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Abstract

In this paper we will show that a restricted class of constrained mini-
mum divergence problems, named generalized inference problems, can
be solved by approximating the KL divergence with a Bethe free energy.
The algorithm we derive is closely related to both loopy belief propaga-
tion and iterative scaling. This unified propagation and scaling algorithm
reduces to a convergent alternative to loopy belief propagation when no
constraints are present. Experiments show the viability of our algorithm.

1 Introduction

For many interesting models, exact inference is intractible. Trees are a notable exception
where Belief Propagation (BP) can be employed to compute the posterior distribution [1].
BP on loopy graphs can still be understood as a form of approximate inference since its
fixed points are stationary points of the Bethe free energy [2]. A seemingly unrelated prob-
lem is that of finding the distribution with minimim KL divergence to a prior distribution
subject to some constraints. This problem can be solved through the iterative scaling (IS)
procedure [3]. Although a lot of work has been done on approximate inference, there seems
to be no counterpart in the literature on approximate minimum divergence problems. This
paper shows that the Bethe free energy can be used as an approximation to the KL di-
vergence and derives a novel approximate minimum divergence algorithm which we call
unified propagation and scaling (UPS).

In section 2 we introduce generalized inference and the iterative scaling (IS) algorithm.
In section 3, we approximate the KL divergence with the Bethe free energy and derive
fixed point equations to perform approximate generalized inference. We also show in what
sense our fixed point equations are related to loopy BP and IS. Section 4 describes unified
propagation and scaling (UPS), a novel algorithm to minimize the Bethe free energy, while
section 5 shows experiments on the efficiency and accuracy of UPS.

2 Generalized Inference

In this section we will introduce generalized inference and review some of the literature
on iterative scaling (IS). Let ���������	� where �
� is the variable associated with node�
. Consider an undirected graphical model � with single and pairwise potentials  ��������� ,



 ��� ���
���	����� . Let � ����� be the distribution represented by � , i.e.

� � �����	�
 �����  ��� � �
���	������ �  ������� �����
 ������� ��� ���
��� ������ � � �����
� ��������� (1)

where � ��� � �
���	��� � �  ��� ������� ����  ���������  � ������� , � � � �
� � �  �����
� � , � ��� � ranges over the edges
of � ,

�
ranges over the nodes of � and � � is the number of neighbours of

�
. Let �

be a subset of nodes. For
� � � let !" � � �
� � be a fixed distribution over � � . Given these

“observed distributions” on � , define the generalized posterior as the distribution # ��� �
which minimizes the KL divergence$&% � #(')� � ��*,+ # � ��� �.-0/�1 # � ���324-0/�1 � ��� �	� (2)

subject to the constraints that # � ��� � � !" ��������� for each
�5� � . We call these constraints ob-

servational (Obs) constraints. Generalized inference is the process by which we determine
the generalized posterior1. Let 6 be the set of unobserved nodes, i.e. all nodes not in � .

Theorem 1 If ! " � ��� � � �87 ��� � 2 !� � � for each
�9� � then the generalized posterior is# � ��� � � � ��:<; !�>= ��? �A@ = 7 ��� � 2 !� � � .

where ��B � � ��� ���A@�B for a subset of nodes C . Similarly if C is a subgraph of � . The above
theorem shows that if the constrained marginals are delta functions, i.e. the observations are
hard, then the generalized posterior reduces to a trivial extension of the ordinary posterior,
hence explaining our use of the term generalized inference.

Since generalized inference is a constrained minimum divergence problem, a standard way
of solving it is using Lagrange multipliers. For each

�D� � and � � , let E � � �
� � be the
Lagrange multiplier enforcing # ��� � � � !" � ��� � � . Then the generalized posterior is

# ��� ��� � � ������A@ =GF,H �

 + � � ���


�����  ��� � �
���	�� �5���@ :  �	� �
� �I��A@ =  �	� �
� � FJH �

 + � � (3)

where we chose E � ��� � � to satisfy the Obs constraints. Iterative scaling (IS) can now be used
to solve for E � ��� � � [3]. At each iteration of IS, the Lagrange multiplier E � ��� � � is updated
using the IS scaling update

F H �

 + � �3K F H �


 + � � ! " �	����� �# ��� � � for each �
� (4)

Intuitively, (4) updates the current posterior so that the marginal # ��� ��� for node
�

match
the given constraint ! " � � �
� � . IS is a specific case of the generalized iterative scaling (GIS)
algorithm [4], which updates the Lagrange multipliers for a subset LNM�� of nodes using

F H �

 + � � K F H �


 + � � �POQ �

 + � �R 
 + � � � ��SUT V3T . Parallel GIS steps can be understood as performing IS

updates in parallel, but damping the steps such that the algorithm is still guaranteed to
converge.

Ordinary inference is needed to compute the current marginals # ��� � � required by (4). If
� is singly connected, then belief propagation (BP) can be used to compute the required
marginals. Otherwise, exact inference or sampling algorithms like Markov chain Monte
Carlo can be used, but usually are computationally taxing. Alternative approximate infer-
ence algorithms like variational methods and loopy BP can be used instead to estimate the

1To avoid confusion, we will explicitly use “ordinary inference” for normal inference, but when
there is no confusion “inference” by itself will mean generalized inference. Ditto for posteriors.



required marginals. Although being much more efficient, they can also produce biased es-
timates, potentially leading to the overall IS not converging2. Even if IS did converge, we
do not have much theoretical understanding of the accuracy of the overall algorithm.

A more principled approach is to first approximate the KL divergence, then derive algo-
rithms to minimize the approximation. In the next section, we describe a Bethe free energy
approximation to the KL divergence. Fixed point equations for minimizing the Bethe ap-
proximation can then be derived. The fixed point equations reduce to BP propagation
updates at hidden nodes, and to IS scaling updates at observed nodes. As a consequence,
using loopy BP to approximate the required marginals turns out to be a particular schedul-
ing of the fixed point equations. Because the Bethe free energy is fairly well understood,
and is quite accurate in many regimes [5, 2, 6], we conclude that IS with loopy BP is a
viable approximate generalized inference technique. However, in section 4 we describe
more efficient algorithms for approximate generalized inference based upon the Bethe free
energy.

3 Approximate Generalized Inference

Let � ��� ����� � ���� and � � � �
� � be estimates of the pair-wise and single site marginals of the
generalized posterior. � ��� ����� � ���� and � ��������� are called beliefs. The beliefs need to satisfy
the following marginalization and normalization (MN) constraints:

* + � � ��� ��� � �	� � � � � � � � � � *A+ � � � ��� � � ��� (5)

Let # � � � ��� ���
��� ���� � � �����
� � � . The Bethe free energy is defined as������	�
�� � # � ��* 
 ����� � ��� ��� � � � � � - / 1 � ��� ���
��� ����� ��� �������	����� * � ��� 2 � � � � � ��� � � - / 1 � ���������� � � �
� � (6)� ����	�
��
is an approximation to the KL divergence which only accounts for pair-wise corre-

lations between neighbouring variables and is exact if � is singly connected.

We wish to minimize
������	�
�� � # � subject to the MN and Obs constraints. We use Lagrange

multipliers E � � ��� � � to impose the marginalization constraints. We can also use Lagrange
multipliers to impose the normalization and observational constraints as well, but this re-
duces to simply keeping � ��� � �
���	�� � and � �	� �
� � normalized, and keeping � � � �
� � � !" ������� �
fixed for

� � � . We shall ignore these for clarity. The resulting Lagrangian is

% � � ����	�
�� � # � 2 * � *�)@�� 
 � � E � ��� �
� �
�� * + � � ��� � �
���	����I2 � � ����� ���� (7)

where � � � � denotes the set of neighbours of node
�
. Setting derivatives of

%
with respect

to � ��� ��� � � � � �)� � � ��� � � and E � � � � � � to 0, we get

Theorem 2 Subject to the MN and Obs constraints, every stationary point of
� ����	�
��

is
given by� ��� ���
���	�����5� � ��� �������	���� F H � �


 + � ��� H � �

 + � � � �	� �
� ��� � ��������� F��� ��� ��� �! #"%$ �'& H � �


 + � � (8)

2For a quick example, consider a two node Boltzmann machine, with weight ( and biases )+*-, ( ,
and the desired means on both nodes are .�, / . Then using either naive mean field or naive TAP
equations to estimate the marginals required by IS will not converge.



where the Lagrange multipliers are fixed points of the following updates:

F H � �

 + � � K �� @�� 
 �0��� � * + � � � � ��� � � � � �� �����
� � F H � �


 + � �
for

���� � ,
� � � � � � (9)

FJH � �

 + � � K !" ���������� + � � ��� ����� � ���� F H � �


 + � � for
�5� � ,

� � � � � � (10)

Equation (9) is equivalent to the BP propagation updates by identifying the messages as� ��� ��� � � � � + �	� � � 
 + ��
 + � �� � 
 + � � F H � �

 + � � 3. Rewriting (10) in terms of messages as well we find,

� ��� � �� � K *�+ �  ��� ������� ����
! " � � �
� �� � � � � � � for

�5� � � � � � � � � (11)

We can extend the analogy and understand (11) as a message “bouncing” step, in which
messages going into an observed node get bounced back and are altered in the process.
If !" ��������� � 7 ���
��� !�
� � is a delta function, then (11) reduces to

� ��� ������� K  ��� � !�
���	����� so
that instead of bouncing back, messages going into node

�
get absorbed. An alternative

description of (10) is given by the following theorem.

Theorem 3 Let
�G� � . Updating each E � � � � � � for

� � � � � � using (10) is equivalent to
updating E � � �
� � using (4), where we identify

# ��������� � � � �
� � ��)@�� 
 �0� � � � � �
� � FJH �

 + � � �� � �����
� �! " � ��� � ��� ��� � � ��)@�� 
 �0� F,H � �


 + � � (12)

Theorem 3 states the unexpected result that scaling updates (4) are just fixed point equations
to minimize

��� �!	�
 �
. Further, the required marginals # ��� � � are computed using (9), which

is exactly loopy BP. Hence using loopy BP to approximate the marginals required by IS is
just a particular scheduling of the fixed point equations (9,10).

4 Algorithms to Minimize the Bethe Free Energy

Inspired by [2], we can run run the fixed point equations (9,10) and hope that they converge
to a minimum of

������	�
��
. We call this algorithm loopy IS. Theorem 2 states that if loopy

IS converges it will converge to stationary points of
� ����	�
��

. In simulations we find that it
always gets to a good local minimum, if not the global minimum. However loopy IS does
not necessarily converge, especially when the variables are strongly correlated. There are
two reasons why it can fail to converge. Firstly, the loopy BP component (9) may fail to
converge. However this is not serious as past results indicate that loopy BP often fails only
when the Bethe approximation is not accurate [6]. Secondly, the IS component (10) may
fail to converge, since it is not run sequentially and the estimated marginals are inaccurate.
We will show in section 5 that this is a serious problem for loopy IS.

One way to mitigate the second problem is to use the scaling updates (4), and approximate
the required marginals using an inner phase of loopy BP (call this algorithm IS+BP). The-
orem 3 shows that IS+BP is just a particular scheduling of loopy IS, hence it inherits the
accuracy of loopy IS while converging more often. However because we have to run loopy
BP until convergence for each scaling update, IS+BP is not particularly efficient. Another
way to promote convergence is to damp the loopy IS updates. This works well in practice.
In this section, we describe yet another possibility – an efficient algorithm based on the

3This was first shown in [2], with a different but equivalent identification of ��� ��������� and ������������� .



same fixed point equations (9,10) which is guaranteed to converge without damping. In
subsection 4.1 we describe UPS-T, an algorithm which applies when � is a tree and the
Obs constraints are on the leaves of � . In subsection 4.2 we describe UPS for the general
case, which will make use of UPS-T as a subroutine.

4.1 Constraining the leaves of trees

Suppose that � is a tree, and all observed nodes
��� � are leaves of � . Since � is a tree, the

Bethe free energy is exact, i.e. if the MN constraints are satisfied then
� ����	�
�� � $&% � #(')� �

where # � ��� � ? 
 ����� � ��� ���
��� ���� ? � � � ����� � ������� . As a consequence,
� � �!	�
 �

is convex in the
subspace defined by the MN constraints. Therefore if the fixed point equations (9,10)
converge, they will converge to the unique global minimum. Further, since (9) is exactly
a propagation update, and (10) is exactly a scaling update, the following scheduling of
(9,10) will always converge: alternately run (9) until convergence and perform a single
(10) update. The schedule essentially implements the IS+BP procedure, except that loopy
BP is exact for a tree. Our algorithm essentially implements the scheduling, except that
unnecessary propagation updates are not performed.

Algorithm UPS-T Unified Propagation and Scaling on Trees

1. Run propagation updates (9) until convergence.

2. Let �������������
	�� , , ,��� be such that every node occurs infinitely often.
3. For ��������*���/�� , , , until convergence criterion is met:

4. Perform scaling update (10) for ��������� ������� � , where ��� is the unique neighbour of ��� .
5. For each edge ���! on path from ��� to ���#"$� , apply propagation update (9) for �&%('����)'�� .
6. Run propagation updates (9) until convergence.

4.2 Graphs with cycles

For graphs with cycles,
� ����	�
��

is not exact nor convex. However we can make use of the
fact that it is exact on trees to find a local minimum (or saddle point). The idea is that we
clamp a number of hidden nodes to their current marginals such that the rest of the hidden
nodes become singly connected, and apply UPS-T. Once UPS-T has converged, we clamp
a different set of hidden nodes and apply UPS-T again. The algorithm can be understood
as coordinate descent where we minimize

� ����	�
��
with respect to the unclamped nodes at

each iteration.

Let * M 6 be a set of clamped nodes such that every loop in the graph � contains a node
from L � �,+-* . Define �/. to be the graph obtained from � as follows. For each node�G� L replicate it � � times, and connect each replica to one neighbour of

�
and no other

nodes. This is shown in figures 1(c) and 1(d) for the graph in 1(a). Clearly �0. will be singly
connected. Let 1 M �/. denote the trees in �2. . Define4

� . ��� � � �
3�46587 � .3 � � 3 ��� �

3�46587
�

� 7 � 7 � @ 3  � 7 � 7 ��� � 7 �	� � 7 � �� 7 @ 3  � 7 ��� � 7 � � � � � 7 (13)

# . ��� � � �
3�465 7 # .3 ��� 3 ��� �

394$5 7
�

� 7 � 7 � @ 3 � � 7 � 7 ���
� 7 �	�� 7 � �� 7 @ 3 � � 7 ����� 7 � � � � � 7 (14)

where � � 7 is the number of neighbours of node
� . in �2. . By regrouping terms in

� ����	�
��
we

can show the following:

4For �;:;�
��:<�>=?: define @ � 7 � 7 ��� � 7 � � � 7 �A�B@ � ��������� ��� � where � and � are the original nodes in = .
Similarly for @ � 7 ��� � 7 �C�ED � 7 � 7 ��� � 7 ��� � 7 � and D � 7 ��� � 7 � .



Theorem 4 Let ! � � ����� � be a distribution over ��� for
� � * . Then in the subspace defined

by � �	� �
� � � ! � �	� �
� � for
�5� * and by the MN and Obs constraints, we have� ����	�
�� � *
3�465 7

$D% � # .3 'P� .3 �  *��@ V ��� 2 � � ��* + � ! � ��������� - / 1 ! � � ��� � �� ������� � (15)

To minimize
��� �!	�
 �

, now all we have to do is to minimize each
$D% � # .3 'P�2.3 � individually.

We can already solve this using UPS-T. By clamping the marginals of nodes in * , we
have reduced the problem to one solved by UPS-T, where the observed nodes are taken to
include those in * . The overall algorithm is

Algorithm UPS Unified Propagation and Scaling

1. Initialize beliefs
������� �	��D ������ � ��� �E����� �C��D ������ ��������
 .

2. For ��������*���/�� , , , until convergence criteria is met:

3. Find a set of nodes � � � � such that every loopy is broken by ���� � � � .
4. Using UPS-T, set

� � � � ��������������������� � � � � � �"!
D ��������� ��D � ��#6� �� ��� � � for � �$� � � � , and MN
and Obs constraints are satisfied 
 .

It is clear that
� ����	�
�� � # 
 	 � �&% � � �!	�
 � � # 
 	 � � � � for all ' . Now by using the fact that both

scaling and propagation updates are fixed point equations for finding stationary points of������	�
��
we have,

Theorem 5 If for all ' and
� � 6 there is a ' �)( ' with

� �� * 
 	 � � , then #

 	 �

will converge
to a local minimum (or saddle point) of

� � �!	�
 �
with MN and Obs constraints satisfied.

5 Experiments

In this section we report on two experiments on the feasibility of UPS. In the first ex-
periment we compared the speed of convergence against other methods which minimize� ����	�
��

. In the second experiment we compared the accuracy of UPS against loopy IS. In
both experiments we used *,+-* Boltzmann machines with states ��.��#� � and structure as
shown in figure 1a. The weights are sampled randomly from a Gaussian with mean 0 and
standard deviation /10 and the biases are sampled from a Gaussian with standard deviation
/ � and mean 2 � � incoming weights �3254 . The means of the biases are shifted so that if
/ � is small, the mean values of ��� will be approximately .76 * . The desired marginals are! " � ����� � �32 ���  F 8 � � where 9 � are sampled from a Gaussian with mean 0 and standard
deviation / 8 .

Experiment 1 Speed of Convergence

We compared the speed of convergence for the following algorithms: loopy IS, IS+BP,
GIS+BP (parallel GIS with marginals estimated by loopy BP), UPS-H (clamping rows
of nodes every iteration as in figure 1(b) and UPS-HV (alternatingly clamping rows and
columns as in figures 1(b) and 1(c)). We tested the algorithms on 100 networks, with
/ 0 � * , / � ��� and / 8 �;: . We find that the result is not sensitive to the settings of / 0 � / �
and / 8 so long as the algorithms are able to converge without damping. The result is
shown in figure 1e. IS+BP and GIS+BP are slow because the loopy BP phase is expensive.
UPS-H and UPS-HV both do better than IS+BP and GIS+BP because the inner loops are
cheaper, and the Lagrange multipliers E �����
� � are updated more frequently. Further we see
that UPS-HV is faster than UPS-H since information is propagated faster throughout the
network. loopy IS is the fastest. However the next experiment shows that it also converges
less frequently and there is a trade off between the speed of loopy IS and the stability of
UPS.
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Figure 1: (a) Network structure. Circles are hidden nodes and black squares are observationally
constrained nodes. (b) Clamping rows of nodes. Black circles are the clamped nodes. (c) Clamping
columns of nodes. (d) Replicating each clamped and observed node in (c). (e) Speed of convergence.
The box lines are at the median and upper and lower quartiles, and the whiskers describe the extent
of data. An algorithm or subroutine is considered converged if the beliefs change by less than � . # � � .

Experiment 2 Accuracy of Estimated Marginals

We compared the accuracy of the posterior marginals obtained using UPS-HV and loopy
IS for four possible types of constraints, as shown in figure 2. In case (a), the constraint
marginals are delta functions, so that generalized inference reduces down to ordinary in-
ference, loopy IS reduces to loopy BP and UPS becomes a convergent alternative to loopy
BP. In case (b), we did not enforce any Obs constraints so that the problem is one of esti-
mating the marginals of the prior � � ��� . The general trend is that loopy BP and UPS are
comparable, and they perform worse as weights get larger, biases get smaller or there is
less evidence. This confirms the results in [6]. Further, we see that when loopy BP did
not converge, UPS’s estimates are not better than loopy BP’s estimates. The reason this is
happening is described in [6].

In cases (c) and (d) we set / 8 � .76 4� 4�6 . , corresponding to � � ����� � .76 * and � � ����� spread
out over

� .�� ��� respectively. In these cases UPS and loopy IS did equally well when the
latter converged, but UPS continued to perform well even when loopy IS did not converge.
Since loopy BP always converged when UPS performed well (for cases (a) and (b)), and
we used very high damping, we conclude that loopy IS’s failure to converge must be due
to performing scaling updates before accurate marginals were available. Concluding, we
see that UPS is comparable to loopy IS when generalized inference reduces to ordinary
inference, but in the presence of Obs constraints it is better.

6 Discussion

In this paper we have shown that approximating the KL divergence with the Bethe free
energy leads to viable algorithms for approximate generalized inference. We also find that
there is an interesting and fruitful relationship between IS and loopy BP. Our novel algo-
rithm UPS can also be used as a convergent alternative to loopy BP for ordinary inference.

Interesting extensions are to cluster nodes together to get more accurate approximations
to the KL divergence analogous to the Kikuchi free energy, and to handle marginal con-
straints over subsets of nodes. This will again lead to a close relationship between IS and
junction tree propagation, but the details are to be worked out. We can also explore other
algorithms to minimize

��� �!	�
 �
, including the CCCP algorithm [7]. Another interesting di-

rection for future work is algorithms for learning in log linear models by approximating the
free energy.
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Figure 2: Each plot shows the mean absolute errors for various settings of ��� (x-axis) and � � (y-
axis). The top plots show errors for loopy IS and bottom plots show errors for UPS. The inset shows
the cases (black) when loopy IS did not converge within 2000 iterations, with linear damping slowly
increasing to .�, ��� .
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