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Abstract

Explaining away has mostly been considered in terms of inference of
states in belief networks. We show how it can also arise in a Bayesian
context in inference about the weights governing relationships such as
those between stimuli and reinforcers in conditioning experiments such
as backward blocking. We show how explaining away in weight space
can be accounted for using an extension of a Kalman filter model; pro-
vide a new approximate way of looking at the Kalman gain matrix as a
whitener for the correlation matrix of the observation process; suggest
a network implementation of this whitener using an architecture due to
Goodall; and show that the resulting model exhibits backward blocking.

1 Introduction

The phenomenon of explaining away is commonplace in inference in belief networks. In
this, an explanation (a setting of activities of unobserved units) that is consistent with cer-
tain observations is accorded a low posterior probability if another explanation for the same
observations is favoured either by the prior or by other observations. Explaining away is
typically realized by recurrent inference procedures, such as mean field inference (see Jor-
dan, 1998).

However, explaining away is not only important in the space of on-line explanations for
data; it is also important in the space of weights. This is a very general problem that we
illustrate using a phenomenon from animal conditioning called backward blocking (Shanks,
1985; Miller & Matute, 1996). Conditioning paradigms are important because they provide
a window onto processes of successful natural inference, which are frequently statistically
normative. Backwards blocking poses a very different problem from standard explaining
away, and rather complex theories have been advanced to account for it (eg Wagner &
Brandon, 1989). We treat it as a case for Kalman filtering, and suggest a novel network
model for Kalman filtering to solve it. Consider three different conditioning paradigms
associated with backwards blocking:

name set 1 set 2 test
forward L � R L,S � R S ���

backward L,S � R L � R S ���

sharing L,S � R ——– S � R/2

These paradigms involve one or two sets of multiple learning trials (set 1 and set 2), in
which stimuli (a light, L, and/or a sound, S) are conditioned to a reward (R), followed by a



test phase, in which the strength of association between the sound S and reward is assessed.
This is found to be weak ( � ) in forward and backward blocking, but stronger (R/2) in the
sharing paradigm. The effect that concerns this paper is occurring during the second set of
trials during backward blocking in which the association between the sound and the reward
is weakened (compared with sharing), even though the sound is not presented during these
trials. The apparent association between the sound and the reward established in the first
set of trials is explained away in the second set of trials.

The standard explanation for this (Wagner’s SOP model, see Wagner & Brandon, 1989)
suggests that during the first set of trials, the light comes to predict the presence of the
sound; and that during the second set of trials, the fact that the sound is expected (on the
basis of the light, represented by the activation of ‘opponent’ sound units) but not presented,
weakens the association between the sound and the reward. Not only does this suggestion
lack a statistical basis, but also its network implementation requires that the activation of the
opponent sound units makes weaker the weights from the standard sound units to reward.
It is unclear how this could work.

In this paper, we first extend the Kalman filter based conditioning theory of Sutton (1992)
to the case of backward blocking. Next, we show the close relationship between the key
quantity for a Kalman filter — namely the covariance matrix of uncertainty about the re-
lationship between the stimuli and the reward — and the symmetric whitening matrix for
the stimuli. Then we show how the Goodall algorithm for whitening (Goodall 1960; Atick
& Redlich, 1993) makes for an appropriate network implementation for weight updates
based on the Kalman filter. The final algorithm is a motivated mixture of unsupervised and
reinforcement (or, equivalently in this case, supervised) learning. Last, we demonstrate
backward blocking in the full model.

2 The Kalman filter and classical conditioning

Sutton (1992) suggested that one can understand classical conditioning in terms of nor-
mative statistical inference. The idea is that on trial � there is a set of true weights ���
mediating the relationship between the presentation of stimuli ��� and the amount of re-
ward ��� that is delivered, where

� �	� � ��
 � � �� � (1)

and
 ������� ��������� is zero-mean Gaussian noise, independent from one trial to the next.1

For the cases above, ��� ���! #"� �  %$�'& might have two dimensions, one each for light and
sound, taking on values that are binary, representing the presence and absence of the stim-
uli. Similarly, � �(�)�!*+"� � *,$� & also has two dimensions. Crucially, to allow for the possi-
bility (realized in most conditioning experiments) that the true weights might change, the
model includes a diffusion term

� �.-0/1� � � ��2 � (2)

where
2 � �3��� ���54'��6�� is also Gaussian. The task for the animal is to take obser-

vations of the stimuli 78� �%9 and rewards 7�� �%9 and infer a distribution over � � . Pro-
vided that the initial uncertainty can be captured as �	:;�<��� �=�?>@:�� for some covari-
ance matrix >A: , inference takes the form of a standard recursive Kalman filter, for whichB � � �DC � /.EFEGE � �IHD/ & �J���8K� � ��> � � and

K�L�.-�/ � K�L� � >A� 
 �D�
� �M
 > �M
 � � � � � � �8�ONPK�L� 
 �D� & (3)

> �.-�/1� > � � 4 � 6QN >A� 
 �D�I�D� 
 >A�
�D� 
 >A� 
 �D� � � � (4)

1For vectors R=SUT�S matrix V , RXW?T(Y�Z\[^] [!_5[ SURXW`VaW�T(Y�Z\[ bc] [edf[ b�_Ub S matrix g RhT#i [ b Y\] [j_kb .



If >A���)6 , then the update for the mean can be seen as a standard delta rule (Widrow &
Stearns, 1985; Rescorla & Wagner, 1972), involving the prediction error (or innovation)� � � � � N K� � 
 � � . Note the familiar, but at first sight counterintuitive, result that the
update for the covariance matrix does not depend on the innovation or the observed � � .2

In backward blocking, in the first set of trials, the off-diagonal terms of the covariance
matrix >A� become negative. This can either be seen from the form of the update equation
for the covariance matrix (since � � � ��� � � & ), or, more intuitively, from the fact that these
trials imply a constraint only on * "� � *,$� , therefore forcing * $� and *+"� to be negatively
correlated. The consequence of this negative correlation in the second set of trials is that
the S component of > � 
 �D� � >A� 
 ��� �5� & is less than � , and so, via equation 3, K*X$� reduces.
This is exactly the result in backward blocking. Another way of looking at this is in terms
of explaining away in weight space. From the first set of trials, the animal infers that
*+"� � *,$� ���	� � ; from the second, that the prediction owes to * "� rather than *,$� , and
so the old value * $� �
���� is explained away by *,"� . Sutton (1992) actually suggested the
approximation of forcing the off-diagonal components of the covariance matrix > � to be
� , which, of course, prevents the system from accounting for backward blocking.

We seek a network account of explaining away in the space of weights by implementing an
approximate form of Kalman filtering.

3 Whitening and the Kalman filter

In conventional applications of the Kalman filter, ��� would typically be constant. That
is, the hidden state ( �	� ) would be observed through a fixed observation process. In cases
such as classical conditioning, though, this is not true – we are interested in the case that � �
changes over time, possibly even in a random (though fully observable) way. The plan for
this section is to derive an approximate relationship between the average covariance matrix
over the weights �> and a whitening matrix for the stimulus inputs. In the next section, we
consider an implementation of a particular whitening algorithm as an unsupervised way of
estimating the covariance matrix for the Kalman filter and show how to use it to learn the
weights K�L� appropriately.

Consider the case that ��� are random, with correlation matrix �!�'��� �
� , and consider the
mean covariance matrix �> for the Kalman filter, averaging across the variation in � . Make
the approximation that � �> 
 �'� 
 �>

� 
 �> 
 � � � ��� � ���> 
 �'� 
 �>���!� 
 �> 
 � � � � �
which is less drastic than it might first appear since the denominator is just a scalar. Then,
we can solve for the average of the asymptotic value of �> in the equation for the update of
the Kalman filter as �> � �>�� 6 (5)

Thus �> is a whitening filter for the correlation matrix � of the inputs 78� 9 . Symmetric
whitening filters ( �> must be symmetric) are generally unique (Atick & Redlich, 1993).
This result is very different from the standard relationship between Kalman filtering and
whitening. The standard Kalman filter is a whitening filter for the innovations process� �J� � � N K� � 
 � � , ie as extracting all the systematic variation into � � , leaving only
random variation due to the observation noise and the diffusion process. Equation 5 is an
additional level of whitening, saying that one can look at the long-run average covariance

2Note also the use of the alternative form of the Kalman filter, in which we perform observa-
tion/conditioning followed by drift, rather than drift followed by observation/conditioning.



A B

10
−2

10
−1

10
00

2

4

6

8

10

12

ν

on
/o

ff 
di

ag
on

al
 c

om
po

ne
nt

on diagonal component
off diagonal component

�

�������

�

	




�

�

Figure 1: Whitening. A) The lower curve shows the average maximum off-diagonal element of������ �� �
as a function of � . The upper curve shows the average maximum diagonal element of the

same matrix. The off-diagonal components are around an order of magnitude smaller than the on-
diagonal components, even in the difficult regime where � is near � , and thus the matrix

�
is nearly

singular. B) Network model for Kalman filtering. Identity feedforward weights � map inputs � to a
recurrent network ������� whose output is used to make predictions. Learning of the recurrent weights�

is based on Goodall’s (1960) rule; learning of the prediction weights is based on the delta rule,
only using ����� � to make the predictions and ����!"� to change the weights.

matrix of the uncertainty in �	� as whitening the input process �0� . This is inherently
unsupervised, in that whitening takes place without any reference to the observed rewards
(or even the innovation).

Given the approximation, we tested whether �> really whitens � by by generating � � from a
Gaussian distribution, with mean ��� � � & and variance #D�`6 , calculating the long-run average
value of �> , and assessing whether $ � �> � �> is white. There is no unique measure for
the deviation of $ from being diagonal; as an example, figure 1A shows as a function of
# the largest on- and off-diagonal elements of $ . The figure shows that the off-diagonal
components are comparatively very small, even when # is very small, for which � has
an eigenvalue very near to � making the whitening matrix nearly undefined. Equally, in
this case, > � tends to have very large values, since, looking at equation 4, the growth in
uncertainty coming from 4�� 6 is not balanced by any observation in the direction ��� �8N � &
that is orthogonal to ��� � � & .
Of course, only the long-run average covariance matrix �> whitens � . We make the further
approximation of using an on-line estimate of the symmetric whitening matrix as the on-
line estimate of the covariance of the weights >1� .

4 A network model

Figure 1B shows a network model in which prediction weights K� � adapt in a manner that
is appropriately sensitive to a learned, on-line, estimate of the whitening matrix. The net-
work has two components, a mapping from input � to output % ��& & , via recurrent feedback
weights ' (the Goodall (1960) whitening filter), and a mapping from % , through a set of
prediction weights K� to an estimate of the reward. The second part of the network is most
straightforward. The feedforward weights from � to % are just the identity matrix 6 . There-
fore, the initial value in the hidden layer in response to stimulus ��� is % � � & � �D� , and so
the prediction of reward is just K� 
 % � � & � K� 
 � � .

The first part of the network is a straightforward implementation of Goodall’s whitening
filter (Goodall, 1960; Atick & Redlich, 1993). The recurrent dynamics in the % -layer are
taken as being purely linear. Therefore, in response to input � (propagated through the



identity feedforward weights)

���% � N % � � � ' %
and so % � � & � � 60N ' & H'/ � , provided that the inverse exists. Goodall’s algorithm changes
the recurrent weights ' using local, anti-Hebbian learning, according to

� ' � N1� % � 6QN ' E (6)

This rule stabilizes on average when 6 � � 6 N ' & HD/ � � � 6fN ' & H'/ � , that is when � 6 N ' & H'/
is a whitening filter for the correlation matrix � of the inputs. If ' is symmetric, which can
be guaranteed by making ' ��� initially (Atick & Redlich, 1993), then, by convergence,
we have � 6@N ' & HD/ � �> and, given input � � to the network�>@� �L� � 6QN ' & HD/ � �L� % ��� � &
Therefore, we can implement a learning rule for the prediction weights akin to the Kalman
filter (equation 3) using

� K� � � % ��� � & � � � N K� ��
 % �D� � & & E (7)

This is the standard delta rule, except that the predictions are based on %f� � � & � �D� ,
whereas the weight changes are based on %�� � � & � �>@�D� . The learning rule gets wrong the
absolute magnitude of the weight changes (since it lacks the ��� 
 >A� 
 �D� � ��� term on the
denominator – but it gets right the direction of the changes.

5 Results

Figure 2 shows the result of learning in backward blocking. In association with �.� � � , first
stimulus �D� �P��� � � & was presented for  � trials, then stimulus �0� � ��� ��� & was presented
for a further  � trials. Figure 2A shows the development of the weights K* "� (solid) and
K*,$� (dashed). During the first set of trials, these grow towards � E � ; during the second set,

they differentiate sharply with the weight associated with the light growing towards � , and
that with the sound, which is explained away, growing towards � . Figure 2B shows the
development of two terms in the estimated covariance matrix. The negative covariance
between light and sound is evident, and causes the sharp changes in the weights on the  � st
trial. Figure 2C & D show the values using the exact Kalman filter, showing qualitatively
similar behavior.

The increases in the magnitudes of > "�"� and > "=$� during the first stage of backwards block-
ing come from the lack of information in the input about *X"� N *,$� , despite its continual
diffusion (from equation 2). Thus backwards blocking is a pathological case. Nevertheless,
the on-line method for estimating > captures the correct behavior. Figures 2 E-H show a
non-pathological case with observation noise added. The estimates from the model closely
match those of the exact Kalman filter, a result that is is also true for other non-pathological
cases.

6 Discussion

We have shown how the standard Kalman filter produces explaining away in the space of
weights, and suggested and proved efficacious a natural network model for implementing
the Kalman filter. The model mixes unsupervised learning of a whitener for the obser-
vation process (ie the � � of equation 1), providing the covariance matrix governing the
uncertainty in the weights, with supervised (or equivalently reinforcement) learning of the
mean values of the weights. Unsupervised learning is reasonable since the evolution of the
covariance matrix of the weights is independent of the innovations. The basic result is an
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Figure 2: Backward blocking in the full model. A) The development of
HI over J � trials with

�LKaY �NM�SOM � and J � with �LKaY �NM�S�� � . B) The development of the estimated covariance of the
weight for the light

�QPRPK and cross-covariance between the light and the sound
�SPRTK . The learning

rates in equations 6 and 7 were both �RU�MVJ W .C & D) The development of
HX and

�
from the exact

Kalman filter with parameters ( Y YZU �\[ and ](Y ��U ^ W ). E) The development of
HI as in A) except

with multiplicative Gaussian noise added (ie noise with standard deviation �RU ^ W is added only to the
representations of stimuli that are present). F & G) The comparison of

HI in the model (solid line) and
in the exact Kalman filter (dashed line), using the same parameters for the Kalman filter as in C) and
D). H) A comparison of the true covariance,

� K (dashed line), with the rescaled estimate, � �`_ � �OaLb
(solid line).

approximation, but one that has been shown to match results quite closely. Further work is
needed to understand how to set the parameters of the Goodall learning rule to match 4��
and ��� exactly.

Hinton (personal communication) has suggested an alternative interpretation of Kalman
filtering based on a heteroassociative novelty filter. Here, the idea is to use the recurrent
network ' only once, rather than to equilibrium, with (as for our model) %f� � � & � �D� , the
prediction c � K�L� 
 %D� � � & , %D� ��� & � ' � 
 �D� , and

� K� � � % �D��� & � � � N K� �M
 % �D� � & & E
This gives ' � a similar role to > � in learning K� � . For the novelty filter,

� ' � � N ' � 
 �D�I�D� 
 ' �
C ' �M
 � �0C � �

which makes the network a perfect heteroassociator between ��� and �8� . If we compare
the update for 'X� to that for >A� (equation 4), we can see that it amounts approximately
to assuming neither observation noise nor drift. Thus, whereas our network model approx-
imates the long-run covariance matrix, the novelty filter approximates the instantaneous
covariance matrix directly, and could clearly be adapted to take account of noise. Unfortu-
nately, there are few quantitatively precise experimental results on backwards blocking, so
it is hard to choose between different possible rules.

There is a further alternative. Sutton (1992) suggested an online way of estimating the
elements of the covariance matrix, observing thatd � � �� � � � � � �D� 
 >A� 
 �D� (8)

and so considered using a standard delta rule to fit the square innovation using a quadratic
input representation e �e #"� & �.� �! %$� & �.�  %"�gf  c$� � � h .3 The weight associated with the last ele-

3Although the i PKkj i TK term was omitted from Sutton’s diagonal approximation to
� K .



ment, ie the bias, should come to be the observation noise �%� ; the weights associated with
the other elements are just the components of >1� . The most critical concern about this is
that it is not obvious how to use the resulting covariance matrix to control learning about the
mean values of the weights. There is also the more theoretical concern that the covariance
matrix should really be independent of the prediction errors, one manifestation of which is
that the occurrence of backward blocking in the model of equation 8 is strongly sensitive
to initial conditions.

Although backward blocking is a robust phenomenon, particularly in human conditioning
experiments (Shanks, 1985), it is not observed in all animal conditioning paradigms. One
possibility for why not is that the anatomical substrate of the cross-modal recurrent network
(the ' weights in the model) is not ubiquitously available. In its absence, % � � & � % � � & �� � in response to an input � � , and so the network will perform like the standard delta or
Rescorla-Wagner (Rescorla & Wagner, 1972) rule.

The Kalman filter is only one part of a more complicated picture for statistically normative
models of conditioning. It makes for a particularly clear example of what is incomplete
about some of our own learning rules (notably Kakade & Dayan, 2000) which suggest that,
at least in some circumstances, learning about the two different stimuli should progress
completely independently. We are presently trying to integrate on-line and learned com-
petitive and additive effects using ideas from mixture models and Kalman filters.
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