We first prove equation (4) of the main text for a general nonstationary hazard function \(h(\tau, t) \).

Proposition S.1 For a renewal process with nonstationary hazard function \(h(\tau, t) \), the waiting time \(\tau \) given that the last event occurred at time \(t_{\text{prev}} \) is given by

\[
g(\tau | t_{\text{prev}}) = h(\tau, t_{\text{prev}} + \tau) \exp \left(-\int_0^\tau h(u, t_{\text{prev}} + u) du \right)
\]

(1)

Proof. By definition (see equation (2) in the main text),

\[
h(\tau, t_{\text{prev}} + \tau) = \frac{g(\tau | t_{\text{prev}})}{1 - \int_0^\tau g(u | t_{\text{prev}}) du}
\]

(2)

Let \(y = 1 - \int_0^\tau g(u | t_{\text{prev}}) du \). It follows that

\[
h(\tau, t_{\text{prev}} + \tau) = \frac{-dy/d\tau}{y}, \text{ so that}
\]

\[
y = \exp \left(-\int_0^\tau h(u, t_{\text{prev}} + u) du \right)
\]

(4)

Substituting back for \(y \) and differentiating w.r.t. \(\tau \), we get equation (1). \(\square \)

We now prove proposition 2 from the main text.

Proposition 2 For any \(\Omega \geq \max_{t, \tau} h(\tau)\lambda(t) \), \(F \) is a sample from a modulated renewal process with hazard \(h(\cdot) \) and modulating intensity \(\lambda(\cdot) \).

Proof. We need to show that \(F_i - F_{i-1} \sim g \).
Denote by \(E_i^* \) the restriction of \(E \) to the interval \((F_{i-1}, F_i) \), not including boundaries. Note that

\[
P(F_i, E_i^* | F_{i-1}) = \left(\prod_{e \in E_i^*} 1 - \frac{\lambda(e)h(e - F_{i-1})}{\Omega} \right) \frac{\lambda(F_i)h(F_i - F_{i-1})}{\Omega} \)

(5)
Defining \(n = |E_i^*| \) and \(t_0 = F_{i-1} \), we have

\[
P(F_i, n|F_{i-1}) = \frac{\lambda(F_i)h(F_i - F_{i-1})}{\Omega}
\]

\[
\int_{F_{i-1}}^{F_i} \int_{t_1}^{F_i} \ldots \int_{t_{n-1}}^{F_i} dt_1 dt_2 \ldots dt_n \left(\prod_{j=1}^{n} \Omega \exp -\Omega(t_j - t_{j-1}) \right) \left(\prod_{j=1}^{n} \left(1 - \frac{\lambda(t_j)h(t_j - F_{i-1})}{\Omega} \right) \right) (\Omega \exp -(\Omega(F_i - t_n)))
\]

\[
= \lambda(F_i)h(F_i - F_{i-1})\exp (-\Omega(F_i - F_{i-1})) \int_{F_{i-1}}^{F_i} \int_{t_1}^{F_i} \ldots \int_{t_n}^{F_i} dt_1 dt_2 \ldots dt_n \left(\prod_{j=1}^{n} (\Omega - \lambda(t_j)h(t_j - F_{i-1})) \right)
\]

\[
= \lambda(F_i)h(F_i - F_{i-1})\exp (-\Omega(F_i - F_{i-1})) \frac{1}{n!} \left(\int_{F_{i-1}}^{F_i} dt (\Omega - \lambda(t)h(t - F_{i-1})) \right)^n
\]

(6)

Marginalizing out \(n \), we then have

\[
P(F_i|F_{i-1}) = \lambda(t)h(F_i - F_{i-1})\exp (-\Omega(F_i - F_{i-1})) \left(\sum_{n=0}^{\infty} \frac{1}{n!} \left(\int_{F_{i-1}}^{F_i} dt (\Omega - \lambda(t)h(t - F_{i-1})) \right)^n \right)
\]

\[
= \lambda(F_i)h(F_i - F_{i-1}) \exp \left(-\int_{F_{i-1}}^{F_i} \lambda(t)h(t - F_{i-1})dt \right)
\]

(8)

Comparing equation (4) of the main text, we have the desired result.