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Abstract

Renewal processes are generalizations of the Poisson process on the real line
whose intervals are drawn i.i.d. from some distribution. Modulated renewal pro-
cesses allow these interevent distributions to vary with time, allowing the introduc-
tion of nonstationarity. In this work, we take a nonparametric Bayesian approach,
modelling this nonstationarity with a Gaussian process. Our approach is based on
the idea of uniformization, which allows us to draw exact samples from an oth-
erwise intractable distribution. We develop a novel and efficient MCMC sampler
for posterior inference. In our experiments, we test these on a number of synthetic
and real datasets.

1 Introduction

Renewal processes are stochastic point processes on the real line where intervals between succes-
sive points (times) are drawn i.i.d. from some distribution. The simplest example of a renewal
process is the homogeneous Poisson process, whose interevent times are exponentially distributed.
A limitation of this is the memoryless property of the exponential distribution, resulting in an ‘as
bad as old after a repair’ property [1] that is not true of many real-world phenomena. For example,
immediately after firing, a neuron is depleted of its resources and incapable of firing again, and the
gamma distribution is used to model interspike intervals [2]. Similarly, because of the phenomenon
of elastic rebound, some time is required to recharge stresses released after an earthquake and an
inverse Gaussian distribution is used to model intervals between major earthquakes [3]. Other ex-
amples include using the Pareto distribution to better capture the burstiness and self-similarity of
network traffic arrival times [4], and the Erlang distribution to model the fact that buying incidence
of frequently purchased goods is less variable than Poisson [5].

Modelling interevent times as i.i.d. draws from a general renewal density can allow larger or smaller
variances than an exponential with the same mean (overdispersion or underdispersion), but effec-
tively encodes an ‘as good as new after a repair’ property. Again, this is often only an approximation:
because of age or other time-varying factors, the interevent distribution of the point process may vary
with time. For instance, internet traffic can vary with time of the day, day of the week and in re-
sponse to advertising and seasonal trends. Similarly, an external stimulus can modulate the firing
rate of the neuron, economic trends can modulate financial transactions etc. The most popular way
of modelling this nonstationarity is via an inhomogeneous Poisson process whose intensity function
determines the instantaneous event rate, and there has also been substantial work extending this to
renewal processes in various ways (see section 2.2).

In this paper, we describe a nonparametric Bayesian approach where a renewal process is modulated
by a random intensity function which is given a Gaussian process prior. Our approach extends
work by [6] on the Poisson process, using a generalization of the idea of Poisson thinning called
uniformization [7] to draw exact samples from the model. We extend recent ideas from [8] to
develop a more natural and efficient block Gibbs sampler than the incremental Metropolis-Hastings
algorithm used in [6]. In our experiments we demonstrate the usefulness of our model and sampler
on a number of synthetic and real-world datasets.
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2 Modulated renewal processes

Consider a renewal process R over an interval [0, T ] whose interevent time is distributed according
to a renewal density g. Let G = {G1, G2, ...} be the ordered set of event times sampled from this
renewal process, i.e.

G ∼ R(g) (1)

For simplicity1 we place a starting event G0 at time 0, so for each i ≥ 1 we have (Gi −Gi−1) ∼ g.

Associated with the renewal density g is a hazard function h, where h(τ)∆, for infinitesimal ∆ > 0,
is the probability of the interevent interval being in [τ, τ + ∆] conditioned on it being at least τ , i.e.

h(τ) =
g(τ)

1−
∫ τ

0
g(u)du

(2)

Let λ(t) be some time-varying intensity function. A simple way to introduce nonstationarity into
a renewal process is to modulate the hazard function by λ(t) so that it depends on both the time τ
since the last event, and on the absolute time t [9, 10]:

h(τ, t) ≡ m(h(τ), λ(t)) (3)

where m(·, ·) is some interaction function. Examples include additive (h(τ) + λ(t)) and multi-
plicative (h(τ)λ(t)) interactions. For concreteness, we assume multiplicative interactions in what
follows, however our results extend easily to general interaction functions.

With a modulated hazard rate, the distribution of interevent times is no longer stationary. Instead,
plugging a multiplicative interaction into (2) and solving for g (see the supplementary material for
details), we get

g(τ |tprev) = λ(tprev + τ)h(τ) exp

(
−
∫ τ

0

λ(tprev + u)h(u)du

)
(4)

where tprev is the previous event time. Observe that equation (4) encompasses the inhomogeneous
Poisson process as a special case (a constant hazard function with multiplicative modulation).

2.1 Gaussian process intensity functions

In this paper we are interested in estimating both parameters of the hazard function h(τ) as well as
the intensity function λ(t) itself. Taking a Bayesian nonparametric approach, we model λ(t) using
a Gaussian process (GP) [11] prior, which has support over a rich class of functions and offers a
flexibility not afforded by parametric approaches. We call the resulting model a Gaussian process
modulated renewal process. A minor issue is that samples from a GP can take negative values; we
address this using a sigmoidal link function. Finally, we use a gamma family for the hazard function:
h(τ) = xγ−1e−γx∫∞

x
uγ−1e−γudu

where γ is the shape parameter2. Our complete model is thus

l(·) ∼ GP(µ,K), λ(·) = λ∗σ(l(·)), G ∼ R(λ(·), h(·)) (5)

where µ and K are the GP mean and covariance kernel, λ∗ is a positive scale parameter, and
σ(x) = (1 + exp(−x))−1. We place a gamma hyperprior on λ∗ as well as hyperpriors on the
GP hyperparameters.

2.2 Related work

The idea of defining a nonstationary renewal process by modulating the hazard function dates back
to Cox [9]. Early work [12] focussed on hypothesis testing for the stationarity assumption. [13,
14, 1] proposed parametric (generalized linear) models where the intensity function was a linear
combination of some known functions; these regression coefficients were estimated via maximum
likelihood. [15] considers general modulated hazard functions as well; however they assume it
has known form and are concerned with calculating statistical properties of the resulting process.

1With renewal processes there is an ambiguity about the time of the first event, which is typically taken to
be exponentially distributed. It is straightforward to handle this case.

2We parametrize the hazard function to produce 1 event per unit time; other parametrizations may be used.
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Finally, [10] describe a model that is a generalization of ours, but again have to resort to maximum
likelihood estimation (our ideas can easily be extended to their more general model too).

A different approach to producing inhomogeneity is by first sampling from a homogeneous renewal
process and then rescaling time [16, 17]. The trend renewal process [18] uses such an approach, and
the authors propose an iterative kernel smoothing scheme to approximate a maximum likelihood
estimate of the intensity function. [2] uses time-rescaling to introduce inhomogeneity and, similar
to us, a Gaussian process prior for the intensity function. Unlike us, they had to discretize time and
used a variational approach to inference.

Finally, we note that our approach generalizes [6], who describe a doubly stochastic Poisson process
and an MCMC sampler which does not require time discretization. In the next sections we describe
a generalization of their model to the inhomogeneous renewal process using a twist on a classical
idea called uniformization.

3 Sampling via Uniformization

Before we consider Markov chain Monte Carlo (MCMC) inference for our model, observe that
to even naı̈vely generate samples from the prior is difficult; this requires evaluating integrals of a
continuous-time function drawn from a GP (see equation (4)). One approach is to evaluate these
integrals numerically by discretizing time [2], which can be time consuming and introduce approx-
imation errors. In section 3.2 we will show how a classical idea called uniformization allows us to
efficiently draw exact samples from the model, without approximations due to discretization. Then
in section 4 we will develop a novel MCMC algorithm based on uniformization.

3.1 Modulated Poisson processes

We start with thinning, a well-known result to sample from an inhomogeneous Poisson process with
intensity λ(t). Suppose that λ(t) is upper bounded by some constant Ω. Let E be a set of locations
sampled from a homogeneous Poisson process with rate Ω. We thin this set by deleting each point
e ∈ E independently with probability 1− λ(e)

Ω . Let F be the remaining set of points. Then:
Proposition 1 ([19]). The set F is a draw from a Poisson process with intensity function λ(t) .

3.2 Modulated renewal processes

Less well-known is a generalization of this result to renewal processes [13]. Note that the thinning
result of the previous section builds on the memoryless property of the exponential distribution (or
the complete randomness [20] of the Poisson process): events in disjoint sets occur independently
of each other. For a renewal process, events are no longer independent of their neighbours. This
suggests a generalization of thinning involving a Markov chain over the set of events. This idea of
thinning a Poisson process by a subordinated Markov chain is called uniformization [7].

[21] describes a uniformization scheme to sample from a homogeneous renewal process. We extend
it to the modulated case here. We will assume that both the intensity function λ(t) and the hazard
function h(τ) are bounded, so that there exists a constant Ω such that

Ω ≥ max
t,τ

h(τ)λ(t) (6)

Note that because of the sigmoidal link function, our model has λ(t) ≤ λ∗, while the gamma hazard
h(τ) is bounded by the shape parameter γ if γ ≥ 1. We now sample a set of times E = {E0 =
0, E1, E2, . . .} from a homogeneous Poisson process with rate Ω and thin this set by running a
discrete time Markov chain on the times in E. Let Y0 = 0, Y1, Y2, . . . be an integer-valued Markov
chain, where each Yi either equals Yi−1 or i. We interpret Yi as indicating the index of the last
unthinned event prior or equal to Ei. That is, Yi = Yi−1 means that Ei is thinned, and Yi = i means
Ei is not thinned. Note that Ei − EYi gives the time since the last unthinned event. For i > j ≥ 0,
define the transition probabilities of the Markov chain (conditioned on E) as follows,

p(Yi = i|Yi−1 = j) =
h(Ei − Ej)λ(Ei)

Ω
, p(Yi = j|Yi−1 = j) = 1− h(Ei − Ej)λ(Ei)

Ω
(7)

After drawing a sample from Y , we define F = {Ei ∈ E s.t. Yi = i}.
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Proposition 2. For any Ω ≥ maxt,τ h(τ)λ(t), F is a sample from a modulated renewal process
with hazard h(·) and modulating intensity λ(·).

The proof of this is included in the supplementary material. The basic idea is to write down the
probability p(E, Y ) of the whole generative process and marginalize out the thinned times, showing
that the resulting interevent time is simply (4). For a different proof of a similar result, see [13].

Now recall that we have a GP prior for l(·). The uniformization procedure above only requires the
intensity function evaluated at the times in E (which is finite on a finite interval), and this is easily
obtained by sampling from a finite dimensional Gaussian N (µE ,KE), with mean and covariance
being the corresponding GP parameters µ and K evaluated at E. Our procedure to sample from a
GP-modulated renewal process now follows: sample from a homogeneous Poisson process P(Ω)
on [0, T ], instantiate the GP on this finite set of points and then thin the set by running the Markov
chain described previously. Defining lE as l(t) evaluated on the set E, E∗i as the restriction of E to
the interval (Fi−1, Fi), and Fi+1 = T we can write the joint distribution:

P (F, l, E) = Ω|E|e−ΩTN (lE |µE ,KE)

|F |∏
i=1

(
λ(Fi)h(Fi−Fi−1)

Ω

)|F |+1∏
i=1

∏
e∈E∗i

(
1− λ(e)h(e−Fi−1)

Ω

)
(8)

4 Inference

We now consider posterior inference on the modulating function λ(t) (and any unknown hyperpa-
rameters) given an observed set of event times G. Our sampling algorithm is based on ideas devel-
oped in [8]. We imagine G was generated via uniformization, so that there exists an unobserved set
of thinned events G̃. We then proceed by Markov chain Monte Carlo, setting up a Markov chain
whose state consists of the number and locations of G̃, the values of the GP on the set G∪ G̃ as well
as the current sampled hyperparameters. Note from equation (8) that given these values, the value of
the modulating function at any other location is independent of the observations and can be sampled
from the conditional distribution of a multivariate Gaussian.

The challenge now is to construct a transition operator that results in this Markov chain having
the desired posterior distribution as its equilibrium distribution. In their work, [6] defined a transi-
tion operator by proposing insertions and deletions of thinned events as well as by perturbing their
locations. The proposals were accepted or rejected using a Metropolis-Hastings correction. The
remaining variables were updated using standard Gaussian process techniques. We show below that
instead of incrementally updating G̃, it is actually possible to produce a new independent sample of
the entire set G̃ (conditioned on all other variables). This leads to a more natural sampler that does
not require any external tuning and that mixes more rapidly.

To understand our algorithm, suppose first that the modulating function λ(t) is known for all t.
Then, from (4), the probability of the set of events G on the interval [0, T ] is3:

P (G|λ(t)) =

|G|∏
i=1

λ(Gi)h(Gi −Gi−1)

|G|+1∏
i=1

exp

(
−
∫ Gi

Gi−1

λ(t)h(t−Gi−1)dt

)
(9)

Now, suppose that in each consecutive interval (Gi−1, Gi) we independently sample a set of events
G̃∗i from an inhomogeneous Poisson process with rate (Ω − λ(t)h(t − Gi−1)), and let G̃ = ∪G̃∗i .
A little algebra shows that:

P (G̃,G|λ(t)) =

|G|+1∏
i=1

exp

(
−
∫ Gi

Gi−1

dt (Ω− λ(t)h(t−Gi−1)

) ∏
g̃∈G̃∗i

(Ω− λ(g̃)h(g̃ −Gi−1))


×
|G|∏
i=1

λ(Gi)h(Gi −Gi−1)

|G|+1∏
i=1

exp

(
−
∫ Gi

Gi−1

λ(t)h(t−Gi−1)dt

)
(10)

= Ω|G|+|G̃| exp (−ΩT )

|G|∏
i=1

(
λ(Gi)h(Gi −Gi−1)

Ω

) |G|+1∏
i=1

∏
g̃∈G̃∗i

(
1− λ(g̃)h(g̃ −Gi−1)

Ω

)
(11)

3Recall that G0 = 0. We also take G|G|+1 = T .
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Comparing with equation (8), we have the following proposition:

Proposition 3. The sets (E,F ) and (G ∪ G̃,G) are equivalent i.e. they have the same distribution.

In other words, given a set of event times G, the inhomogeneous Poisson process-distributed points
G̃ can be taken to be the events thinned in the procedure of section 3.2. The only complication left
is that we do not know the function λ(t) everywhere. This is easily overcome by uniformization (in
fact, just by thinning, since we’re dealing with a Poisson process). Specifically, let G be the set of
observed events and G̃prev the previous set of thinned events. To sample the new set G̃∗i from the
Poisson process on [Gi−1, Gi] with rate (Ω − λ(t)h(t − Gi−1)), we first sample a set of points A
from a homogeneous Poisson process on [Gi−1, Gi] with rate Ω and instantiate the Gaussian process
on those points, conditioned on G ∪ G̃prev and lG∪G̃prev (note that all this involves is conditionally

sampling from a multivariate Gaussian4). Finally, we keep a with probability 1− λ(a)h(a−Gi−1)
Ω .

Having resampled G̃ (and the associated set of GP values), we next must resample the value of
the GP at G. This does involve the sigmoid likelihood function, and we proceed by elliptical slice
sampling [22] 5. Algorithm 1 lists the steps involved.

Algorithm 1 Blocked Gibbs sampler for GP-modulated renewal process on the interval [0, T ]

Input: Set of event times G, set of thinned times G̃prev and l instantiated at G ∪ G̃prev .
Output: A new set of thinned times G̃new and a new instantiation lG∪G̃new of the GP on G ∪ G̃new.

1: Sample A ⊂ [0, T ] from a Poisson process with rate Ω.
2: Sample lA|lG∪G̃prev .

3: Thin A, keeping element a ∈ A ∩ [Gi−1, Gi] with probability
(

1− λ∗σ(l(a))h(a−Gi−1)
Ω

)
.

4: Let G̃new be the resulting set and lG̃new be the restriction of lA to this set. Discard G̃prev and
lG̃prev .

5: Resample lG∪G̃new using, for example, elliptical slice sampling.

The gamma prior on λ∗ is conjugate to the Poisson, resulting in a gamma posterior. We resampled
the GP hyperparameters using slice sampling [23] 5, while parameters of the hazard function were
updated using Metropolis-Hastings moves along with equation (8).

4.1 Computational considerations

The inferential bottleneck in our model is the Gaussian process: sampling a GP on a set of points is,
in the worst case, cubic in the size of that set. In our model, each iteration sees on average |G|+2|E|
values of the GP, where |G| is the number of observations and |E| is the average number of points
sampled from the subordinating Poisson process. Note that |E| varies from iteration to iteration
(being proportional to the scaling factor λ∗). Since we perform posterior inference on this quantity,
the complexity of our model can be thought to adapt to that of the problem. This is in contrast with
time-discretization approaches, where a resolution is picked beforehand, fixing the complexity of the
inference problem accordingly. For instance, [2] use a resolution of 1ms to model neural spiking,
making it impossible to naı̈vely deal with spike trains extending over more than a second. However
as they demonstrate in their work, instantiating a GP on a regular lattice allows the development
of fast approximate inference algorithms that scale linearly with the number of grid-points. In our
case, the Gaussian processes is sampled at random locations. Moreover, these locations change each
iteration, requiring the inversion of a new covariance matrix; this is the price we have to pay for an
exact sampler.

One approach is to try reduce the number of thinned events |E|. Recall that our generative approach
is to thin a sample from a subordinating, homogeneous Poisson process whose rate upper bounds
the modulated hazard rate. We can reduce the number of thinned events by subordinating to an
inhomogeneous Poisson process, one whose rate more closely resembles the instantaneous hazard
rate. Thus, instead of using a single constant λ∗, one could use (say) a piecewise linear function

4In particular, it does not require any sophisticated GP sampling algorithm
5Code available on Iain Murray’s website: http://homepages.inf.ed.ac.uk/imurray2/
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λ∗(t) The more segments we use, the more flexibility we have; the price being the complexity of
resampling this function, and slower mixing because of correlations it introduces.

This however does not help if G, the number of observations itself is large. In such a situation one
has to call upon the vast literature concerning approximate inference for Gaussian processes [11].
The question then is how these approximation compare with those like [2]. We believe this is an
interesting question in its own right, and raises the possibility of approximate inference algorithms
that combine ideas from [2] with the adaptive nature of our approach.

5 Experiments

In this section we evaluate our model and sampler on a number of datasets. We used gamma dis-
tributed interevent times with shape parameter γ ≥ 1. When γ = 1, we recover the Poisson process,
and our model reduces to that of [6], while γ > 1 models ‘refractoriness’, where two events in quick
succession are less likely than under a Poisson process. When appropriate, we place a noninforma-
tive prior on the shape parameter: an exponential with rate 0.1 shifted to have a minimum value of
1. Note that for shape parameters less than 1, the renewal process becomes ‘bursty’ and the hazard
function becomes unbounded. This is an interesting scenario but beyond the scope of this paper.
An interesting issue concerns the identifiability of the shape parameter under our model. We find
from our experiments that this is only a problem when the length scale of the intensity function is
comparable to the refractory period of the renewal process. The base rate of the modulated renewal
process (i.e. the rate when the intensity function is fixed at 1) is set to the empirical rate of the ob-
served point process. As a result the identifiability of the shape parameter is a consequence of the
dispersion of the point process rather than of some sort of rate matching.

Synthetic data. Our first set of experiments uses three synthetic datasets generated by modulating
a gamma renewal process (shape parameter γ = 3) with three different functions (see figure 1):

• λ1(t) = 2 exp(t/5) + exp(−((t− 25)/10)2, t ∈ [0, 50]: 44 events
• λ2(t) = 5 sin(t2) + 6, t ∈ [0, 5]: 12 events
• λ3(t): a piecewise linear function , t ∈ [0, 100]: 153 events

Additionally, for each function, we also generated 10 test sets. We ran three settings of our model:
with the shape parameter fixed to 1 (MRP Exp), with the shape parameter fixed to the truth (MRP
Gam3), and with a hyperprior on the shape parameter (MRP Full). For comparison, we also ran
an approximate discrete-time sampler where the Gaussian process was instantiated on a regular grid
covering the interval of interest. In this case, all intractable integrals were approximated numerically
and we use elliptical slice sampling to run MCMC on this Gaussian vector.

Figure 1 shows the results from 5000 MCMC samples after a burn-in of 1000 samples. We quantify
these in Table 1 by calculating the l2 distance of the posterior means from the truth. We also calcu-
lated the mean predictive probabilities of the 10 test sequences. Not surprisingly, the inhomogeneous
Poisson process forms a poor approximation to the gamma renewal process; it underestimates the
intensity function required to produce a sequence of events with refractory intervals. Fixing the
shape parameter to the truth significantly reduces the l2 error and increases the predictive probabil-
ities, but interestingly, for these datasets, the model with a prior on the shape parameter performs
comparably with the ‘oracle’ model. We have also included plots of the posterior distribution over
the gamma parameter; these are peaked around 3. Discretizing time into a 100 bins (Disc100) results
in comparable performance for the first two datasets on the l2 error; for the third, (which spans a
longer interval and has a larger event count), we had to increase the resolution to 500 bins to improve
accuracy. Discretizing to 25 bins was never sufficient. A conclusion is that with time discretization,
it is necessary to be conservative in choosing the time-resolution, otherwise errors may be signifi-
cant. Our sampler has the advantage of automatically picking the ‘right’ resolution. However as we
discussed in the section on computation, time discretization has its own advantages that make it a
viable model [2].

Coal mine disaster data. For our next experiment, we ran our model on the coal mine disaster
dataset commonly used in the point process literature. This dataset records the dates of a series
of 191 coal mining disasters, each of which killed ten or more men [24]. Figure 2(left) shows the
posterior mean of the intensity function (surrounded by 1 standard deviation) returned by our model.
Not included is the posterior distribution over the shape parameter; this concentrated in the interval
1 to around 1.1, suggesting that the data is well modelled as an inhomogeneous Poisson process, and
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Figure 1: Synthetic Datasets 1-3: Posterior mean intensities plotted against time (top) and gamma
shape posteriors (bottom)

MRP Exp MRP Gam3 MRP Full Disc25 Disc100
l2 error 7.8458 3.19 2.548 4.089003 2.426973

log pred. prob. -47.5469 -38.0703 -37.3712 -41.646350 -41.016425
l2 error 141.0067 56.2183 58.4361 91.321069 57.896300

log pred. prob. -3.704396 -2.945298 -3.280871 -5.245478 -3.848443
l2 error 82.0289 11.4167 13.4441 122.335151 38.047332

log pred. prob. -89.8787 -48.2777 -48.57 87.170034 -55.802997

Table 1: l2 distance from the truth and mean log-predictive probabilities of the held-out datasets for
synthetic datasets 1(top) to 3(bottom).

is in agreement with [24]. As sanity check, and to shed further light on the issue of identifiability, we
processed the dataset by deleting every alternate event. With such a transformation, a homogeneous
Poisson would reduce to a gamma renewal process with shape 2. Our model returns a posterior
peaked around 1.5 (in agreement with the form of the inhomogeneity). Note that the posteriors over
intensity functions are similar (except for the obvious scaling factor of about 2).

Spike timing data We next ran our model on neural spike train data recorded from grasshopper
auditory receptor cells [25]. This dataset is characterized by a relatively high firing rate (∼ 150
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Figure 2: Left: Posterior mean intensity for coal mine data with 1 standard deviation error bars
(plotted against time in years). Centre: Posterior mean intensity for ‘thinned’ coalmine data with 1
standard deviation error bars. Right: Gamma shape posterior for ‘thinned’ coal mine data.
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Synthetic dataset 1 Coalmine dataset
Mean ESS Minimum ESS Time(sec) Mean ESS Minimum ESS Time(sec)

Gibbs 93.45± 6.91 50.94± 5.21 77.85 53.54± 8.15 24.87± 7.38 282.72
MH 56.37± 10.30 19.34± 11.55 345.44 47.83± 9.18 18.91± 6.45 1703

Table 2: Sampler comparisons. Numbers are per 1000 samples.

Hz), making refractory effects more prominent. We plot the posterior distribution over the intensity
function given a sequence of 200 spikes in a 1.6 second interval. We also included the posterior dis-
tribution over gamma shape parameters in figure 3; this concentrates around 1.5, agreeing with the
refractory nature of neuronal firing. The results above follow from using noninformative hyperpri-
ors; we have also plotted the log-transformed stimulus, an amplitude-modulated signal. In practice,
other available knowledge (viz. the shape parameter, the stimulus length-scale, the transformation
from the stimulus to the input of the neuron etc) can be used to make more accurate inferences.

Computational efficiency and mixing. For our final experiment, we compare our proposed blocked
Gibbs sampler with the Metropolis-Hastings sampler of [6]. We ran both algorithms on two datasets,
synthetic dataset 1 from section 5 and the coal mine disaster dataset. All involved 20 MCMC runs
with 5000 iterations each (following a burn-in period of a 1000 iterations). For both datasets, we
evaluated the latent GP on a uniform grid of 200 points, calculating the effective sample size (ESS)
of each component of the Gaussian vectors (using R-CODA [26]). For each run, we return the
mean and the minimum ESS across all 200 components. In Table 2, we report these numbers: not
only does our sampler mix faster (resulting in larger ESSs), but also takes less computation time.
Additionally, our sampler is simpler and more natural to the problem, and does not require any
external tuning.

6 Discussion

We have described how to produce exact samples from a nonstationary renewal process whose haz-
ard function is modulated by a Gaussian process. Our scheme is based on the idea of uniformization,
and using this idea, we also develop a novel MCMC sampler. There are a number of interesting av-
enues worth following. First is the restriction that the hazard function be bounded: while this covers
a large and useful class of renewal processes, it is worth considering how our approach can be
extended to produce exact or approximate samples for renewal processes with unbounded hazard
functions. In any case, following [13], it is easy to extend our ideas to Bayesian inference for more
general point processes. Because of the latent Gaussian process, our approach will not scale well
to large problems; however there is a vast literature concerning approximate sampling for Gaussian
processes. An important question is how these approximations compare to approximations intro-
duced via time-discretization. Finally, even though we considered GP modulating functions, our
uniformization-based sampler will also be useful for Bayesian inference involving simpler priors on
modulating functions, eg. splines or Markov jump processes.
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