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1 Introduction

Accurate early seizure detection is key to building ef-
fective devices to treat epilepsy. Intracranial electroen-
cephalography (iEEG) provides a signal rich enough to
both detect and predict epileptic seizures online when
coupled with efficient computational algorithms. As
part of a hackathon, graduate students of the Gatsby
Computational Neuroscience unit (UCL, London) took
part in the seizure Detection Challenge [1] hosted by
the machine learning competition organizer Kaggle.
We ranked 9/205 and here describe the method we
used. Furthermore, we provide a more in depth anal-
ysis of our solution based on a set of experiments we
carried out after the competition.

In this project, we applied machine learning algorithms
to detect seizure occurrence using training datasets
collected from both dog and human subjects with
naturally occurring epilepsy. Specifically, we aimed
to classify small iEEG segments as ictal or interictal
events, and further, assess whether the ictal segments
occurred early into the seizure.

2 Data and Task

Data

Intracranial EEG data analyzed for this study was
provided by the UPenn - Mayo Clinic Seizure Detec-
tion Challenge on kaggle.com, sponsored by the Amer-
ican Epilepsy Society, and the data is available via the
NIH-sponsored International Epilepsy Electrophysiol-
ogy Portal (ieeg.org).

The data consisted in 1s long multi-channel intra-
cranial EEG recordings (segments) from 4 dogs and
8 human patients. Each patient had a fixed number of
implanted electrodes from which signal was recorded
(Nchannel) at a fixed sampling rate fs. No information
was given about the localization of the electrodes.

Labels

Training data was manually classified as ictal or in-
terictal. Ictal segments belonged to episodes lasting
multiple seconds. For those ictal segments, time since
episode onset was given. A segment was labeled early
if its time since onset was below 15s, with onset also
manually determined by human experts.

Classification Tasks

The task was to answer the following questions for each
test segment:

• is it a seizure segment?
• is it an early seizure segment? (early being defined

as time from onset of seizure episode below 15sec.)

3 Method

We proceeded in 3 steps from the raw signal to the clas-
sification output: (1) preprocessing, (2) feature extrac-
tion, (3) classification. Our approach follows closely
that of [4].

3.1 Preprocessing

Signal was downsampled to the divisor of the initial
sampling rate fs the closest to the target sampling
rate f targets . This downsampling also low pass filters
the signal. The aim was to reduce dimensionality to
speedup feature extraction with minimal loss of in-
formation. Electrical noise (United States) was then
removed using a band stop filter.

Downsampling

We downsampled each signal by integer factor k =
bfs/f targets c.



Name Value
Downsampling

Target sampling rate f targets 400Hz
Electrical noise removal

band cutoff
[
fBPlow , f

BP
high

]
[59Hz, 61Hz]

width of filter band wBP 3Hz
attenuation in band ρBP 60dB

Low pass filtering
cutoff fLPc 400Hz

width of filter wLP 30Hz
attenuation in band ρLP 60dB

Table 1: Preprocessing Parameters

Bandpass filtering

Electrical noise was removed using a kaiser filter
with following parameterization: cutoff frequencies :[
fBPlow , f

BP
high

]
, width: wBP , attenuation in band: ρBP .

Low pass filtering

Finally a kaiser low pass filter was applied with the
following parameterization: cutoff: fLPc , width: wLP ,
attenuation: ρLP

3.2 Feature extraction

The aim of feature extraction is to obtain a set of pa-
rameters (feature vectors) which summarize the task-
relevant statistics of the iEEG data. These feature
vectors can then be used for classification, allowing to
identify data segments believed to have originated dur-
ing different brain regimes. In our case, these regimes
correspond to the ictal and interictal periods.

We used several features based on single-channel and
multichannel measures. Single-channel measures are
motivated from the observation that marginally, sta-
tionary statistics of the signal coming from a single
channel vary within different brain states. Multiple-
channel measures focus on capturing interdepen-
dence variations between channels as state conditions
change.

In our final solution, a combination (stack) of these
type of features was used and fed the classifier.

3.2.1 Single-channel feature (univariate)

• Spectral energy (SE)

Rationale: energy content in different frequency bands
changes between interictal and ictal periods.

Name Value
Spectral Energy

max frequency fmax 100Hz
number of bands Nbands 40

Vector autoregressive model
lag τ 2

Table 2: Features Parameters

Method: the spectral energy of the signal - the squared
modulus of the signal’s Fourier transform-, was com-
puted. Energy below fmax was averaged into Nbands
contiguous bands of spectral width bfmax/Nbandsc

3.2.2 Multiple-channel features (bivariate
and multivariate)

• Phase Locking Value (PLV)[2]

Rationale: signals between channels become more syn-
chronized during seizures. Phase Locking Value quan-
tifies locking between the phases of the signals from
two distinct electrodes.

Method: first, for each channel i, we extract the in-
stantaneous phase φai (t) of the analytical signal xai (t)
of the time series xi(t).
Then, for each pair (i, j) of channels, we compute the
modulus of the time averaged phase difference mapped
onto the unit circle

PLVij =
∣∣∣ 1T ∑t e

i(φa
i (t)−φ

a
j (t))

∣∣∣
• Vector autoregressive (VAR[τ ]) models [3]

Rationale: signals from all channels become more syn-
chronized and structured during seizures, being well
described by a time-coupled multivariate linear sys-
tem. This feature is therefore good for seizure detec-
tion.

Method: the signal was assumed to be generated from
a vector autoregressive model

xt =
∑τ
k=1Akxt−k + εt, where ε ∼ N (0, Q)

In this model, the ithchannel at time t depends on
all the other channels withing [t − τ, t − 1] through
matrices {Ak}k∈[t−τ,t−1]. Once the model was fitted
to the data, the learned parameters [A1, A2, ..., Aτ , Q]
were taken as features.

Additional note: Relations between AR, VAR
and SE features

AR, VAR and SE features are 2nd order methods.
They can all be seen as constructed from auto or cross
correlations of the iEEG time series in the following
way



• Spectral energy is related to auto-correlation un-
der stationary assumptions through the Wiener-
Khinchin Theorem which states that the spectral
density of a stationary process is equal the the
Fourier transform of its autocorrelation function.

• AR[τ ] models of various lag τ parameterize spec-
tral densities which richer expressive power as τ
is increased. Parameter estimation through Yule-
Walker equations shows that estimated parame-
ters are linear functions of up to τ -lagged auto-
correlations. Parameter estimation (residual vari-
ance excluded) is scale invariant.

• Parameter estimation in VAR[τ ] model amounts
to a linear combination of auto and cross correla-
tion up to lag τ

In summary, AR fits are impoverished representations
of the single channel spectrum (through its parame-
terization). VAR fits also impoverish the individual
channel spectral density representation but, relative
to SE features contain additional cross channel infor-
mation.

3.3 Classification

Different classifiers were trained individually for each
subject.

3.3.1 Random forest classifier

We used a Random forest classifier, parame-
terized by tree width (with Ntrees number of
trees). We used the scikit-learn implementation
RandomForestClassifier (version 0.14.1). The rest
of parameters were set to their default value.

Name Value
Random forest

number of trees Ntrees 100

Metrics

We evaluate our classifiers using the Area Under the
ROC Curve (AUC) as a metric. We report mean and
standard deviation of the AUC score for each classifier.

4 Results
In order to get a better understanding of both the
dataset and our algorithm, we ran a set of experiments
beyond the reproduction of the averaged score of the
kaggle competition.

Experiment 1: Reproducing the Kaggle results

We trained and tested our algorithm on the same
dataset as the one used in the competition. However,

Features AUCseizure AUCearly

VAR(1) 0.939±0.072 0.893±0.093
VAR(2) 0.940±0.081 0.881±0.094
VAR(3) 0.916±0.117 0.864±0.119
VAR(4) 0.917±0.111 0.870±0.113
VAR(7) 0.909±0.101 0.859±0.086

SE 0.938±0.086 0.865±0.156
PLV 0.848±0.115 0.756±0.126

VAR(2)+PLV+SE 0.945±0.084 0.896±0.116
VAR(2)+SE 0.938±0.094 0.896±0.112

VAR(1)+VAR(2)+PLV+SE 0.949±0.073 0.904±0.106

Table 3: Mean performance and standard devia-
tion across patients for both the seizure and early
seizure detection tasks. Each row indicates the fea-
tures/feature combinations tested.

we report the scores per task and per subject for each
feature combination evaluated, instead of a unique ag-
gregated score. The results are summarized in table 3
and figure 1.

Experiment 2: Classification performance as a
function of latency

We reversed the training and test datasets in order
to analyze the prediction confidence as a function of
latency. The rationale here is to assess the extend
to which different features pick up early signatures of
seizures. The results of this analysis are exemplified
in figure 2, which correspond to a single patient.

5 Discussion

We observe that features extracted with VAR models
beyond 2nd order do not improve classification per-
formance, as can be seen in figure 1, top and bot-
tom plots. A combination of SE+VAR+PLV features
achieves the best results in both tasks. Using this
method, we ranked among the top 10 in the kaggle
seizure detection competition [1].

We observe that iEEG data segments are more confi-
dently classified as ictal as seizure progresses (see fig-
ure 2, left plot). Low confidence predictions in the
first 10 seconds reveal the increasing difficulty of the
detection task for segments closest to seizure onset.
We also note that in both tasks, PLV features per-
form poorly regardless of latency. As expected (fig
2, right plot), classifier has lower confidence in telling
apart early vs late for earliest segments and close to
early/late boundary at 15s.



Figure 1: Box plot summarizing classification perfor-
mance across all subjects. Top figure, seizure detection
task. Bottom figure, early seizure detection task.

Figure 2: Estimated probabilities for seizure (left) and
early seizure (right) as a function of seizure latency, for
an example human patient. Thin lines: seizure pre-
diction for individual ictal epochs. Thick lines: mean
seizure prediction. Dashed lines: mean seizure predic-
tion for interictal segments.

6 Software
All mathematical analyses were executed using the fol-
lowing Python libraries

• statsmodels (Vector Autoregressive model fitting)
• scikit.learn [5] (svm, random forest, cross-

validation)
• scipy.signal (signal filtering, downsampling)
• numpy (fourier transform)
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Features AUCseizure AUCearly AUCtot

VAR(1) 0.952 0.893 0.922
VAR(2) 0.951 0.895 0.923
VAR(3) 0.947 0.895 0.921
VAR(4) 0.943 0.894 0.919
VAR(7) 0.939 0.892 0.916

SE 0.942 0.898 0.920
PLV 0.931 0.884 0.908

VAR(2)+PLV+SE 0.935 0.891 0.913
VAR(2)+SE 0.937 0.896 0.917

VAR(1)+VAR(2)+SE 0.939 0.900 0.919
VAR(1)+VAR(2)+PLV+SE 0.941 0.903 0.922
VAR(2)+VAR(4)+PLV+SE 0.942 0.905 0.924

Table 4: Kaggle competition results

Appendix

A. Reproduction of Kaggle competition results

In order to reproduce the kaggle competition re-
sults, we computed the AUC for the predicted scores
(Pseizure, Pearly) of all patients together. We chose
the measure AUCtot = 1

2 (AUCseizure + AUCearly) to
report overall performance, as used in the competi-
tion. The results are summarized in Table 4. We
provide the overall scores for all the different fea-
ture combinations tested in this report, including the
combination of features we used for the competition,
V AR(2) +PLV +SE. Note that, due to lack of time,
we were unable to reproduce exactly the score obtained
in the competition, as we lost the details of the exact
parameters we used. We expect to be able to obtain
an even better performance once we carry out a more
rigorous parameter search.

B. Summary of other methods

In this section we provide a brief summary of the meth-
ods used by other kaggle participants, only for compar-
ison purposes.

Feature extraction

1st position (Michael Hills, winner)

Features were kept or discarded based on their cross-
validation performance. Combinations of multiple fea-
tures eventually proved to provide a better classifica-
tion score once the right features were combined.

Three sources of features are used to form the whole
feature-set:

1. log10(FFT magnitudes) in the low frequency
range 1-47 Hz.

This frequency range offered the best result com-
pared to other frequency ranges. These fea-
tures alone, combined with the selected classifier
(Random Forest), offered already excellent per-
formance. The resulting FFT magnitudes matrix
has dimensions #channels ∗ 47.

2. Correlation coefficients, CC, between iEEG chan-
nels.
The FFT magnitudes matrix is first normalized
across frequencies, column by column, subtracting
the mean and dividing by the std. The correlation
coefficient CC matrix (#channels ∗ #channels) is
then calculated for this normalized matrix, taking
the upper triangular bit for the features.
The same is performed using the time-series data,
by computing the CC matrix from the origi-
nal iEEG data matrix, which has dimensions
#channels ∗ time.

3. Eigenvalues .
Eigenvalues are computed from the CC matrices,
from both time and frequency domains. All real
eigenvalues and the magnitude of the complex
eigenvalues are taken as features. These values
are then sorted by magnitude.

Classifier

1st position (Michael Hills, winner)

The chosen method for classification was selected with
the help of the scikit-learn python machine learning
library. Random Forest offered the best performance.


