
Lossless compression based on
the Sequence Memoizer

Jan Gasthaus† Frank Wood‡ Yee Whye Teh†

† Gatsby Computational Neuroscience Unit, UCL, London, UK
‡ Department of Statistics, Columbia University, New York, USA

Abstract
In this work we describe a sequence compression method based on combining a Bayesian
nonparametric sequence model with entropy encoding. The model, a hierarchy of Pitman-
Yor processes of unbounded depth previously proposed by Wood et al. [2009] in the context
of language modelling, allows modelling of long-range dependencies by allowing condition-
ing contexts of unbounded length. We show that incremental approximate inference can be
performed in this model, thereby allowing it to be used in a text compression setting. The
resulting compressor reliably outperforms several PPM variants on many types of data, but
is particularly effective in compressing data that exhibits power law properties.

1 Introduction
We consider compression of sequences using a predictive model that incrementally estimates
a distribution over what symbol comes next from the preceding sequence of symbols. As our
predictive model we use the sequence memoizer (SM) [Wood et al., 2009], a nonparametric
Bayesian model for sequences of unbounded complexity. This model is combined with an
entropy coder, for instance the arithmetic coder of Witten et al. [1987], to yield a method for
compressing sequence data. The main contribution of this paper is to develop an efficient
approximate incremental inference algorithm for the SM that renders it suitable for use as a
compressor’s predictive model.

At the algorithmic level, the proposed method is somewhat similar to the unbounded
context length variants of the well known PPM and CTW algorithms [Cleary and Teahan,
1997; Willems, 1998]. At a conceptual level, however, our approach is quite different: We
take a Bayesian approach, treating the distributions over next symbols as latent variables
on which we place a hierarchical nonparametric prior, and predicting the next symbol by
averaging over the posterior distribution (conditioned on the sequence observed thus far).
The prediction problem thus essentially becomes an incremental inference problem, where
the posterior distribution is incrementally updated after observing each symbol.

We first present our algorithm in Section 2. The model, its implied prior assumptions,
and the derivation of the algorithm as an approximate inference scheme in the model will

ε

1 | 0

a

0 | 1

ε

1 | 1
ε

1 | 2
ε

2 | 2

a

0 | 1
ab

0 | 1
a

0 | 1
b

1 | 1

ab

0 | 1
abb

1 | 0|
|

s

cπ(u)a

cπ(u)b
cua cub

child link

u

π(u)

(1) (2) (3) (4)
: a a : b ab : b abb : a

a a b a b

a b

Figure 1: Illustration of the tree construction algorithm for the input string abba. Each step
shows the state of the tree after inserting the current context and updating the counts for the
observed symbol. Shown below the context at each node are the counts cua (left) and cub
(right) as produced by the algorithms.

be discussed in Sections 3 and 4. In Section 5 we present state-of-the-art text compression
performances on the Calgary corpus.

2 Algorithm
In this section we will give a complete description of the algorithm (Algorithm 1) for
computing the predictive probability for the next symbol given the sequence of symbols
observed (or decoded) so far and for updating the model after observing the next symbol.
Let us first define the notation that is used throughout the paper. Let Σ denote the set of
symbols (alphabet) over which strings are defined. We will denote strings by bold letters
u,x ∈ Σ?, where the input sequence is always denoted by x. The length of a string u is
denoted by |u|, and the empty string (of length 0) by ε. Further, let σ(u) denote the longest
proper suffix of u (i.e. u with the first symbol removed).

Similar to CTW and PPM, our algorithm maintains information about the already
observed input sequence x1:i in the form of a context tree, where each node corresponds to
some context (i.e. a substring) in x1:i and is associated with a set of adjustable parameters.
Having processed the input up to position i, the algorithm proceeds as follows in order to
predict (and subsequently encode) the next symbol xi+1: 1) the context tree structure is
updated to include the context x1:i; 2) the predictive probabilities P(s|x1:i) are computed
for all s ∈ Σ, and arithmetic coding used to encode xi+1; 3) the parameters of the tree are
updated to account for the new observation xi+1. The function PLUMP/DEPLUMP in
Algorithm 1 performs all of these steps (PLUMP stands for Power Law Unbounded Markov
Prediction; DEPLUMP is the compressor for obvious reasons).

The context tree is essentially a (compressed) suffix tree of the reversed string xi:−1:1,
and can straightforwardly be constructed sequentially as shown in Figure 1. The necessary
update is given in the function INSERTCONTEXTANDRETURNPATH.

Algorithm 1 PLUMP/DEPLUMP
1: procedure PLUMP/DEPLUMP(x)
2: Initialize context tree Tε and counts Sε
3: for i = 0, . . . , |x| − 1 do
4: Tx1:i+1

, (u0, . . . ,uP)← INSERTCONTEXTANDRETURNPATH(Tx1:i
,x1:i)

5: (p−1, . . . , pP)← PATHPROBABILITY(Sx1:i
, (u0, . . . ,uP))

6: Use probabilities pP to encode/decode xi+1

7: Sx1:i+1
← UPDATEPATH (Sx1:i

, (u0, . . . ,uP), (p−1, . . . , pP) ,xi+1)
8: end for
9: end procedure

10: function INSERTCONTEXTANDRETURNPATH(Tx1:i
,x1:i)

11: Traverse tree to find the node xj:k that shares the longest suffix with x1:i.
12: if xj:k is suffix of x1:i+1 then
13: Insert x1:i into the tree as a child of xj:k
14: else
15: Let xl:k be the longest suffix of both x1:i and xj:k.
16: Insert xl:k into the tree in the position of xj:k
17: Make xj:k and x1:i+1 children of xj:k
18: end if
19: return updated tree Tx1:i+1

and traversed path (u0, . . . ,uP) from root to x1:i

20: end function
21: function PATHPROBABILITY(Sx1:i

, (u0, . . . ,uP), s)
22: p−1 ← H(s)
23: for j = 0, . . . , P do
24: for s ∈ Σ do
25: pj(s)← evaluate equation (1) with u = uj and P(s|π(u),Sx1:i

) = pj−1(s)
26: end for
27: end for
28: return (p−1, p0, . . . , pP)
29: end function
30: function UPDATEPATH(Sx1:i

, (u0, . . . ,uP), (p−1, . . . , pP), s = xi+1)
31: for j = P, . . . ,−1 do . Update counts for each context uj on the path, bottom up
32: cujs ← cujs + 1
33: if tujs = 0 then tujs = 1
34: if use probabilistic updates then
35: Increment tujs with probability

duj tuj ·pj−1(s)

cujs−duj tujs+duj tuj ·pj−1(s)

36: end if
37: if tujs unchanged then break
38: end for
39: return updated state Sx1:i+1

40: end function

For each context u in the context tree, the algorithm maintains two sets of counts,
{cus}s∈Σ and {tus}s∈Σ, as well as a scalar parameter du. These counts are initialized to 0 for
all contexts and symbols s. Given these sets of counts for all contexts u ∈ Πx1:i

(which we
will in the following jointly refer to as the state of the model Sx1:i

), the predictive probability
for a symbol s following context u is given by

P(s|u,Sx1:i
) =

{
cus−dutus

cu·
+ dutu·

cu·
P(s|π(u),Sx1:i

) if cu· 6= 0;
P(s|π(u),Sx1:i

) otherwise,
(1)

where cu· =
∑

s∈Σ cus, tu· =
∑

s∈Σ tus, and π(u) is the parent of u in the context tree. At
the root of the tree we have P(s|π(ε),Sx1:i

) = 1/|Σ|.
Given a path (u0, . . . ,uP), the function PATHPROBABILITY computes the probability

of each symbol s in all contexts along the path. While for prediction we are just interested
in the predictive probability vector pP for the full context x1:i at the end of the path, the
other probabilities are needed as input for the parameter update function UPDATEPATH,
which updates the counts in Sx1:i

for all nodes along (u0, . . . ,uP) in light of the observation
xi+1. This function can either make deterministic or probabilistic updates. The motivation
behind both types of updates will be described in section 4. Intuitively, the updates can
be understood in the following way: Every time a new observation is added to the model
counts are incremented for some (random) distance up the tree. This sharing of counts is the
way observations in related contexts reinforce each other.

The discount parameters du are not independent for each context, but rather are functions
of underlying parameters d|u| that depend on the length of the context—this relationship
will be made clear in Section 4. The underlying parameters can either be fixed a priori or
can be initialized to some value and subsequently be updated alongside the counts, e.g. by
taking small steps along the gradient of (1) with respect to d|u| after observing xi+1.

The computational complexity of the described method is O(N2) where N is the length
of the input sequence. For each input symbol we have to perform constant-time computations
along the path from the root to the context. For the i-th symbol, this path is of length i in the
worst case, leading to an overall quadratic complexity. For typical text inputs however, the
paths are much shorter. The space complexity is linear in the length of the input sequence:
Each new observation adds at most two nodes to the tree, and nodes require constant space.

3 Probabilistic Model
Our compressor is derived from an underlying probabilistic model which we call the
sequence memoizer. This is a hierarchical Bayesian nonparametric model composed of
Pitman-Yor processes originally conceived of as a model for languages (sequences of words).
In this section we briefly describe the model and refer the interested reader to [Teh, 2006;
Wood et al., 2009].

The model describes the conditional probability of each symbol s following each context
u using a latent variable Gu(s). Collecting the variables into a vector, Gu = [Gu(s)]s∈Σ is a
probability vector (non-negative entries summing to one), and the full (infinite) set of latent

variables in the model is G = {Gu}u∈Σ∗ . The joint probability of x and G is simply:

P (x,G) = P (G)

|x|−1∏
i=0

Gx1:i
(xi+1) (2)

where the rightmost term is the probability of each symbol conditioned on the sequence thus
far, and P (G) is the prior over the variables. We will describe the prior in the rest of this
section. Taking a Bayesian approach and marginalizing out G, we get a distribution P (x)
with which we can compress x. Section 4 describes how the algorithm in Section 2 is an
approximation of this ideal Bayesian approach.

3.1 Pitman-Yor Process
The Pitman-Yor process (PYP) [Pitman and Yor, 1997], denoted PY(d,H), is a distribution
over probability vectors.1 It is parameterized by a discount parameter d ∈ (0, 1) and a
probability vector H called the base vector. If G ∼ PY(d,H) is a Pitman-Yor distributed
random probability vector, then the base vector is simply its mean E[G(s)] = H(s) while the
discount parameter is related to its variance Var[G(s)] = (1− d)H(s)(1−H(s)), for each
s ∈ Σ. Intuitively, G is “similar” to H , and the parameter d control how G varies around H .
Another interesting aspect of the PYP is that it exhibits power-law properties, making them
very successful in modelling data with such properties (such as natural languages) [Teh,
2006].

A better understanding of the PYP can be obtained by way of the Chinese restaurant
process (CRP) [Pitman, 2002]. Initialize two sets of counts {cs, ts}s∈Σ to 0, and consider
the following generative process: Draw y1 ∼ H and set cy1 = ty1 = 1; for n = 2, 3, . . .
and each s ∈ Σ, with probability cs−dts

c·
set yn = s and increment cs, and with probability

dt·
c·
H(s) set yn = s and increment both cs and ts. The process generates a random sequence

of symbols y1, y2, . . . ∈ Σ. These symbols are dependent through the updates on the counts
(e.g. if y1 = s we will more likely see y2 = s as well). Coming back to the PYP, since G is a
probability vector, we can treat it as a multinomial distribution over Σ. Consider a sequence
of iid draws y1, y2, . . . ∼ G. The randomness in G induces dependencies among the yn’s
once G is marginalized out, and the resulting distribution over the sequence y1, y2, . . . is
precisely captured by the Chinese restaurant process.

3.2 Sequence Memoizer
The sequence memoizer (SM) [Wood et al., 2009] is distribution over the infinite set
G = {Gu}u∈Σ∗ of probability vectors reposed on a hierarchical Bayesian model consisting

1In this paper we describe a simplified Pitman-Yor process. Firstly, Pitman-Yor processes are distributions
over distributions over an arbitrary probability space (here our space is Σ, a finite alphabet set). Secondly,
Pitman-Yor processes typically include a third parameter called the concentration or strength parameter.
In this three parameter guise the Pitman-Yor process is a generalization of the Dirichlet distribution, the
more commonly encountered distribution over probability vectors, which is obtained when d = 0 and the
concentration parameter is positive. Here the concentration parameter is set to 0 instead, this is sometimes
referred to as the normalized stable process.

of PYPs. Succinctly, we can describe the SM as follows:

Gε | d0, H ∼ PY(d0, H) (3a)
Gu | d|u|, Gσ(u) ∼ PY(d|u|, Gσ(u)) ∀u ∈ Σ+ (3b)

where H is a base vector (in the following assumed to be uniform) and d|u| are the discount
parameters. The structure of the model is an unbounded-depth tree, with each node indexed
by a context u ∈ Σ∗, labelled by the probability vector Gu, and with parent given by σ(u).

The structure encodes the prior knowledge that the predictive distributions over the
subsequent symbols in different contexts are similar to each other, with contexts sharing
longer suffixes being more similar to each other. In other words, the later symbols in a
context are more important in predicting the subsequent symbol. Also, by virtue of using
PYPs, the SM encodes an assumption that sequences of symbols have power-law properties.

To make computations in the SM tractable, it is essential to reduce the size of the model.
Firstly, we can marginalize out all Gu not associated with the data in x. This reduces
the size of the tree from infinite to quadratic in |x|. Secondly, we can marginalize out
all non-branching nodes in the resulting tree, which further reduces the size to linear in
|x|. The resulting tree is the context tree as described in Section 2. The second reduction
can be performed analytically due to a theorem of Pitman [1999], which in our situation
simply states: if G1|G0 ∼ PY(d1, G0) and G2|G1 ∼ PY(d2, G1) then marginally G2|G0 ∼
PY(d1d2, G0) is a Pitman-Yor process as well with modified discount parameters. Further
details of this reduction can be found in [Wood et al., 2009]. Note that the algorithm in [Wood
et al., 2009] requires the entire observation sequence to be known to construct the context
tree efficiently. However, this is not necessary as the context tree can straightforwardly be
constructed incrementally as described in Section 2. This is essential for text compression
since the decoder does not have access to the entire sequence until it has finished decoding.

4 Prediction, Inference and Estimation
Exact Bayesian computations in the SM model, such as finding the predictive distribution
P(s|x1:i), are intractable. In Section 2 we described an incremental algorithm for estimating
P(s|x1:i) based on viewing the Pitman-Yor distributed random vectors Gu in terms of the
CRP as described in Section 3.1. In this view, the random vectors Gu are not explicitly
represented; instead, the marginal distribution of draws from Gu is captured by the counts
{cus, tus}s∈Σ of the CRP. Because the Gu’s are hierarchically coupled in the SM (3), the
CRPs are coupled as well, leading to a joint generative process for the counts Sx1:i

=
{cus, tus}u∈Πx1:i ,s∈Σ in all contexts on the tree. Given Sx1:i

, the predictive probability of
the symbol s following x1:i is given by (1), which is simply a recursive application of the
predictive probabilities in the CRPs associated with the contexts on the path from x1:i to
the root. The quantity we are actually interested in, P(s|x1:i), can then be approximated by
averaging (1) over posterior samples of the CRP counts Sx1:i

conditioned on x1:i.
The task thus becomes obtaining samples from the posterior over the CRP counts

conditioned on the observations x1:i. In our previous work [Teh, 2006; Wood et al., 2009]
these samples were obtained using Markov chain Monte Carlo methods, which is too

computationally intensive for the sequential setting considered here. In this paper we take
a different approach: at each iteration i we simply update the counts associated with the
new observation of xi+1 in the CRP associated with context x1:i, and do not resample all the
other counts. In the sequential Monte Carlo literature, this is simply a particle filter with
only one particle, and corresponds to the UPDATEPATH function when probabilistic updates
are used; we call this variant 1PF.

To obtain a better approximation to the posterior, the particle filter can be run with
multiple particles. Surprisingly, this results in a rather negligible improvement (see Section
5). There are two reasons for this. Firstly, as [Teh, 2006] noted, the posterior is unimodal,
so it is easy for the particle filter to obtain a sample close to the mode and this single sample
is likely to perform well. Secondly, much of the predictive ability of the SM comes from the
hierarchical sharing of counts which is already present in a single sample.

The alternative non-probabilistic count update described in Algorithm 1 is an additional
approximation: Instead of maintaining the counts tus, we constrain them to be 1 whenever
cus > 0 and 0 otherwise. As noted by [Teh, 2006], this approximation yields predictive
probabilities equal to the ones that would be obtained using interpolated Kneser-Ney, a
state-of-the-art smoothing algorithm for language models; we call this variant UKN (for
unbounded-depth Kneser-Ney). In our experiments in Section 5 we find that in the text
compression setting this approximation also works very well.

5 Experiments
In order to evaluate DEPLUMP in terms of compression performance on various types
of input sequences we use it to make incremental next symbol predictions on the Calgary
corpus – a well known compression benchmark corpus consisting of 14 files of different
types and varying lengths. The measure used for comparing the different algorithms is the
average log-loss `(x1:N) = − 1

N

∑N
i=1 log2 p(xi|x1:i−1) which corresponds to the average

number of bits per symbol required to encode the sequence using an optimal code. As
entropy coding can achieve this limit up to a small additive constant, it is virtually equivalent
to the average number of bits per symbol required by the compressed file. For all our
experiments we treat the input files as sequences of bytes, i.e. with a 256 alphabet size.2

The results are shown in Table 1. For comparison, we also show the results of two PPM
variants and one CTW variant in the final three columns. PPM* was the first PPM variant to
use unbounded-length context, and the results for PPM-Z are (to our knowledge) among the
best published results for a PPM variant on the Calgary corpus.

There are several observations that can be made here: first, the compression results
for UKN, and 1PF are comparable, with no consistent advantage for any single approach

2In all experiments the per-level discount parameters were initialized to the values
d0:10 = (0.05, 0.7, 0.8, 0.82, 0.84, 0.88, 0.91, 0.92, 0.93, 0.94, 0.95) and d∞ = 0.95 (chosen empiri-
cally). They were then optimized by gradient ascent in the predictive probability, interleaved with the count
updates. Additionally, in order to overcome problems with the model becoming overconfident after long runs
of the same symbol, predictions were made using a mixture model, where the predictions from the leaf node in
the tree are mixed with predictions from the root (with a weight of 10−2 for the root). An alternative solution
to the problem would be to pre-process the input using run-length encoding.

DEPLUMP PPM CTW
File Size 1PF UKN PPM* PPMZ CTW
bib 111261 1.73 1.72 1.91 1.74 1.83
book1 768771 2.17 2.20 2.40 2.21 2.18
book2 610856 1.83 1.84 2.02 1.87 1.89
geo 102400 4.40 4.40 4.83 4.64 4.53
news 377109 2.20 2.20 2.42 2.24 2.35
obj1 21504 3.64 3.65 4.00 3.66 3.72
obj2 246814 2.21 2.19 2.43 2.23 2.40
paper1 53161 2.21 2.20 2.37 2.22 2.29
paper2 82199 2.18 2.18 2.36 2.21 2.23
pic 513216 0.77 0.82 0.85 0.76 0.80
progc 39611 2.23 2.21 2.40 2.25 2.33
progl 71646 1.44 1.43 1.67 1.46 1.65
progp 49379 1.44 1.42 1.62 1.47 1.68
trans 93695 1.21 1.20 1.45 1.23 1.44
avg. 2.12 2.12 2.34 2.16 2.24
w. avg. 1.89 1.91 2.09 1.93 1.99

Table 1: Compression performance in terms of average log-loss (average bits per character
under optimal entropy encoding) for the Calgary corpus. Boldface type indicates best
performance. Ties are resolved in favour of lowest computational complexity. The results
for PPM* (PPM with unbounded-length contexts) are copied from [Cleary and Teahan,
1997] and are actual compression rates, while the results for PPMZ are average log-losses
obtained using a modified version of PPMZ 9.1 under Linux [Peltola and Tarhio, 2002]
(which differ slightly from the published compression rates). The results for CTW were
taken from [Willems, 2009].

on all files. While 1PF has a slight advantage over UKN on the larger text files book1
and book2, this advantage is mostly lost on other file types. This means that the most
computationally efficient approach (1PF) can be chosen without having to suffer a trade-off
in terms compression performance.

In addition to these experiments, we performed experiments with several variants of the
basic algorithm: with and without context mixing, with and without gradient updates to
the discounts, and with a model variant where the discount parameters are independent (i.e.
not shared) for each context. We also tested the algorithm with more than one particle, in
which case the predictions were averaged over particles. Two main observations could be
made from these experiments: 1) context mixing is essential if files contain long runs (such
as pic), and 2) neither using independent discount parameters nor using more particles
improves performance consistently. Using 100 particles yields ≈ 0.02 bps improvement on
the large text files (book, and paper), but no improvement on the other files.

In addition to the experiments on the Calgary corpus, compression performance was also
evaluated on two other benchmark corpora: the Canterbury corpus [Arnold and Bell, 1997]

and the 100 MB excerpt of an XML text dump of the English version of Wikipedia used in
the Large Text Compression Benchmark [Mahoney, 2009] and the Hutter Prize compression
challange [Hutter, 2006]. On the Canterbury corpus, the results were consistently better
then the best reported results, with the exception of two binary files.

On the Wikipedia excerpt, the UKN algorithm (without context mixing) achieved a
log-loss of 1.66 bits/symbol amounting to a compressed file size of 20.80 MB. While this is
significantly worse than 16.23 MB achieved by the currently best PAQ-based compressors
(but on par with non-PAQ approaches), it demonstrates that the described approach can scale
to sequences of this length.

Finally, we explored the performance of the algorithm when using a larger alphabet. In
particular, we used an alphabet of 16-bit characters to compress Big-5 encoded Chinese text.
On a representative text file, the Chinese Union version the the bible, we achieved a log-loss
of 4.35 bits per Chinese character, which is significantly better than the results reported by
Wu and Teahan [2007] (5.44 bits).

6 Discussion
We presented a new compression algorithm based on the predictive probabilities of a hierar-
chical Bayesian nonparametric model called the sequence memoizer (SM). We showed that
the resulting compressor, DEPLUMP, compresses a variety of signals as well or better than
PPM*, PPMZ and CTW. The reasons for this include both the fact that DEPLUMP uses un-
bounded context lengths and the fact that DEPLUMP employs an underlying probabilitistic
model, SM, that explicitly encodes power law assumptions. SM enables DEPLUMP to use
the information available in the unbounded length contexts effectively, whereas for PPM*
the extension to unbounded depth did not yield consistent improvement [Bunton, 1997].

While we show that DEPLUMP surpasses the compression performance of PPM’s best
variants, it should should be noted that PPM has also recently been surpassed by the context-
mixing PAQ family of compressors [Mahoney, 2005] and PAQ compression performance
currently exceeds (in general) that of DEPLUMP as well. Context-mixing is a term used
by the PAQ community; we would suggest that the phrase predictive model mixing more
accurately describes what context-mixing compressors do. This means, roughly, that PPM
can be (and seems already to be—the literature is somewhat obtuse on this point) embedded
into PAQ as one of the models that are mixed together. Correspondingly, improvements to
PPM compression should translate into improvements to PAQ compression, albeit perhaps
more modestly since PAQ relies upon other predictive models as well. In general, PAQ
utilizes a diverse set of models, each of which uses a different definition of context and
generalization relationships between contexts. Integrating such ideas into the nonparametric
Bayesian framework presented here remains an exciting opportunity for future research.

The use of a predictive model for compression has a long tradition, with PPM, CTW and
PAQ being stellar examples. Latent variables that capture regularities in the data, as applied
in this paper, have previously been used in the compression setting [Hinton and Zemel, 1994],
but have seen less application due to the computational demand of approximating often
intractable posterior distributions. Fortunately, in this paper we were able to derive efficient
and effective approximate inference algorithms yielding state-of-the-art compression results.

We conclude this paper with an interesting thought concerning hierarchical PYP models
like the SM. These models were originally intended for modeling sequences of words
coming from a large (even infinite) vocabulary [Teh, 2006]. In this paper we have used
basically the same model under very different circumstances: the symbol set is small (256
instead of� 10000), but typical repeated context lengths are much longer (10-15 instead
of 3-5). It is surprising that the same model can handle both extremes well and points to a
sense that it is a natural model for discrete sequential data. It also bodes well for our current
work applying DEPLUMP to large alphabet texts, e.g. of Chinese and Japanese.

References

Arnold, R. and Bell, T. (1997). A corpus for the evaluation of lossless compression
algorithms. In Data Compression Conference, 1997. Proceedings, pages 201–210.

Bunton, S. (1997). Semantically Motivated Improvements for PPM Variants. The Computer
Journal, 40(2/3).

Cleary, J. G. and Teahan, W. J. (1997). Unbounded length contexts for PPM. The Computer
Journal, 40:67–75.

Hinton, G. E. and Zemel, R. S. (1994). Autoencoders, minimum description length, and
Helmholtz free energy. Advances in Neural Information Processing Systems 6, pages
3–10.

Hutter, M. (2006). Prize for compression human knowledge. URL: http://prize.
hutter1.net/.

Mahoney, M. (2009). Large text compression benchmark. URL: http://www.
mattmahoney.net/text/text.html.

Mahoney, M. V. (2005). Adaptive weighing of context models for lossless data compression.
Technical report, Florida Tech. Technical Report CS-2005-16, 2005.

Peltola, H. and Tarhio, J. (2002). URL: http://cs.hut.fi/u/tarhio/ppmz.
Pitman, J. (1999). Coalescents with multiple collisions. Annals of Probability, 27:1870–

1902.
Pitman, J. (2002). Combinatorial stochastic processes. Technical Report 621, Department

of Statistics, University of California at Berkeley.
Pitman, J. and Yor, M. (1997). The two-parameter Poisson-Dirichlet distribution derived

from a stable subordinator. Annals of Probability, 25:855–900.
Teh, Y. W. (2006). A hierarchical Bayesian language model based on Pitman-Yor processes.

In Proceedings of the Association for Computational Linguistics, pages 985–992.
Willems, F. M. J. (1998). The context-tree weighting method: Extensions. IEEE Transac-

tions on Information Theory, 44(2):792–798.
Willems, F. M. J. (2009). CTW website. URL: http://www.ele.tue.nl/ctw/.
Witten, I. H., Neal, R. M., and Cleary, J. G. (1987). Arithmetic coding for data compression.

Communications of the ACM, 30(6):520–540.
Wood, F., Archambeau, C., Gasthaus, J., James, L., and Teh, Y. W. (2009). A stochastic

memoizer for sequence data. In Proceedings of the 26th International Conference on
Machine Learning, Montreal, Canada.

Wu, P. and Teahan, W. J. (2007). A new PPM variant for Chinese text compression. Natural
Language Engineering, 14(3):417–430.

