, although more work is still needed to make this reality.

We applied SNEP and the posterior server to distributed Bayesian learning of both fully-
connected and convolutional neural networks, where we showed performance on par with a state-
of-the-art non-distributed optimisation algorithm. While our learning setting with disjoint subsets
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Figure 9: Learning curves for the posterior server, obtained by either a running average of the
approximate posterior mean, or by averaging predictive probabilities over samples obtained by
worker MCMC samplers. The averaging was started after about 15 epochs.

of data on different workers is harder, so that our current results are encouraging, it is still not
satisfying that we did not produce better than state-of-the-art performance when using more com-
putational resources. We believe that further explorations of learning regimes and hyperparameters,
as well as of larger datasets, is called for, and will ultimately demonstrate the utility of a distributed
Bayesian learning approach.
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