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Abstract

GBP and EP are two successful algo-
rithms for approximate probabilistic infer-
ence, which are based on different approxi-
mation strategies. An open problem in both
algorithms has been how to choose an appro-
priate approximation structure. We intro-
duce “structured region graphs,” a formal-
ism which marries these two strategies, re-
veals a deep connection between them, and
suggests how to choose good approximation
structures. In this formalism, each region
has an internal structure which defines an
exponential family, whose sufficient statistics
must be matched by the parent region. Re-
duction operators on these structures allow
conversion between EP and GBP free ener-
gies. Thus it is revealed that all EP ap-
proximations on discrete variables are special
cases of GBP, and conversely that some well-
known GBP approximations, such as overlap-
ping squares, are special cases of EP. Further-
more, region graphs derived from EP have
a number of good structural properties, in-
cluding maxent-normality and overall count-
ing number of one. The result is a conve-
nient framework for producing high-quality
approximations with a user-adjustable level
of complexity.

1 INTRODUCTION

One of the most successful algorithms for approximate
inference is the generalized belief propagation (GBP)
algorithm and its corresponding “region-based” ap-
proximation Yedidia et al. (2002) (see also McEliece
& Yildirim (1998) and Pakzad & Anantharam (2003)).
Independently, the expectation propagation (EP) algo-
rithm was introduced in Minka (2001a) as an approxi-

mate Bayesian inference method. When restricted to a
fully factorized structure, EP was shown to be equiv-
alent to loopy belief propagation. The case of tree
structures was discussed by Minka & Qi (2004) and
found to have some parallels with GBP.

In the design of EP algorithms the emphasis has been
more on algorithmic considerations (though Minka
(2001a; 2001b) did define an EP free energy function).
On the other hand, the design of GBP algorithms
seems to be mostly guided by constructing good ap-
proximations to the free energy of the problem. These
two approaches have perhaps contributed to the fact
that no clear relationship between them has previously
been uncovered.

Exposing this relationship is important for the follow-
ing reasons. The region graph framework of GBP is
extremely flexible which comes at a certain cost: not
every region-based approximation is accurate and it
is not well understood what regions to choose in or-
der to achieve high fidelity approximations. We show
that the EP framework can usefully guide the choice
of region graph. Conversely, insights from the region
graph framework can provide important information
as to which approximation is being made by an EP
algorithm.

The “structured region graph” (SRG) formalism that
we propose is an extension of the region graph for-
malism in Yedidia et al. (2002) to structured message
passing algorithms such as EP. Both EP and GBP ap-
proximations can be accommodated in this framework
while a collection of “graphical reduction operators”
can morph EP-graphs into equivalent region graphs.
Moreover, we show that the region graph properties
that were identified in Yedidia et al. (2002) to corre-
late with accurate approximations are automatically
satisfied for EP. This provides a convenient framework
for designing high quality region graphs.



2 GBP and EP

Generalized belief propagation (GBP) and expectation
propagation (EP) are approximate algorithms for in-
ference in distributions that can be divided into simple
factors:

p(x) ∝
∏

a

fa(xa) (1)

The goal of either algorithm is to estimate various
statistics of x. In this paper we focus on estimating
marginals of discrete random variables. The factors of
p can be represented by a factor graph. The GBP and
EP approximations can be also represented by graph, a
structured region graph, as illustrated in the following.

Consider a distribution on 8 variables whose factors
correspond to the edges of a 2 × 4 grid. Belief propa-
gation passes messages in the graph shown in figure 1
(bottom left). In the top layer we have the factors (de-
picted as edges) and the variables in their arguments
while in the bottom layer we have the single variables
(depicted as nodes). Each vertex in this graph will
be called a region. Each region stores a local distri-
bution over its variables. To send a downward mes-
sage, the parent region marginalizes its distribution
onto the child variable, divides by the child’s distribu-
tion, and sends the ratio. The child then updates its
distribution and relays the message to its other par-
ents. These messages can be viewed as enforcing con-
sistency constraints among the top-layer distributions,
namely that they must have the same single-variable
marginals. When these constraints are satisfied, the
algorithm stops.

An alternative interpretation is given by EP (Minka,
2001a). In this interpretation, we use a more general
type of graph which allows the region distributions to
include all variables but constrains them to be par-
tially factorized (figure 1 (top left)). The child re-
gion is fully factorized, and the parent regions are fac-
torized except for a single edge. Downward messages
again consist of marginals, which are interpreted as a
projection of the parent’s distribution onto the child’s
fully factorized structure. The algorithm stops when
all parents have the same single-variable marginals.
The results are exactly the same as BP.

Going further, consider a distribution on 16 variables
whose factors correspond to the edges of a 4 × 4 grid,
to which we apply generalized belief propagation with
overlapping 2×2 square clusters (Yedidia et al., 2002).
This algorithm passes messages in the three-layer re-
gion graph shown in figure 1 (bottom right). Down-
ward messages consist of marginalizing the parent’s
distribution onto the child’s variables (this will be ei-
ther a single-variable marginal in the bottom layer or
a pairwise marginal in the middle layer). Upward mes-
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Figure 1: Left: (bottom) The region graph corresponding
to belief propagation and (top) the equivalent EP-graph.
Right: (bottom) The region graph described in Yedidia
et al. (2002) and (top) the equivalent EP-graph.

sages relay information from other parents or (in the
case of the middle layer) from child regions. These
messages can be interpreted as enforcing consistency
constraints; the middle-layer regions must have the
same single-variable marginals and the top-layer re-
gions must have the same pairwise marginals where
they overlap.

A closely related algorithm can be obtained via tree-
structured EP (Minka & Qi, 2004). It can be viewed
as passing messages in a region graph, where the re-
gion distributions include all variables but are partially
tree-structured (figure 1 (top right)). The child re-
gion is tree-structured, and the parent regions have the
same structure plus additional edges. Downward mes-
sages consist of pairwise and single-variable marginals,
which are interpreted as a projection of the parent’s
distribution onto the child’s tree structure. The algo-
rithm stops when all parents have the same pairwise
and single-variable marginals along the tree. As we
will show, the free energy of this EP algorithm is iden-
tical to the free energy of the GBP algorithm, and
therefore they have the same fixed points. We will
show this equivalence using purely graphical opera-
tions on the region graphs.

3 STRUCTURED REGION
GRAPHS

This section formally defines the structured region
graphs used in section 2. The common theme of GBP
and EP is approximating p(x) in a distributed fashion.
Both algorithms employ a set of regions R, each with
an associated approximate distribution qR(x), con-
strained to be in some specific family H(R). Each re-
gion contains some of the factors of p—just enough to
remain tractable. The regions are tied together by con-
straints, e.g. they must have the same single-variable
marginals. The parameters of the region distributions



are optimized to meet the constraints. In setting up
these algorithms, many choices have to be made: the
number of regions, the allocation of factors to regions,
how many parameters the regions should have, which
pairs of regions should be constrained, and with what
constraints. Structured region graphs are a general
formalism to represent these choices.

A structured region graph (SRG) is a directed acyclic
graph of regions. Regions with no parents are called
outer regions, otherwise they are called inner regions.
Each region R has an associated set of variables xR, a
set of factors fR (outer regions only), a set of cliques
C(R), and an exponential family H(R). Every variable
in xR must appear in some clique or factor. Every fac-
tor of p is assigned to a single outer region. Note that
factors are separate from cliques: if there is a factor
f(x1, x2) there need not be a clique containing x1 and
x2. From the factors and cliques we define a structure
G(R), which is an undirected graph of variables link-
ing any two variables appearing in the same factor or
clique. Note that this graph can be ambiguous, e.g. a
triangle might represent one clique or three separate
edge cliques.

The exponential family H(R) is a set of distributions
parameterized by λj , j = 1, ..., J , of the form

q(xR) ∝ fR(xR) exp(
∑

j
λjhj(xCj

)) (2)

where fR(xR) =
∏

a∈R fa(xa) are the factors in region
R and Cj is one of the cliques in C(R). The functions
hj are fixed and called features of the family. The ex-
pectation over q of a feature is called a moment. This
paper focuses on discrete variables where the expo-
nential family simply has one binary feature for every
configuration of variables in each clique. In this case,
the family is completely specified by the cliques alone.

The region graphs of Yedidia et al. (2002) are the
special case where the inner regions are complete (they
contain one clique over all variables in the region).

Let pa(R) be the parents of R, an(R) the ancestors,
and ch(R) be the children. If R’s exponential family
contains all of the features of another region D, either
directly or by taking linear combinations, we say that
R subsumes D. It the discrete case, this means ev-
ery clique in D is contained in some clique of R (R’s
structure is a supergraph of D’s), and consequently R
contains all the variables of D.

A valid SRG must satisfy some conditions, analogous
to those in Yedidia et al. (2002). For each region R,
define a counting number cR by the recursion

cR = 1 −
∑

A∈an(R)

cA (3)

Define RG(i) to be the subRG of regions containing
the variable xi.

Connectedness RG(i) must be connected for all i.

Balancedness
∑

R∈RG(i) cR = 1 for all i.

Hierarchy Every region must subsume its children.

The connectedness property implies that if the factor
graph of p(x) is connected, then a valid SRG is also
connected. For the rest of the paper we will assume
p(x) is connected.

Expectation propagation can be represented by a sub-
class of SRGs called EP-graphs. An EP-graph is a
two-layer SRG with A outer regions parenting a single
inner region called the base region. Each region has
the same set of cliques, the union of which covers all
the variables of p(x) (see figure 1).

4 FREE ENERGY

For each structured region graph, we can associate a
free energy function which applies to both GBP and
EP. Each region maintains a belief function qR(xR).
The belief functions must satisfy the following con-
straints:

∑

xR\xC

qR(xR) =
∑

xD\xC

qD(xD) (4)

∀D ∈ ch(R),∀C ∈ C(D)
∑

xR

qR(xR) = 1 (5)

In other words, the marginals of a region’s belief func-
tion must agree with those of the child on the child’s
cliques. Another way to say this is that parents and
children must have the same expected value for the
child’s features. The Kikuchi free energy correspond-
ing to a set of belief functions on a structured region
graph is

F (q||p) =
∑

R

cR

∑

xR

qR(xR) log
qR(xR)
fR(xR)

(6)

subject to (4,5)

Introducing a Lagrange multiplier λRDC(xC) for each
constraint (4), we obtain the fixed-point conditions

qR(xR) ∝ fR(xR) exp(νR(xR)) (7)

νR(xR) =
1
cR

∑

D∈ch(R)

∑

C∈C(D)

λRDC(xC)

− 1
cR

∑

A∈pa(R)

∑

C′∈C(R)

λARC′(xC′) (8)

From the hierarchy condition, we know that each C in
the first line is a subset of some C ′ in the second line.



Therefore, at a fixed point, qR factorizes according to
G(R), or more generally each region belief is in the
exponential family H(R).

Fixed points of the SRG free energy can be found by
a message-passing algorithm that combines GBP and
EP. In GBP, the parent marginalizes itself onto the
child’s variable set. In the new algorithm, the parent
projects its belief onto the child’s exponential family,
by matching moments (this type of algorithm was pre-
viously described by Heskes & Zoeter, 2003). Because
the messages must be in the exponential family of the
child, they can be considerably simpler than GBP mes-
sages. For example, the messages may factorize ac-
cording to a spanning tree. We will not concern our-
selves with the general algorithm here; instead we will
focus on those SRGs which reduce to ordinary RGs,
by a formal process defined in the next section.

5 REDUCTION RULES

This section defines graphical operators on SRGs that
can be used to prove the equivalence of different
message-passing algorithms, via their free energies.
Each of the operators preserves the critical points
of the free energy, and therefore the fixed points
of message-passing. They extend the operators of
Welling (2004). Proofs appear in appendix A.

Given a region R and a set of variables V , the induced
subregion R[V ] is a region possessing all cliques and
factors from R which only involve variables in V .

Link-Death Links into children that are also de-
scendants via other paths can be deleted. Additionally,
the link R → D can be deleted if (1) R has a common
ancestor (A) with one of D’s other parents (forming
a loop) and (2) D’s other parents have no ancestor in
common with R except A ∪ an(A).

Grow/Shrink This applies to outer regions. New
cliques can be added to any outer region, without
changing the free energy (because only the child’s
cliques matter). This is useful for preparing an outer
region to split. Similarly, cliques that have no corre-
sponding child clique may be made smaller or deleted.
This operation is independent of any factors in the
region.

Drop This applies to a region with a unique par-
ent and therefore zero counting number. Remove the
region and link its parent directly to all of its chil-
dren. (A region with more than one parent cannot be
dropped, because it enforces a constraint.)

Factor-Move Consider two outer regions and their
child region containing a clique C. A factor in one
of the parents that is covered by this clique (i.e. the
variables in the factor are a subset of the variables in

Figure 2: Drop + Shrink Figure 3: Merge

Figure 4: Split

the clique) can be moved to the other parent region.
This is useful to prepare a Merge operation (which is
only possible if the parent region contains no factors).

Merge A parent R and child D can be merged under
the following conditions: (1) R has no factors, (2) R
and D subsume each other, and (3) R’s other children
(if any) have no ancestors in common with D except
for R ∪ an(R). Merge the two regions into one region
which has the union of their parents, the union of their
children and the sum of their counting numbers.

Split A split involves partitioning the variables of a
region R into (A,B, S) such that S separates A from
B in G(R) (S may be empty if A and B are discon-
nected). Replace R with three induced subregions:
R[A∪S], R[B ∪S], and R[S]. For this to be valid, (1)
R[S] must be complete, and (2) for any child, all of its
cliques appear together in R[A∪S] or R[B∪S]. Make
R[S] a child of R[A∪S] and R[B ∪S]. Every factor in
R must be assigned to one of R[A∪S] or R[B∪S], with
R[S] stripped of all factors. Make R[S] a parent of all
descendants of R which it subsumes, i.e. their cliques
are subsets of cliques in C(R[S]). The remaining chil-
dren of R that did not receive links from R[S] must be
subsumed by R[A ∪ S] or R[B ∪ S]: make them chil-
dren of R[A∪S] or R[B ∪S] accordingly. The parents
of R become parents of both R[A ∪ S] and R[B ∪ S].

6 REDUCING SRGs TO RGs

Let a set of cliques be decomposable if they are the
maximal cliques of a triangulated graph. This section



Figure 5: Reducing an EP-graph (b) to ordinary region
graphs (c, d).

shows that SRGs with decomposable inner regions re-
duce to ordinary RGs. As a consequence, any EP algo-
rithm with a decomposable base region (such as a tree)
is equivalent to some GBP algorithm (in the sense of
having the same fixed points).

Figure 5 gives an example of such a reduction. Panel
A is a pairwise Markov random field with one possi-
ble SRG given in panel B. The SRG is an EP-graph
with two loop outer regions and a tree-structured in-
ner region. The base region can be split into its three
components and the isolated nodes dropped (they have
one parent each). The middle part of the base region
can be split via the middle node, giving an ordinary
region graph (c). Going further, we can split the outer
regions into smaller loops (d).

Theorem 1 If an inner region R is decomposable,
not complete, and its children are all complete, then
there exists a split of R into decomposable regions.

Proof: If R’s children are complete then the second
condition of a split is always fulfilled. If R is decom-
posable and not complete then it must have a complete
separator into decomposable regions (Lauritzen, 1996
sec. 2.1.2), fulfilling the first condition.

Theorem 2 If all inner regions are decomposable,
then by reduction we can make all inner regions com-
plete.

Proof: Starting at the bottom of the graph, find the
first inner region which is not complete and has com-
plete children or no children. By Th.1 this inner region
can be split into decomposable regions. Eventually we
are left with only complete inner regions.

For example, consider figure 1 (left). To reduce the
EP-graph, we first split the base region into singletons,
then split each outer region into singletons plus one
edge. Duplicate singletons merge together, leaving the
conventional factor graph. In figure 1 (right), we split
the tree base region into edges and nodes, then each
outer region into edges, nodes, and a row of loops.
Duplicate edges and nodes merge together. The loops
become exactly the squares in the GBP region graph,

with the same edge constraints.

Note that two algorithms which have the same fixed
points do not necessarily take the same time. In prac-
tice, EP seems to be more efficient than GBP (Minka
& Qi, 2004).

7 PROPERTIES OF SRGs

What makes a “good” SRG? Yedidia et al. (2002) de-
scribed two properties of a good region graph: maxent-
normality and perfect correlation resulting in

∑
R cR =

1. We extend perfect correlation to SRGs and in-
troduce a stronger condition than maxent-normality
called non-singularity. Using the reduction operators,
we can identify broad classes of graphs which have
these properties.

7.1 Perfect correlation

Yedidia et al. (2002) argue that it is good for the
sum of all counting numbers to equal one, because
this makes the free energy exact when the variables
are perfectly correlated. This argument carries over
to structured region graphs, provided each region con-
tains one connected component. In figure 1 (top right),
the regions have one connected component, but in fig-
ure 1 (top left), they consist of multiple components.
Thus we cannot apply their argument to the top left
graph directly, but we can apply reductions until their
argument does apply. The following are proved in the
appendices:

Theorem 3 All reduction operators preserve
∑

R cR

except Split with an empty separator.

Theorem 4 An acyclic SRG (having no undirected
cycles of regions) satisfies

∑
R cR = 1.

Because EP-graphs are acyclic, they satisfy
∑

R cR =
1. If the base approximation has one connected com-
ponent, then the free energy of the EP-graph (and any
reduced graph) must be exact when variables are per-
fectly correlated.

7.2 Non-singularity

The opposite of perfect correlation is when all factors
are uniform. In this case, the optimal beliefs should be
uniform. If the free energy is maximum at uniform be-
liefs, then the region graph is said to be maxent-normal
(Yedidia et al., 2002). We strengthen this concept:

Definition A SRG is non-singular if message pass-
ing with uniform factors has a unique fixed point, at
which all belief functions qR(xR) are uniform.

Because all reduction operators preserve fixed points,



non-singularity is preserved by all reduction operators.

Theorem 5 An acyclic SRG is non-singular.

Proof: It is possible to reduce the SRG until only
single variable regions remain (which are clearly non-
singular). First remove all factors. A region with no
neighbors can be shrunk and split into single variable
regions. Regions with neighbors can be reduced as fol-
lows. Because the graph is acyclic, at least one region
has a single neighbor. If this is a child region of some
parent (i.e. it is a leaf region) we have cR = 0 and we
can drop it. If it is parent region of some child then it
is an outer region and we shrink the region to contain
only the cliques of its child. We then split off all single
variable regions until the structure matches the child,
followed by a merge.

Because EP-graphs are acyclic, they are non-singular
and hence maxent-normal, and so is any reduction
of an EP-graph. The same technique can be applied
to determine whether a general (cyclic) SRG is non-
singular. Remove all factors and apply the reduction
operators. Ultimately, either the SRG is reduced to
single variable regions, in which case the correspond-
ing SRG is non-singular, or the SRG still has inner
regions, yet cannot be further reduced. If the SRG
has complete inner regions (an ordinary RG), then in
the latter case the RG is singular:

Theorem 6 If a factorless RG has complete inner
regions yet is not reducible, then GBP has a fixed point
other than uniform beliefs.

8 LOOP-GRAPHS

The previous section showed that EP-graphs automat-
ically enjoy good properties. This section considers
a more general class of SRGs and derives conditions
under which they will be “good” approximations. A
loop-graph is a SRG consisting of loop regions, edge
regions, and node regions, where all structures are dis-
tinct and each loop is a parent of its constituent edges
(e.g. figure 1 (bottom right), figure 5c,d). It is as-
sumed that the factors are all pairwise, and they are
assigned to loop regions or outer edge regions that are
not contained in any loop. There may be more edge
regions than there are factors, i.e. edge regions can
simply represent overlaps. The Bethe approximation
is the special case where there are no loop regions.

Theorem 7 A loop-graph has
∑

R cR = L − E + V ,
where L is the number of loop regions, E is the number
of edge regions, and V is the number of variables.

Theorem 8 A loop-graph is singular iff there is a
subset of loops and their constituent edges such that
each of these edges is a child of at least 2 loops.

Proof: ⇐ Even if the other loops are removed, this
subset cannot be reduced to singletons. Because all
edges have two parents, they cannot be dropped. The
loops cannot be shrunk nor merged. Large loops can
be split into smaller loops, but their edges will still
be shared. ⇒ If there is no such subset, then we can
reduce to singletons as follows. Remove all factors. If
there are no loop regions, then the graph reduces easily
via shrink. Otherwise, there always exists a loop and
an edge where the edge is unique to the loop. Drop
the edge and remove its clique from the loop. The
loop region becomes a tree and can be split into its
nodes and edges, which subsequently merge with its
descendants. Repeat on the remaining loops.

For example, the complete graph K4 has four induced
loops: ABC, ABD, ACD, and BCD. A loop-graph with
these loops as regions is singular. Similarly, the graph
K2,3 (depicted in figure 5a) has three induced loops
which would, if all included, result in a singular loop-
graph. This is related to a concept known as the cycle
space of a graph (Diestel, 2000), analogous to the col-
umn space of a matrix. A set of cycles is said to be
linearly dependent if their constituent edges are used
an even number of times. Thus a loop-graph with
linearly dependent loops is singular, analogous to a
matrix with linearly dependent columns.

Theorem 9 A loop-graph with
∑

R cR > 1 is singu-
lar.

Proof: The graph of singletons has
∑

R cR = V . To
reduce the loop-graph to this, you need to split with
empty separator at least V − 1 times. Only the outer
regions can split, and each such split increases the total
counting number by 1. (app. A). Hence it is impossible
to get exactly V starting from

∑
R cR > 1 (Note that

this proof is valid for any RG but not necessarily any
SRG). Another proof: By Th.7 we must have L >
E−V +1. Additionally, it is known that the dimension
of the cycle space is E−V +1 (Diestel, 2000), so there
must be a set of linearly dependent loops, analogously
to a matrix with more columns than rows.

Consequently, any loop-graph which is non-singular
and has

∑
R cR = 1 is maximal in the sense that any

additional loop would make it singular. This type of
loop-graph captures as many interactions as possible
through the inclusion of loops, without adding spuri-
ous fixed points in the uniform case. For example, any
loop-graph derived from an acyclic SRG is maximal.
Additionally, any loop-graph corresponding to the in-
ner faces of a planar graph is maximal, because any
subset of loops has edges which are not shared, and∑

R cR = 1 by Euler’s characteristic (L−E + V = 1).



9 EXAMPLES

This section demonstrates these design principles on
some standard problems. Consider a complete graph
of pairwise factors. A region graph with all triples of
nodes would be singular. Instead we should choose a
subset of size E − V + 1. One choice is the EP-graph
with a star base region (Minka & Qi, 2004). Letting
node 1 be the root of the star, the cliques of the base
region are (1, i) where i ranges over all nodes > 1. The
outer regions add a single edge (i, j), creating a triple
(1, i, j). After reduction, we get a loop-graph with
these triples as the loop regions. By construction, this
RG is non-singular and maximal (

∑
R cR = 1). It is

also closed under intersection (the intersection of any
two outer regions corresponds to a clique in the base
region), which means it is totally connected and totally
balanced (Pakzad & Anantharam, 2003).

This construction can be generalized to higher width,
using a width-w star. Letting nodes (1, ..., w) be the
root of the star, the cliques of the base region are
(1, ..., w, i) where i ranges over all nodes > w. The
outer regions add a single edge (i, j), creating a clique
(1, ..., w, i, j). After reduction, these cliques will be
the outer regions. This RG is also non-singular, has∑

R cR = 1, and closed under intersection.

Fixing the order of nodes, we evaluated these region
graphs on a 6-binary-node complete graph with ran-
dom edge potentials (generated identically to Minka
& Qi, 2004). In each trial we ran GBP with enough
damping to ensure convergence, and measured the
maximum error in the single-node marginals. The av-
erage performance over 20 trials is shown in table 1.
The width-1-star has 1/3 the error of Bethe (at three
times the computational cost), and each increment
of width reduces the error by a further 1/3 (at 1%
higher cost). To show that non-singularity is impor-
tant, we added one arbitrary additional outer region
(2, ..., w +3) and ran this singular region graph on the
same set of input graphs. This version requires much
more damping, and the error is significantly worse (ta-
ble 1). For w = 1, this extra region makes

∑
R cR = 2,

while for w > 1 we still have
∑

R cR = 1 (perfect cor-
relation despite singularity).

To further test the importance of non-singularity ver-
sus perfect correlation, we ran these input graphs
through two additional region graphs. The first RG
was a 1-star with region (1, 5, 6) removed (non-singular
with

∑
R cR = 0). The second RG was this reduced

star plus the region (2, 3, 4) (singular with
∑

R cR =
1). The reduced star had average error 0.05 and the
singular addition made it 0.06. Thus non-singularity
is more important than perfect correlation for these
problems.

Error Bethe 1-star (+1) 2-star (+1) 3-star (+1)
Complete .090 .034 (.043) .010 (.205) .003 (.267)
Bipartite .035 .021 (.068) .014 (.034) .006 (.020)

Table 1: Average estimation error of different region
graphs over 20 random sets of edge potentials, for 6-node
complete graphs and 20-node complete bipartite graphs.
(+1) is with one extra region.

The star construction also works for non-complete
graphs—just use the outer regions that correspond
to factors. For example, consider complete bipartite
graphs, such as figure 5a. Figure 5d corresponds ex-
actly to a star RG with its root at the center node.
Note that some of the edge regions in this construc-
tion will link variables that did not have factors (of-
ten essential for a good RG). Fixing the order of vari-
ables, we tested this approach on a 20-node graph (10
nodes in each partition) with random edge potentials
as above. The average error over 20 trials is shown in
table 1. The 1-star nearly halves the error of Bethe
(at three times the cost) and each increment of width
halves the error further (at double the cost).

Now consider grids of pairwise factors. By a similar
construction to figure 1 (top right), there is an EP-
graph which reduces to n × m boxes, overlapping at
their sides. This RG is non-singular, has

∑
R cR = 1,

and closed under intersection. Message passing can
be implemented efficiently by exploiting the internal
structure of each box, which is a grid of factors plus
a clique on all four sides, to represent incoming mes-
sages. For 3× 3 boxes, this structure has treewidth 3,
for 4×3 boxes the treewidth is 4, and for 4×4 boxes the
treewidth is 5. By triangulating and splitting each box
region, we obtain a region graph containing only small
cliques, on which a standard GBP algorithm can run.
Similar to the above experiments, there is a consistent
increase in accuracy as you increase the treewidth of
the boxes.

10 EXPERIMENTS

We have investigated the practical usefulness of non-
singularity as a guiding principle in choosing region
graphs. In particular we looked at using it in the
context of region pursuit (Welling, 2004). We com-
pared the original region pursuit, which is an iterative
algorithm which adds regions one at a time on top
of the Bethe approximation, to one in which regions
are added only if the resulting RG is non-singular.
We tested both versions on 7-binary-node complete
pairwise Markov networks, where weights are sampled
i.i.d. uniformly in the range [0, .1], while biases are
sampled uniformly in range [0, .3] (weights have to be
be small to ensure convergence). Regions consisting of
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Figure 6: Modifying region pursuit by constraining region
graphs to be non-singular.

triangles are considered, and the triangle which when
added changes the free energy the most is chosen at
each iteration (in fact we use an approximation to this,
see Welling (2004) for details).

Figure 6 left panel shows the mean errors (over 50
trials) in the node marginals as we add triangles to
the RG. The “Best” line uses the best triangle accord-
ing to the “change in free energy” heuristic, while the
“Worst” line uses the worst triangle. There are 35 tri-
angles available. The region pursuit heuristic chooses
good triangles in the beginning, but at around 15 tri-
angles, adding more actually hurts the approximation.
The “non-singular” line shows the alternative where
triangles are not added if the resulting RG is singular,
and figure 6 (right) shows the average number of trian-
gles added (a maximum of 15 since the number of in-
dependent cycles is E−V +1 = 15). The non-singular
constraint stops the degradation. (Non-singularity was
tested via the reduction process in the Th.8 proof.)
Interestingly, at one point the “Best” line does better
than the maximal non-singular RG. But lacking a way
to detect this optimal stopping point, the non-singular
constraint is the next best thing.

We have also found that non-singular RGs provide
faster and more reliable convergence. We illustrate
this in an experiment involving binary random net-
works between 11 and 15 nodes. Each edge ap-
pears independently with probability 0.75, and has
weights i.i.d. from a Normal with zero mean and std.
1/
√

n − 1, while biases are zero mean, 1 std. Normal.
We considered region graphs consisting of triangles,
edges and nodes. In the control the triangles are cho-
sen via region pursuit, in the alternative the triangles
are considered in the same order, but not added if the
resulting RG is singular. Both stopped when the RG
reached 30 triangles. Figure 7 shows the result over 20
repetitions. Similar error rates were attained by both
region graphs in this experiment.
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Figure 7: Convergence Properties of non-singular region
graphs.

11 DISCUSSION

While this paper has focused on discrete random vari-
ables, many of the results can be extended to contin-
uous variables in general exponential families. This
provides a generalization of EP to the Kikuchi case
(see also Heskes & Zoeter, 2003).

Our criteria for good region graphs only involve struc-
tural information of the graph. However, the inter-
action strengths are also important in choosing good
approximations. Criteria which incorporate this infor-
mation seem a promising direction for progress.

The SRG formalism has already deepened the under-
standing of both EP and GBP algorithms, but many
questions remain, for example: are there good region
graphs which are not equivalent to EP-graphs? Can
the notion of maximality for loop-graphs be general-
ized to other classes of region graphs? Are there ad-
ditional design principles we can use, e.g. to choose
among EP-graphs?
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A PROOFS OF REDUCTION
RULES

Showing that the operators preserve critical points in-
volves four steps: proving that the new SRG is valid,
that the counting numbers of other regions are pre-
served, that the essential constraints are unchanged,
and finally that any critical point given by (7) in the
old SRG corresponds to a critical point of the new
SRG, and vice versa.

A.1 LINK-DEATH

There is no change in connectivity nor in the con-
straints because there is still a path to all descendants.
We need to show that the counting number of D hasn’t
changed. Define F (X) = X ∪an(X) for any region X,
and let P1, ..., PN be all parents of D other than R.

The total change is given by,

cD′ − cD = cF (P1)∪..∪F (PN ) − cF (R)∪F (P1)∪..∪F (PN )

= cF (R) − cF (R)∩(F (P1)∪..∪F (PN ))

= cF (R) − cF (A)

Now note that cF (X) = 1 for any region X.

A.2 DROP

Let R be the region and A its unique parent. The
region has zero counting number because by (3):

cR = 1 −
∑

A∈an(R)

cA = 1 − (cA +
∑

B∈an(A)

cB) = 1 − 1 = 0

(9)

hierarchy The new SRG satisfies the hierarchy con-
dition because R’s parent subsumes R’s children.

connectedness R’s parent and children are still con-
nected.

counting numbers Since cR = 0, removing R does
not affect anyone’s counting number.

constraints The constraints imposed by R on its chil-
dren are equivalently imposed by R’s parent.

free energy Since cR = 0, R had no contribution to
the free energy.

A.3 MERGE

hierarchy All of D’s parents subsume R and vice
versa. Similarly R subsumes D’s children and vice
versa.

connectedness All parents and children of (R,D) re-
main connected.

counting numbers an(D) ⊃ an(R). By (3),

cR = 1 −
∑

A∈an(R)

cA (10)

cD = 1 −
∑

A∈an(D)

cA (11)

= 1 − cR −
∑

A∈an(R)

cA −
∑

A∈an(D)−R−an(R)

cA

(12)

= −
∑

A∈an(D)−R−an(R)

cA (13)

Call the new region M . The ancestors of M are
exactly an(R) ∪ (an(D) − R − an(R)), therefore
its counting number is cD + cR (12). A region
which was a child of D keeps the same counting
number, because its ancestor set has only changed
by replacing (R,D) with M . A region which was
a child of R has its counting number increased by
cD +

∑
A∈an(D)−R−an(R) cA = 0 (13). The third

condition of merging ensures that none of these
regions were previously in the child’s ancestor set.

constraints The constraints imposed by (R,D) on
their children and parents are equivalently im-
posed by the merged region.

free energy The constraints require that qR = qD

in the original SRG. Therefore the free energy
contribution for both regions is equivalent to
(cR +cD)

∑
xR

qR(xR) log qR(xR) (recall R has no
factors), which is also the free energy contribution
of the merged region.



A.4 SPLIT

hierarchy R’s parents subsume R so they also sub-
sume R’s subregions. R[S] is subsumed by R[A∪
S] and R[B ∪ S] by definition. Finally, R[A ∪ S],
R[B∪S], and R[S] subsume their children by def-
inition of the construction.

connectedness R’s parents and children remain con-
nected.

counting numbers R[A ∪ S] and R[B ∪ S] have the
same ancestors as R so cA = cB = cR. Further-
more cS = 1 − ((1 − cR) + cA + cB) = −cR. Any
region which was a descendant of R is now a de-
scendant of only R[A ∪ S], only R[B ∪ S], or all
three regions, and therefore keeps the same count-
ing number.

fixed points The old and new region graphs have dif-
ferent free energy functions. However, at a fixed
point, the region beliefs are given by 7, which
means qR(xR) = qA∪S(xA∪S)qB∪S(xB∪S)/qS(xS)
since S is a complete separator of G(R). This
condition on qR, plus the equality of counting
numbers, makes the free energies equivalent. Any
fixed point of the old is a fixed point of the new,
and vice versa.

B PROOF OF THEOREM 3

Theorem 3 All reduction operators preserve
∑

R cR

except Split with an empty separator.

Proof: This is easy to check for most operations be-
cause they conserve counting numbers. However in
Split with an empty separator only two new regions
are created, both having counting numbers equal to
that of the original region R∗, resulting in a change:∑

R cR → cR∗ +
∑

R cR.

C PROOF OF THEOREM 4

Theorem 4 An acyclic SRG (i.e. a tree-structured
SRG) satisfies

∑
R cR = 1.

Proof: Any directed tree can be constructed recur-
sively starting from a single region and adding one
region at a time, via a single link to an existing re-
gion. The first graph in this sequence obviously has∑

R cR = 1, and we will show that every change pre-
serves the total count. If the new region is a child of
an existing region, then it has cR = 0 and therefore
doesn’t change the total count (note cR may change
later). If the new region is a parent of an existing re-
gion then we have added an outer region. The region
to which the edge is attached has a number of incom-
ing edges (its parents) and a number of outgoing edges

(its children). The counting numbers of the ancestors
will not change. The counting numbers of its chil-
dren will also not change because although they now
have a new ancestor with cR = 1, the region which
receives the new parent decreases its counting num-
ber by 1 according to (3). The total count is again
unchanged.

D PROOF OF THEOREM 6

Theorem 6 If a factorless RG has complete inner
regions yet is not reducible, then GBP has a fixed point
other than uniform beliefs.

Proof: We will show that a set of beliefs allowing only
a single state, say all variables equal to 1, is a fixed
point of GBP in this case. In other words, if all exist-
ing messages are delta functions, then any newly com-
puted messages are also delta functions. To see that
this is true, consider the message equation in GBP:

mA→R(xR) =

∑
xA\xR

∏
(I,J)∈N(A,R) mI→J(xJ)

∏
(I,J)∈D(A,R) mI→J(xJ )

(14)

We first need to define what should happen in case of
0/0, i.e. the numerator and denominator both forbid
a certain state. Since the purpose of the message is
to make the child consistent with the parent, it makes
sense that the message should be zero. In other words,
we adopt the convention that 0/0 = 0. By assump-
tion, all messages in the numerator are delta functions,
therefore mA→R(xR) will be a delta function iff every
variable in xR appears in the numerator. If A is an in-
ner region, then messages to A appear in N(A,R) and
therefore all variables in xA appear in the numerator.
If A is an outer region, then the regions J ∈ N(A,R)
are the set of descendants of A which are not R or
descendants of R. It is sufficient to consider children
of A other than R. These must exist, otherwise A has
one child and could be merged with R. These other
children must include all variables in xA. To see why,
suppose there is a variable x∗ which only appears in
R. Since R is complete and A is fully reduced, x∗ must
appear in only one clique of A, say C∗. In this case, A
can be split using the separator C∗−x∗, which contra-
dicts the assumption that it is fully reduced. (Even if
A contained only the clique C∗, it could be split into
(A = ∅, B = C∗, S = C∗ − x∗). The C∗ part merges
with R, leaving us with A − x∗.)

E PROOF OF THEOREM 7

Lemma The Bethe approximation (all edges and
nodes) on a graph has

∑
R cR = V − E.



Proof: Start from a RG consisting only of nodes. Ev-
ery edge that is added subtracts 1 from

∑
R cR.

Theorem 7 A loop-graph has
∑

R cR = L−E + V ,
where L is the number of loops, E is the number of
edges, and V is the number of variables.

Proof: Start from the Bethe-RG. Every loop adds 1
to

∑
R cR (1 for the loop, −1 for each edge on the loop,

+1 for each node on loop).


