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Abstract

Belief propagation (BP) on cyclic graphs is an efficient algorithm
for computing approximate marginal probability distributions over
single nodes and neighboring nodes in the graph. It does however
not prescribe a way to compute joint distributions over pairs of dis-
tant nodes in the graph. In this paper we propose two new algorithms
for approximating these pairwise probabilities, based on the linear re-
sponse theorem. The first is a propagation algorithm which is shown
to converge if belief propagation converges to a stable fixed point.
The second algorithm is based on matrix inversion. Applying these
ideas to Gaussian random fields we derive a propagation algorithm
for computing the inverse of a matrix.

1 Introduction

Like Markov chain Monte Carlo sampling and variational methods, belief prop-
agation (BP) has become an important tool for approximate inference on graphs
with cycles. Especially in the field of “error correction decoding”, it has brought
performance very close to the Shannon limit (Frey and MacKay, 1997). BP was
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studied in a number of papers which have gradually increased our understanding
of the convergence properties and accuracy of the algorithm (Weiss and Free-
man, 2001; Weiss, 2000). In particular, recent developments show that the sta-
ble fixed points are local minima of the bethe free energy (Yedidia et al., 2000;
Heskes, 2003). This insight paved the way for more sophisticated “generalized
belief propagation” algorithms (Yedidia et al., 2002) and convergent alternatives
to BP (Yuille, 2002; Teh and Welling, 2001). Other developments also include the
“expectation propagation” algorithm designed to propagate sufficient statistics of
members of the exponential family (Minka, 2001).

Despite its success, BP does not provide a prescription to compute joint proba-
bilities over pairs of non-neighboring nodes in the graph. When the graph is a tree,
there is a single chain connecting any two nodes, and dynamic programming can
be used to efficiently integrate out the internal variables. However, when cycles
exist, it is not clear what approximate procedure is appropriate. It is precisely this
problem that we will address in this paper. We show that the required estimates
can be obtained by computing the “sensitivity” of the node marginals to small
changes in the node potentials. Based on this idea, we present two algorithms to
estimate the joint probabilities of arbitrary pairs of nodes.

These results are interesting in the inference domain but may also have future
applications to learning graphical models from data. For instance, information
about dependencies between random variables is relevant for learning the struc-
ture of a graph and the parameters encoding the interactions. Another possible
application area is “active learning”. Since the node potentials encode the exter-
nal evidence flowing into the network, and since we compute the sensitivity of the
marginal distributions to changing this external evidence, one may use this infor-
mation to search for good nodes to collect additional data for. For instance, nodes
which have a big impact on the system seem good candidates.

The paper is organized as follows. Factor graphs are introduced in section 2.
Section 3 reviews the Gibbs free energy and two popular approximations, namely
the mean field and Bethe approximations. Then in section 4 we explain the ideas
behind the linear response estimates of pairwise probabilities, and prove a number
of useful properties that they satisfy. We derive an algorithm to compute the linear
response estimates by propagating “super-messages” around the graph in section
5, while section 6 describes an alternative method based on inverting a matrix.
Section 7 describes an application of linear response theory to Gaussian networks
that gives a novel algorithm to invert matrices. In experiments (section 8) we
compare the accuracy of the new estimates against other methods. Finally we
conclude with a discussion of our work in section 9.
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2 Factor Graphs

Let
�

index a collection of random variables ���������	��
 . Let �
� denote values of��� . For a subset of nodes ��� �
let ���������������	��� be the variable associated

with that subset, and ��� be values of ��� . Let � be a family of such subsets of
�

.
The probability distribution over � �����
 is assumed to have the following form,

���! �����#"$� %&('�)��*,+ �  �-�." '�/��
0+ �  �
�1" (1)

where + �
2 + � are positive potential functions defined on subsets and single nodes
respectively.

&
is the normalization constant (or partition function), given by& �43657'�)��* + �  �-�."
'�	��
 + �  �
�8" (2)

where the sum runs over all possible states � of � . In the following we will
write

�� �#" �� �9�: �;�<�#" for notational simplicity. The decomposition of (1) is
consistent with a factor graph with function nodes over �=� and variables nodes��� . Figure 1 shows an example. Neighbors in a factor graph are defined as nodes
that are connected by an edge (e.g. subset � and variable > are neighbors in figure
1). For each ?0@ � denote its neighbors by AB�C�D�E�F@G�DH��FIG?J� and for each
subset � its neighbors are simply AB�K�L�M?$@ � H6?N@O�N� .

Factor graphs are a convenient representation for structured probabilistic mod-
els and subsume undirected graphical models and acyclic directed graphical mod-
els (Kschischang et al., 2001). Further, there is a simple message passing algo-
rithm for approximate inference that generalizes the belief propagation algorithms
on both undirected and acyclic directed graphical models. For that reason we will
state the results of this paper in the language of factor graphs.

3 The Gibbs Free Energy

Let P  �#" be a variational probability distribution, and let QR�
2SQT� be its marginal
distributions over ��@�� and ?U@ �

respectively. Consider minimizing the fol-
lowing objective, called the Gibbs free energy,V  PW"N��X 3 � 3/5SY QS�  �-�."[Z	\^] + �  �-�_"`X 3 � 3a5cb QT�  �
�8"[Z	\^] + �  �
�1"`XGd  PK" (3)
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Figure 1: Example of a factor graph.

where d  PW" is the entropy of P  �#" ,
d  PW" ��X 3 � P  �#"[Z/\^]$P  �#" (4)

It is easy to show that the Gibbs free energy is precisely minimized at P  �#"���� �#" . In the following we will use this variational formulation to describe two
types of approximations: the mean field and the Bethe approximations.

3.1 The Mean Field Approximation

The mean field approximation uses a restricted set of variational distributions,
namely those which assume independence between all variables � � : P ���  �#" ��� � Q ����  �
�1" . Plugging this into the Gibbs free energy we get,

V ���  �EQ ���� � " � X 3 � 3/5SY � ' �	��� Q ����  �
� "��GZ/\^] + �  �-�."X 3 � 3 5cb Q ����  �
�1"[Z/\^] + �  �
�1"CXGd ���  �EQ ���� � " (5)

where d ���
is the mean field entropy

d ���  �EQ ���� � " ��X 3 � 3 5cb Q ����  �
� "[Z	\^]NQ ����  �
� " (6)
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Minimizing this with respect to Q ����  �
� " (holding the remaining marginal distribu-
tions fixed) we derive the following update equation,

Q ����  �
�1"�� %� � + �  �
� "������
	

3�)��� b 35 Y�
 b Z/\^] + �  �-�." '� ��� Y�� � Q ����  � � "��� (7)

where � � is a normalization constant. Sequential updates which replace eachQ ����  �
�1" by the RHS of (7) are a form of coordinate descent on the MF-Gibbs free
energy which implies that they are guaranteed to converge to a local minimum.

3.2 The Bethe Approximation: Belief Propagation

The mean field approximation ignores all dependencies between the random vari-
ables and as such over-estimates the entropy of the model. To obtain a more
accurate approximation we sum the entropies of the subsets �G@O� and the nodes?=@ �

. However, this over-counts the entropies on the overlaps of the subsets� @B� , which we therefore subtract off as follows,

d����  �EQ����� 2TQ����� � " � X 3 � 3/5SY Q�����  �-�."[Z	\^]NQ�����  �-�."`X 3 ��� � 3a5cb�Q�����  �
�8"[Z	\^]NQ�����  �
�1"
(8)

where the over-counting numbers are � � � % X�� A ��� . The resulting Gibbs free
energy is thus given by (Yedidia et al., 2000),V ���  �EQ ���� 2SQ ���� � "$��X 3 � 3 5SY Q ����  �-�."[Z	\)] + �  �-�."X 3 � 3a5cb�Q ����  �
� "[Z/\^] + �  �
�1"`X d ���  �EQ ���� 2SQ ���� � " (9)

where the following local constraints need to be imposed,1

3 5 Y�
 b Q ����  �-�." � Q ����  �
� "  � @O� 2T? @O�$2 �
� (10)

in addition to the constraints that all marginal distributions should be normalized.
It was shown in (Yedidia et al., 2000) that this constrained minimization problem

1Note that although the beliefs �EQc��2SQS� � satisfy local consistency constraints,
they need not actually be globally consistent in that they do not necessarily corre-
spond to the marginal distributions of a single probability distribution P  �#" .
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may be solved by propagating messages over the links of the graph. Since the
graph is bipartite we only need to introduce messages from factor nodes to variable
nodes �=���  �
�1" and messages from variable nodes to factor nodes � � �  �
� " . The
following fixed point equations can now be derived that solve for a local minimum
of the BP-Gibbs free energy,

�#� �  �
�1"�� + �  �
� " '
� ��� b � � � � �  �
�1" (11)

�=���  �
�1"�� 3 5 Y�
 b + �  �-�." '� ��� Y � � � � �  � � " (12)

Finally, marginal distributions over factor nodes and variable nodes are expressed
in terms of the messages as follows,

QS�  �-�_"N� %� � + �  �-�_" '�	��� Y ��� �  �
�1" (13)

QT�  �
�1"N� %� � + �  �
�1" '�)��� b �=���  �
�1" (14)

where � ��2 � � are normalization constants.
On tree structured factor graphs there exists a scheduling such that each mes-

sage needs to be updated only once in order to compute the exact marginal dis-
tributions on the factors and the nodes. On factor graphs with loops, iterating the
messages do not always converge, but if they converge they often given accurate
approximations to the exact marginals (Murphy et al., 1999). Further, the stable
fixed points of the iterations can only be local minima of the BP-Gibbs free en-
ergy (Heskes, 2003). We note that theoretically there is no need to normalize the
messages themselves (as long as one normalizes the estimates of the marginals),
but that it is desired computationally to avoid numerical overflow or underflow.

4 Linear Response

The mean field and belief propagation algorithms described above provide esti-
mates for single node marginals (both MF and BP) and factor node marginals (BP
only), but not for joint marginal distributions of distant nodes. The linear response
(LR) theory can be used to estimate joint marginal distributions over an arbitrary
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pair of nodes. For pairs of nodes inside a single factor, this procedure even im-
proves upon the estimates that can be obtained from BP by marginalization of
factor node marginals.

The idea here is to study changes in the system when we perturb the single
node potentials, Z/\^] + �  �
�1"N� Z/\^] +

��  �
� " ��� �  �
�1" (15)

The superscript
�

indicates unperturbed quantities in the following. Let
� � � � ���

and define the free energy�  � "N� XBZ/\^] 365 '�)��* + �  �-�." '�	��
 +
��  �
� "���� b
	 5cb�� (16)

X �  � " is the cumulant generating function for
�� ��" , up to irrelevant constants.

Differentiating
�� � " with respect to

�
gives

X 
�� 	 � �
 ��� 	 5 � ����� ��� � ��� �  � � " (17)

X 
���� 	 � �
 � b
	 5cb�� 
 ��� 	 5 � � ��� ��� � �

�� � 	 5 � �
 � b�	 5cb�� ��� ��� � �

� � � �  �
��2 � � "`X��[�  �
�8"�� �  � � " if ?! �#"� �  �
� "�$ 5cb�% 5 � X�� �  �
� "
� �  � � " if ? �#" (18)

where � � 2&� � � are single and pairwise marginals of
�� �#" . Hence second order per-

turbations in the system (18) gives the covariances between any two nodes of the
system. The desired joint marginal distributions are then obtained by adding back
the � �  �
�8"�� �  � � " term. Expressions for higher order cumulants can be derived by
taking further derivatives of X �� � " .
4.1 Approximate Linear Response

Notice from (18) that the covariance estimates are obtained by studying the pertur-
bations in � �  � � " as we vary

� �  �
� " . This is not practical in general since calculat-
ing � �  � � " itself is intractable. Instead, we consider perturbations of approximate
marginal distributions �EQ � � . In the following we will assume that Q �  � �(' � " are the
beliefs at a local minimum of the approximate Gibbs free energy under consider-
ation (possibly subject to constraints).

In analogy to (18), let ) � �  �
� 2J� � "!� 
�* � 	 5 �,+ � �
 � b
	 5cb-� ��� ��� � be the linear response esti-

mated covariance, and define the linear response estimated joint pairwise marginal
as

Q/.�0� �  �
� 2 � � "$�1),� �  �
� 2J� � " � Q ��  �
� "JQ ��  � � " (19)
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where Q ��  �
� " ��(QT�  �
� ' � ���6" . We will show that Q .�0� � and ),� � satisfy a number of
important properties of joint marginals and covariances.

First we show that ) � �  �
� 2 � � " can be interpreted as the Hessian of a well-
behaved convex function. We focus here on the Bethe approximation (the mean
field case is simpler). First, let � be the set of beliefs that satisfy the constraints
(10) and normalization constraints. The approximate marginals �EQ �� � along with
the joint marginals �EQ �� � form a local minimum of the Bethe-Gibbs free energy
(subject to Q � �� �EQ �� 2SQ �� ��@�� ). Assume that Q � is a strict local minimum2 of

V ��� .
That is there is an open domain � containing Q � such that

V ���  Q � "�� V ���  QR" for
each Q @��	�
���^Q � . Now we can defineV�
  � " � �����* ������� V ���  Q "CX�� � % 5cb QT�  �
� " � �  �
�1" (20)V 
  � " is a concave function since it is the infimum of a set of linear functions in�
. Further

V 
  �6"W� V  Q � " and since Q � is a strict local minimum when
� ��� ,

small perturbations in
�

will result in small perturbations in Q � , so that
V 


is well-
behaved on an open neighborhood around

� ��� . Differentiating
V 
  � " , we get
��! 	 � �
 ��� 	 5 � � ��X Q �  � �(' � " so that we now have

),� �  �
� 2 � � "N� " Q �  � � ' � "" � �  �
� " ���� ��� � ��X "$# V 
  � "" � �  �
� " " � �  � � " ���� ��� � (21)

In essence, we can interpret
V 
  � " as a local convex dual of

V ���  Q " (by restricting
attention to � ). Since

V ��� is an approximation to the exact Gibbs free energy
(Welling and Teh, 2003), which is in turn dual to

�� � " (Georges and Yedidia,
1991),

V 
  � " can be seen as an approximation to
�� � " for small values of

�
. For

that reason we can take its second derivatives ) � �  �
� 2 � � " as approximations to the
exact covariances (which are second derivatives of X �  � " ). These relationships
are shown pictorially in figure 2.

We now proceed to prove a number of important properties of the covariance) .

Theorem 1 The approximate covariance satisfies the following symmetry:

),� �  �
� 2 � � "N�1) � �  � � 2 �
�8" (22)

2The strict local minimality is in fact attained if we use loopy belief propagation
(Heskes, 2003).
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Figure 2: Diagrammatic representation of the different objective functions dis-
cussed in the paper. The free energy

�
is the cumulant generating function (up to

a constant),
V

is the Gibbs free energy,
V ��� is the Bethe-Gibbs free energy which

is an approximation to the true Gibbs free energy and
V 


is the approximate cu-
mulant generating function. The actual approximation is performed in the dual
space, while the dashed arrow indicates that the overall process gives

V 

as an

approximation to
�

.

Proof: The covariances are second derivatives of X V 
  � " at
� � � and we can

interchange the order of the derivatives since
V 
  � " is well-behaved on a neigh-

borhood around
� � � . �

Theorem 2 The approximate covariance satisfies the following “marginaliza-
tion” conditions for each �-� 2 � � :

3 5�� b ),� �  ���� 2 � � "N� 3 5��� ),� �  �
� 2 ���� "N� � (23)

As a result the approximate joint marginals satisfy local marginalization con-
straints:

3 5 � b Q/.�0� �  ���� 2J� � " � Q ��  � � " 3 5 �� Q/.�0� �  �
� 2J���� " � Q ��  �
�1" (24)
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Proof: Using the definition of ) � �  �
� 2 � � " and marginalization constraints for Q �� ,
3 5 �� ),� �  �
� 2 ���� " � 3 5 ��


�* � 	 5 �� + � �
 � b
	 5cb�� ��� ��� � � 

 � b�	 5cb�� � 5 �� Q �  � �� ' � " ��� ��� � � 

 � b�	 5cb-� % ��� ��� � � �
(25)

The constraint � 5 � b ),� �  � �� 2 � � " � � follows from the symmetry (22), while the
corresponding marginalization (24) follows from (23) and the definition of Q .�0� � .

�

Since X �� � " is convex, its Hessian matrix with entries given in (18) is positive
semi-definite. Similarly, since the approximate covariances )0� �  �
� 2 � � " are second
derivatives of a convex function X V 
  � " , we have:

Theorem 3 The matrix formed from the approximate covariances )0� �  �
� 2 � � " by
varying ? and �-� over the rows and varying "^2 � � over the columns is positive semi-
definite.

Using the above results we can reinterpret the linear response correction as a
“projection” of the (only locally consistent) beliefs �EQ �� 2SQ �� � onto a set of beliefs�EQ �� 2SQ .�0� � � that is both locally consistent (theorem 2) and satisfies the global con-
straint of being positive semi-definite (theorem 3). This is depicted in figure 3.
Indeed the idea to include global constraints such as positive semi-definiteness
in approximate inference algorithms was proposed in (Wainwright and Jordan,
2003). It is surprising that a simple post-hoc projection can achieve the same
result.

5 Propagation Algorithms for Linear Response

Although we have derived an expression for the covariance in the linear response
approximation (21), we haven’t yet explained how to efficiently compute it. In this
section we derive a propagation algorithm to that end and prove some convergence
results, while in the next section we will present an algorithm based on a matrix
inverse.

Recall from (19) that we need the first derivative of Q �  �
� ' � " with respect to� �  � � " at
� � � . This does not automatically imply that we need an analytic

expression for QS�  �
� ' � " in terms of
�
. Instead, we only need to keep track of first

order dependencies by expanding all quantities and equations up to first order in
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postive
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BP
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Figure 3: Various constraint sets discussed in the paper. The inner set is the set of
all marginal distribution which are consistent with some global distribution P  �#" ,
the outer set is the constraint set of all locally consistent marginal distributions,
while the middle set consists of locally consistent marginal distributions with posi-
tive semi-definite covariance. The linear response algorithm performs a correction
on the joint pairwise marginals such that the covariance matrix is symmetric and
positive semi-definite, while all local consistency relations are still respected.

�
. For the beliefs we write3,

QT�  �
� ' � " � Q ��  �
� " � % � 3 � % � ��� � �  �
� 2�� � " � �  � � "�� (26)

The “response matrix” � � �  �
� 2�� � " measures the sensitivity of Z	\)] QS�  �
� ' � " at node? to a change in the log node potentials Z	\^] + �  � � " at node " . Combining (26) with
(21), we find that ),� �  �
��2 � � " � Q ��  �
�1" � � �  �
� 2J� � " (27)

The constraints (23) (which follow from the normalization of Q �  �
� ' � " and Q ��  �
� " )
3The unconventional form of this expansion will make subsequent derivations

more transparent.
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translate into 3a5cb�Q ��  �
�1" � � �  �
� 2�� � "N� � (28)

and it is not hard to verify that the following shift can be applied to accomplish
this4,

� � �  �
��2 � � "�� � � �  �
� 2 � � "`X 3a5cb�Q ��  �
� " � � �  �
� 2 � � " (29)

5.1 The Mean Field Approximation

Let us assume that we have found a local minimum of the MF-Gibbs free energy
by iterating (7) until convergence. By inserting the expansions (15,26) into (7)
and equating terms linear in

�
we derive the following update equations for the

response matrix in the MF approximation,

� � �
 �
� 2 � � "�� $ � � $ 5cb � �

�
3�)��� b 35 Y�
 b Z	\)] + �  �-�." � '� ��� � � Q � % ����  � � " � � 3� ��� � � � � �

 � � 2 � � " � (30)

This update is followed by the shift (29) in order to satisfy the constraint (28), and
the process is initialized with � � �

 �
� 2 � � "N� � . After convergence we compute the
approximate covariance according to (27).

Theorem 4 The propagation algorithm for computing the linear response esti-
mates of pairwise probabilities in the mean field approximation is guaranteed to
converge to a unique fixed point using any scheduling of the updates.

For a full proof we refer to the proof of theorem 6 which is very similar. However
it is easy to see that for sequential updates convergence is guaranteed because (30)
is the first order term of the MF equation (7) which converges for arbitrary

�
.

5.2 The Bethe Approximation

In the Bethe approximation we follow a similar strategy as in the previous section
for the MF approximation. First we assume that belief propagation has converged

4The shift can be derived by introducing a
�
-dependent normalizing constant

in (26), expanding it to first order in
�

and using the first order terms to satisfy
constraint (28).
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to a stable fixed point, which by (Heskes, 2003) is guaranteed to be a local mini-
mum of the Bethe-Gibbs free energy. Next, we expand the messages �9� �  �
�1" and

�=���  �
�1" up to first order in
�

around the stable fixed point,

��� �  �
�8"$� �
�� �  �
� " � % � 3

�

% �
�

� � � % �
 �
� 2 � � " � �

 � � " � (31)

�=���  �
�8"$� �
����  �
�1" � % � 3

�

% �
�

� ��� % �
 �
� 2 � � " � �

 � � " � (32)

Inserting these expansions and the expansion (15) into the belief propagation
equations (11,12) and matching first order terms we arrive at the following up-
date equations for the “super-messages”

� ��� % �
 �
� 2�� � " and

� � � % �
 �
� 2 � � " ,

� � � % �
 �
� 2 � � " � $c� � $ 5cb � �

� 3
� ��� b � � � � � % �

 �
� 2 � � " (33)

� ��� % �
 �
� 2 � � " � 35 Y�
 b + �  �-�."�

����  �
�1" '
� ��� Y � � �

�
� �  � � " 3� ��� Y � � � � � % �

 � � 2 � � " (34)

The super-messages are initialized at
� ��� % � � � � � % � � � and “normalized” as

follows5,
� � � % �

 �
� 2�� � "�� � � � % �
 �
� 2 � � "`X 3a5cb � � � % �

 �
��2 � � " (35)

� ��� % �
 �
� 2�� � "�� � ��� % �

 �
� 2 � � "`X 3 5cb � ��� % �
 �
� 2 � � " (36)

After the above fixed point equations have converged, we compute the response
matrix � � �  �
� 2 � � " by inserting the expansions (26,15,32) into (14) and matching
first order terms,

� � �  �
� 2 � � "N�1$c� � $ 5cb 5 � � 3�)��� b � ��� % �  �
� 2 � � " (37)

We then normalize the response matrix as in (29) and compute the approximate
covariances as in (27).

We now prove a number of useful results concerning the iterative algorithm
proposed above.

5The derivation is along similar lines as explained in the previous section for
the MF case. Note also that unlike the MF case normalization is only desirable
for reasons of numerical stability.
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Theorem 5 If the factor graph has no loops then the linear response estimates de-
fined in (27) are exact. Moreover, there exists a scheduling of the super-messages
such that the algorithm converges after just one iteration (i.e. every message is
updated just once).

Proof: Both results follow from the fact that belief propagation on tree structured
factor graphs computes the exact single node marginals for arbitrary

�
. Since the

super-messages are the first order terms of the BP updates with arbitrary
�
, we can

invoke the exact linear response theorem given by (17) and (18) to claim that the
algorithm converges to the exact joint pairwise marginal distributions. Moreover,
the number of iterations that BP needs to converge is independent of

�
, and there

exists a scheduling which updates each message exactly once (inward-outward
scheduling). Since the super-messages are the first order terms of the BP updates,
they inherit these properties.

�
For graphs with cycles, BP is not guaranteed to converge. We can however

still prove the following strong result.

Theorem 6 If the messages � �
����  �
�1" 2 �

�� �  �
�1"c� have converged to a stable fixed
point, then the update equations for the super-messages (33,34,36) will also con-
verge to a unique stable fixed point, using any scheduling of the super-messages.

Sketch of Proof: As a first step, we combine the BP message updates (11,12)
into one set of fixed point equations by inserting (11) into (12). Next, we linearize
the fixed point equations for the BP messages around the stable fixed point. We
introduce a small perturbation in the logarithm of the messages: $`Z	\)] � ���  �
� " ��� ���  �
�1" �� ��

� where we have collected the message index � ? and the state index�
� into one “flattened” index � . The linearized equation takes the general form,

Z	\^] � �
� ��

� � Z	\^] � �
� 3 * �

� * �� * (38)

where the matrix
�

is given by the first order term of the Taylor expansion of the
fixed point equation. Since we know that the fixed point is stable, we infer that
the absolute values of the eigenvalues of

�
are all smaller than

%
, so that

��
��� �

as we iterate the fixed point equations.
Similarly for the super messages, we insert (33) into (34) and include the

normalization (36) explicitly so that (33,34,36) collapse into one linear equation.
We now observe that the collapsed update equations for the super-messages are

14



linear and of the form,

�
��� � � ��� � 3 * �

� * � * � (39)

where we introduced new flattened indices � �  �� 2 � � " and where
�

is identical to
the

�
in (38). The constant term � ��� comes from the fact that we also expanded

the node potential + � as in (15). Finally, we recall that for the linear dynamics
(39) there can only be one fixed point at

�
��� � 3 * �  �� X � "
	���
 � * � * � (40)

and which exists only if � ���  �� X � "  � � . Finally since the eigenvalues of
�

are
less than 1, we conclude that �����  �� X � "  � � so the fixed point exists, that the
fixed point is stable, and that the (parallel) fixed point equations (39) will converge
to the fixed point.

The above proves the result for parallel updates of the super-messages. How-
ever, for linear systems the Stein-Rosenberg theorem now guarantees that any
scheduling will converge to the same fixed point, and moreover, that sequential
updates will do so faster.

�

6 Non-Iterative Algorithms for Linear Response

In section 5 we described propagation algorithms to directly compute the approx-
imate covariances


�* b
	 5cb-�
 � �

	 5
�

�
. In this section we describe an alternative method that

first computes

 � b
	 5cb��
�*

�

	 5
�

�
and then inverts the matrix formed by


 � b�	 5cb��
�*
�

	 5
�

�
where we have

flattened �M? 2J�-��� into a row index and � � 2 � � � into a column index. This method
is a direct extension of (Kappen and Rodriguez, 1998). The intuition is that while
perturbations in a single

� �  �
�1" affect the whole system, perturbations in a singleQT�  �
� " (while keeping the others fixed) affect each subsystem � @B� independently
(see also (Welling and Teh, 2003)). This makes it easier to compute


 � b
	 5cb��
�*
�

	 5
�

�
then

to compute

�* b
	 5cb��
 � �

	 5
�

�
.

First we propose minimal representations for Q � and
�

� . Notice that the current
representations of QS� and

�
� are redundant: we always have � 5cb QT�  �
� "�� %

for
all ? , while for each

�
adding a constant to all

�
�
 � � " does not change the beliefs.

This means that the matrix is actually not invertible: it has eigenvalues of 0. To
deal with this non-invertibility, we propose a minimal representation for Q�� and

� � .
15



In particular, we assume that for each ? there is a distinguished value � � � � and
set

� �  �6"N� � while functionally define QS�  �6" � % X � 5cb��� � QT�  �
�8" . Now the matrix

formed by

 � b�	 5cb��
�*

�

	 5
�

�
for each ?J2 � and �-� 2J� �  ��� is invertible; its inverse gives us

the desired covariances for �-� 2 � �  � � . Values for �-�$� � or � � � � can then be
computed using (23).

6.1 The Mean Field Approximation

Taking the log of the MF fixed point equation (7) and differentiating with respect
to Q �

 � � " , we get after some manipulation for each ? 2 � and �#� 2 � �  � � ,
 � b�	 5cb-�
�*
�

	 5
�

� � $c� �

� $ 5cb 5 �QT�  �
� " � %
QT�  �6" � X % X $ � � " 3�)��� b ��� �

35 Y�
 b
� �

Z	\)] + �  �-�." '� ��� � � % �

Q �  � � " (41)

Inverting this matrix thus results in the desired estimates of the covariances (see
also (Kappen and Rodriguez, 1998) for the binary case).

6.2 The Bethe Approximation

In addition to using the minimal representations for Q � and
� � , we will also need

minimal representations for the messages. This can be achieved by defining new
quantities �
� �  �
� "K� Z	\^]�� b Y 	 5cb���

b Y 	 � � for all ? and �-� . The �
� � ’s can be interpreted as
Lagrange multipliers to enforce the consistency constraints (10) (Yedidia et al.,
2000). We will use these multipliers instead of the messages in this section.

Re-expressing the fixed point equations (11,12,13,14) in terms of QR� ’s and � � � ’s
only, and introducing the perturbations

� � , we get:� QS�  �
� "QT�  �6" � �
b
� + �  �
� "+ �  �^" � �

b
	 5cb-� '�)��� b � 	�� b Y 	 5cb�� for all ? 2 �
�  � � (42)

QT�  �
�8"$� � 5 Y�
 b
+ �  �-�." � � ��� Y � � � Y 	 5 � �

� 5 Y
+ �  �-�." � � ��� Y � � � Y 	 5 � � for all ? 2S�G@ A � 2 �
�  � � (43)

The divisions by the values at 0 in (42) is to get rid of the proportionality constant.
The above forms a minimal set of fixed point equations that the single node

beliefs QT� ’s and Lagrange multipliers �-� � ’s need to satisfy at any local minimum of
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the Bethe free energy. Differentiating the logarithm of (42) with respect to Q �
 � � " ,

we get 
 � b
	 5cb-�
�*
�

	 5
�

� � � �
$c� �

� $ 5cb 5 �QT�  �
�1" � %
QT�  �6" � � 3�)��� b 
 � b Y 	 5cb-�
�*

�

	 5
�

�
(44)

remembering that QS�  �6" is a function of QS�  �
�1" , �-�  � � . Notice that we need val-
ues for


 � b Y 	 5cb-�
�*
�

	 5
�

�
in order to solve for


 � b�	 5cb-�
�*
�

	 5
�

�
. Since perturbations in Q �

 � � " (while
keeping other Q � ’s fixed) do not affect nodes not directly connected to

�
, we have
 � b Y 	 5cb��
�*

�

	 5
�

� � � for
�  @O� . When

� @ � , these can in turn be obtained by solving, for
each � , a matrix inverse. Differentiating (43) by Q �

 � � " , we obtain$ � � $ 5cb 5 � � 3 � ��� 35 � �� � ) �� �  �
� 2 � � " 
 � �
Y 	 5 � �
�*

�

	 5
�

�
(45)

) �� �  �
� 2 � � " � � QS�  �
� 2 � � "`X QS�  �
�1"aQ �  � � " if ?  � "QT�  �
�1"�$ 5cb 5 � X QT�  �
�1"JQ �  � � " if ?M� " (46)

for each ? 2 � @ A � and �-� 2 � �  ��� . Flattening the indices in (45) (varying ? 2J�#�
over rows and

� 2 � � over columns), the LHS becomes the identity matrix, while
the RHS is a product of two matrices. The first is a covariance matrix )0� where
the ?�" th block is ) �� �  �
� 2J� � " ; while the second matrix consists of all the desired

derivatives

 � � Y 	 5 � �
�*

�

	 5
�

�
. Hence the derivatives are given as elements of the inverse

covariance matrix ) 	��� . Finally, plugging the values of

 � � Y 	 5 � �
�*

�

	 5
�

�
into (44) now

gives

 � b�	 5cb��
�*

�

	 5
�

�
and inverting that matrix will now give us the desired approximate

covariances over the whole graph. Interestingly, the method only requires access
to the beliefs at the local minimum, not to the potentials or Lagrange multipliers.

7 A Propagation Algorithm for Matrix Inversion

Up to this point all considerations have been in the discrete domain. A natural
question is whether linear response can also be applied in the continuous domain.
In this section we will use linear response to derive a propagation algorithm to
compute the exact covariance matrix of a Gaussian Markov random field. A Gaus-
sian random field is a real-valued Markov random field with pairwise interactions.
Its energy is

� � %
> 3 � � � � � �
�	� � � 3 � � �	�
� (47)
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where
� � � are the interactions and ��� are the biases. Since Gaussian distributions

are completely described by their first and second order statistics, inference in this
model reduces to the computation of the mean and covariance,

� ��������N� X�� 	��
	 � ������
�����CX ��� � ��� 	�� (48)

In (Weiss and Freeman, 1999) it was shown that belief propagation (when it con-
verges) will compute the exact means � � , but approximate variances � � � and co-
variance �,� � between neighboring nodes. We will now show how to compute the
exact covariance matrix using linear response, which through (48) translates into
a perhaps unexpected algorithm to invert the matrix � .

First, we introduce a small perturbation to the biases, 	 � 	 ���
and note

that, � � � ��X 
 � � 	�� �
�� b 
�� � ��� � � � ��X 
 � b
�� � ��� � � � (49)

Our strategy will thus be to compute �  � "�� � � X � �
up to first order in

�
. This

can again be achieved by expanding the propagation updates to first order in
�

.
It will be convenient to collapse the > sets of message updates (11,12) into one
set of messages, by inserting (11) into (12). Because the subsets � correspond to
pairs of variables in the Gaussian random field model we change notation for the
messages from � � " with � � �M?J2 " � to ? � " . Using the following definitions
for the messages and potentials,

� � �  � � "�� � 	��� � b � 5 �� 	 * b � 5 � (50)

+ � �  �
� 2 � � "N� � 	��
b � 5cb 5 � + �  �
�1"N�1� 	 �� � b b 5 �b 	 � b 5cb (51)

we derive the update equations 6,

� � � � 	�� �b ��
b b �"!

�$#&% b 
 � � �

b QT� � � �
b ��
b �
� �9� � 3

� ��� b � � Q � � � (52)

' � � � � � � 3
� ��� b � � � �#�#��X � � � � � ��� b Q � �' � (53)

where the means � � are exact at convergence, but the precisions ' � are approximate
(Weiss and Freeman, 1999). We note that the � � � messages do not depend on 	
so that the perturbation 	 � 	 �(�

will have no effect on it. Perturbing the Q � �
6Here we used the following identity: )+*^� � 	��� � 5 � 	 * 5 � � * �-, # �/. >10�2 �
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messages as, QS� � � Q �� � � � � P � � % ��� � we derive the following update equations for
the “super-messages” P � � % � ,

P � � % � � � � �
� � �  $ � � � 3

� ��� b � � P � � % � " (54)

Note that given a solution to the above equation, it is no longer necessary to run
the updates for QS� � (52) since QS� � can be computed by QS� � � � � P � � % � � � .

Theorem 7 If belief propagation has converged to a stable fixed point (i.e. mes-
sage updates (52) have converged to a stable fixed point) then the message updates
(54) will converge to a unique stable fixed point. Moreover, the exact covariance
matrix � ��� 	�� is given by the following expression,

� � � � %
' �

� $c� � � 3
� ��� b P � � % � � (55)

with ' � given by (53).

Sketch of proof: The convergence proof is similar to the proof of theorem 6 and
is based on the observation that (54) is a linearization of the fixed point equation
for QS� � (52) so has the same convergence properties. The exactness proof is similar
to the proof of theorem 5 and uses the fact that BP computes the means exactly so
(49) computes the exact covariance, which is what we compute with (55)

�
.

In (Weiss and Freeman, 1999) it was further shown that for diagonally domi-
nant weight matrices ( � � � ����� � � �� � � � � � �� #? ) convergence of belief propagation
(i.e. message updates (52)) is guaranteed. Combined with the above theorem this
ensures that the proposed iterative algorithm to invert � will converge for diag-
onally dominant � . Whether the class of problems that can be solved using this
method can be enlarged, possibly at the expense of an approximation, is still an
open question.

From (48) we observe that the exact covariance matrix may also be computed
by running BP

�
times with 	 � ��X ��� 2�? � % �/� � �

, where ��� is the unit vector
in direction ? . The exact means � � � � computed using BP thus form the columns
of the matrix � 	�� . This idea was exploited in the proof of claim > in (Weiss and
Freeman, 1999).

The complexity is of the above algorithm is �  ��� � " per iteration, where
�

is the number of nodes and
�

the number of edges in the graph. Consequently,
it will only improve on a straight matrix inversion if the graph is sparse (i.e. the
matrix to invert has many zeros).
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(a) (b)

Figure 4: (a)-Square grid used in the experiments. The rows are collected into
super-nodes which then form a chain. (b)-Spanning tree of the nodes on the square
grid used in the experiments.

8 Experiments

In the following experiments we will compare � methods for computing approxi-
mate estimates of the covariance matrix ) � �  �
� 2 � � " � � � �  �
� 2J� � "CX �[�  �
�1"�� �  � � " :
MF: Since mean field assumes independence we have )(� � . This will act as a

baseline.

BP: Estimates computed directly from (13) by integrating out variables which
are not considered (in fact, in the experiments below the factors � consist
of pairs of nodes, so no integration is necessary). Note that nontrivial es-
timates only exist if there is a factor node that contains both nodes. The
BP messages were uniformly initialized at � ���  �
� "$� �#� �  �
� "$� %

, and run
until convergence. No damping was used.

MF+LR: Estimates computed from the linear response correction to the mean
field approximation (section 5.1). The MF beliefs were first uniformly ini-
tialized at QS�  �
� "B� % 2�� , and run until convergence, while the response
matrix � � �  �
� 2 � � " was initialized at � .

BP+LR: Estimates computed from the linear response correction to the Bethe ap-
proximation (section 5.2). The super-messages � � ��� % �  �
� 2 � � " 2 � � � % �  �
� 2 � � "c�
were all initialized at � .
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COND: Estimates computed using the following conditioning procedure. Clamp
a certain node " to a specific state � � � � . Run BP to compute conditional
distributions Q ���  �
��� � � � � " . Do this for all nodes and all states to obtain all
conditional distributions Q ���  �
��� � � " . The joint distribution is now computed
as Q COND� �  �
� 2J� � " � Q ���  �
��� � � "JQ ���  � � " . Finally, the covariance is computed as,

) COND� �  �
� 2 � � "N�4Q COND� �  �
� 2 � � "`X 3 5 � Q COND� �  �
� 2 � � " 3 5cb Q COND� �  �
� 2 � � " (56)

Note that ) is not symmetric and that the marginal � 5 � Q COND� �  �
��2 � � " is not
consistent with Q ���  �
� " .

The methods were halted if the maximum change in absolute value of all beliefs
(MF) or messages (BP) was smaller than

% � 	 � . The graphical model in the first
two experiments has nodes placed on a square

� � �
grid (i.e.

� ��� � ) with
only nearest neighbors connected (see figure 4a). Each node is associated with a
random variable which can be in one of three states ( � ��� ). The factors were
chosen to be all pairs of neighboring nodes in the graph.

By clustering the nodes in each row into super-nodes exact inference is still
feasible by using the forward-backward algorithm. Pairwise probabilities between
nodes in non-consecutive layers were computed by integrating out the intermedi-
ate super-nodes.

The error in the estimated covariances was computed as the absolute difference
between the estimated and the true values, averaged over pairs of nodes and their
possible states, and averaged over

% � random draws of the network as described
below. An instantiation of a network was generated by randomly drawing the
logarithm of the node and edge potentials from a Gaussian with zero mean and
standard deviation ���	�	
�� and �
��
���� respectively.

In the first experiment we generated networks randomly with a scale ����
����
varying over the range � � 2c>�� and > settings of the scale ���	��
�� , namely � � 2c>.� .
The results in figure 5 were separately plotted for neighboring nodes, next-to-
nearest neighboring nodes and the remaining nodes, in order to show the decay of
dependencies with distance. Estimates for BP are absent in figures (b,e) and (c,f)
because BP does not provide non-trivial estimates for non-neighbors.

In the next experiment we generated a single network with ����
���� � %
and� + ��� � %

on the
� � �

square grid used in the previous experiment. The edge
strengths of a subset of the edges forming a spanning tree of the graph were held
fixed (see figure 4b), while the remaining edge strenghts were multiplied by a
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Figure 5: Absolute error for the estimated covariances for
� � �

square grid.
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Figure 6: Absolute error for spanning tree in figure 4b that is smoothly changed
into the

� � �
square grid.
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Figure 7: Absolute error computed on a fully connected network with
% � nodes.

factor increasing from � to > on the x-axis. The results are shown in figure 6.
Note that BP+LR and COND are exact on the tree.

Finally, we generated fully connected graphs with
% � nodes and � states per

node (i.e. all nodes are neighbors). We used varying edge strengths ( � ��
���� ranging
from � �[2 % � ) and two values of ���	��
�� HC� � 2c>.� . The results are shown in figure 7.
If we further increase the edge strengths in this fully connected network, we find
that BP often fails to converge. We could probably improve this situation a little
bit by damping the BP updates, but because of the many tight loops, BP is doomed
to fail for relatively large � ��
���� .

All experiments confirm that the LR estimates of the covariances in the Bethe
approximation improve significantly on the LR estimates in the MF approxima-
tion. It is well known that the MF approximation usually improves for large
densely connected networks. This is probably the reason MF+LR performed bet-
ter on the fully connected graph, but never as good as BP+LR or COND. The
COND method performed surprisingly good, either at the same level of accuracy
as BP+LR or a little bit better. It was however checked numerically that the sym-
metrized estimate of the covariance matrix was not positive semi-definite and that
the various marginals computed from the joint distributions Q COND� �  �
� 2 � � " were in-
consistent with each other. In the next section we further discuss the differences
between BP+LR and COND. Finally, as expected, the BP+LR and COND esti-
mates are exact on a tree – the error is of the order of machine precision – but
increases when the graph contains cycles with increasing edge strengths.
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9 Discussion

Loosely speaking, the “philosophy” of this paper to compute estimates of covari-
ances is as follows (see figure 2). First we observe that the log partition function is
the cumulant generating function. Next, we define its conjugate dual – the Gibbs
free energy – and approximate it (e.g. the mean field or the Bethe approximation).
Finally, we transform back to obtain a convex approximation to the log partition
function, from which we estimate the covariances.

In this paper we have presented linear response algorithms on factor graphs.
In the discrete case we have discussed the mean field and the Bethe approxima-
tions while for Gaussian random fields we have shown how the proposed linear
response algorithm translates into a surprising propagation algorithm to compute
a matrix inverse.

The computational complexity of the iterative linear response algorithm scales
as �  � � � � �

� " per iteration, where
�

is the number of nodes,
�

the number
of edges and � the number of states per node. The non-iterative algorithm scales
slightly worse, �  � � � �

� " , but is based on a matrix inverse for which very
efficient implementations exist. A question that remains open is whether we can
improve the efficiency of the iterative algorithm when we are only interested in the
joint distributions of neighboring nodes. On tree structured graphs we know that
belief propagation computes those estimates exactly in �  � � �

# " , but the linear
response algorithm still seems to scale as �  � � � � �

� " , which indicates that
some useful information remains unused. Another hint pointing in that direction
comes from the fact that in the Gaussian case an efficient algorithm was proposed
in (Wainwright et al., 2000) for the computation of variances and neighboring
covariances on a loopy graph.

There are still a number of generalizations worth exploring. Firstly, instead of
MF or Bethe approximations we can use the more accurate Kikuchi approxima-
tion defined over larger clusters of nodes and their intersections (see also (Tanaka,
2003)). Another candidate is the “convexified Bethe free energy” (Wainwright
et al., 2002). Secondly, in the case of the Bethe approximation, belief propagation
is not guaranteed to converge. However, convergent alternatives have been devel-
oped in the literature (Teh and Welling, 2001; Yuille, 2002) and the non-iterative
linear response algorithm can still be applied to compute joint pairwise distri-
butions. For reasons of computational efficiency it may be desirable to develop
iterative algorithms for this case. Thirdly, the presented method easily generalizes
to the computation of higher order cumulants. It is straightforward (but cumber-
some) to develop iterative linear response algorithms for this as well. Lastly, we
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are investigating whether linear response algorithms may also be applied to fixed
points of the expectation propagation algorithm.

The most important distinguishing feature between the proposed LR algorithm
and the conditioning procedure described in section 8 is the fact that the covari-
ance estimate is automatically positive semi-definite. The idea to include global
constraints such as positive semi-definiteness in approximate inference algorithms
was proposed in (Wainwright and Jordan, 2003). LR may be considered as a
post-hoc projection on this constraint set (see section 4.1 and figure 3). Another
difference is the lack of a convergence proof for conditioned BP runs, given that
BP has converged without conditioning (convergence for BP+LR was proven in
section 5.2). Even if the various runs for conditioned BP do converge, different
runs might converge to different local minima of the Bethe free energy, making
the obtained estimates inconsistent and less accurate (although in the regime we
worked with in the experiments we did not observe this behaviour). Finally, the
non-iterative algorithm is applicable to all local minima in the Bethe-Gibbs free
energy, even those that correspond to unstable fixed points of BP. These minima
can however still be identified using convergent alternatives (Yuille, 2002; Teh
and Welling, 2001).
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