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Learning and Representational Structures

I Clustering.

I Hierarchical representations with trees.

I Overlapping clusters.

I Low dimensional embeddings.

I Distributed representations with multiple latent variables.
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Psychological Objects and Features
apple axe bike bus car
carrot cat chicken chisel clamp
cow crowbar cucumber deer dolphin
drill duck grape grapefruit hammer
helicopter hoe horse jeep jet
lemon lettuce lion motorcycle mouse
nectarine onions orange pig pineapple
pliers potato radish rake rat
scissors screwdriver seal sheep ship
shovel sledgehammer squirrel strawberry submarine
tangerine tiger tomahawk train tricycle
truck van wheelbarrow wrench yacht
a fruit a mammal a tool a vegetable a vehicle
a weapon an animal beh - eats beh - flies beh - roars
beh - swims eaten in salads found in toolboxes grows in Florida grows in gardens
grows on trees grows underground has 2 wheels has 4 legs has 4 wheels
has a blade has a handle has a head has a long handle has a mane
has a metal head has a tail has a wooden handle has an end has an engine
has an inside has doors has eyes has fur has green leaves
has handles has leaves has legs has peel has propellers
has sections has seeds has skin has teeth has vitamin C
has wheels has whiskers has wings hunted by people is black
is brown is citrus is crunchy is cute is dangerous
is domestic is edible is fast is ferocious is green
is grey is heavy is juicy is large is long
is loud is nutritious is orange is red is round
is sharp is small is smooth is white is yellow
lives in wilderness lives on farms made of metal made of wood requires crews
requires drivers requires gasoline tastes good tastes sour tastes sweet
used by riding used for cargo used for carpentry used for construction used for cruising
used for digging used for gardening used for juice used for loosening used for passengers
used for pulling used for tightening used for transportation used for turning used on water
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Psychological Objects and Features
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Hierarchical Clustering

I Linkage algorithms.

I Maximum likelihood, MAP, maximum parsimony
[Vinokourov and Girolami 2000, Segal and Koller 2002,
Friedman 2003].

I Bayesian hierarchical clustering (BHC)
[Heller and Ghahramani 2005].

I Even more Bayesian models
[Williams 2000, Neal 2003, Teh et al. 2008].

I Phylogenetics [Felsenstein 2003].
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Non-binary Hierarchical Clusterings
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Bayesian Rose Trees

I Allows for non-binary trees if this is supported by data.
I Computational efficiency.

I Likelihood-based, probabilistic approach.
I most likely tree should offer a simple explanation of the data.
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Tree-Consistent Partitions

a b c d e f

a b c

a‖b‖c

a b c d e f

a b c‖d‖e‖f
a‖b‖c‖d‖e‖f

An internal node means: Data at its leaves are more similar.
Each internal node denotes:

1. a cluster of its leaves
2. its children further partition the cluster into smaller subclusters.

A Bayesian rose tree represents a set of partitions of the data.

part(T ) = {leaves(T )} ∪ {e1‖e2‖e3‖ · · · : Tk ∈ ch(T ),ek ∈ part(Tk )}

[Heller and Ghahramani 2005]
8 / 29



Tree-Consistent Partitions

a b c d e f

a b c

a‖b‖c

a b c d e f

a b c‖d‖e‖f
a‖b‖c‖d‖e‖f

An internal node means: Data at its leaves are more similar.
Each internal node denotes:

1. a cluster of its leaves
2. its children further partition the cluster into smaller subclusters.

A Bayesian rose tree represents a set of partitions of the data.

part(T ) = {leaves(T )} ∪ {e1‖e2‖e3‖ · · · : Tk ∈ ch(T ),ek ∈ part(Tk )}

[Heller and Ghahramani 2005]
8 / 29



Tree-Consistent Partitions

a b c d e f

a b c

a‖b‖c

a b c d e f

a b c‖d‖e‖f
a‖b‖c‖d‖e‖f

An internal node means: Data at its leaves are more similar.
Each internal node denotes:

1. a cluster of its leaves
2. its children further partition the cluster into smaller subclusters.

A Bayesian rose tree represents a set of partitions of the data.

part(T ) = {leaves(T )} ∪ {e1‖e2‖e3‖ · · · : Tk ∈ ch(T ),ek ∈ part(Tk )}

[Heller and Ghahramani 2005]
8 / 29



Likelihood of Clusters, Partitions and Trees
Cluster: a b c‖d‖e‖f

A cluster is a set of data items. We use an exponential family
distribution to model the cluster:

p(D|θ) = exp

(
θ>
∑
x∈D

s(x)− |D|A(θ)

)

Using a conjugate prior for θ, we can marginalize out θ:

q(D) =

∫
p(D|θ)p(θ)dθ

Example: Product of Beta-Bernoulli’s:

q(D) =
d∏

i=1

p(Di |αi , βi) =
d∏

i=1

Beta(αi + nDi , βi + ND − nDi )

Beta(αi , βi)
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Likelihood of Clusters, Partitions and Trees
Partition: a b c‖d‖e‖f

A partition is a separation of data set into clusters. We model each
cluster independently, so the likelihood of a partition is:

r({D1‖D2‖ . . . }) =
∏

j

q(Dj)

Example:

r(a b c‖d‖e‖f ) = q(a b c)q(d)q(e)q(f )
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Likelihood of Clusters, Partitions and Trees
Tree: {a b c d e f , a b c‖d‖e‖f , a‖b‖c‖d‖e‖f}

A tree is treated as a mixture of partitions. The likelihood of a tree will
be a convex combination of partition likelihoods:

s(T ) =
∑

P∈part(T )

mT (P)r(P)

Example:

s(T ) =mT (a b c d e f )r(a b c d e f )+

mT (a b c‖d‖e‖f )r(a b c‖d‖e‖f )+

mT (a‖b‖c‖d‖e‖f )r(a‖b‖c‖d‖e‖f )
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Likelihood of Clusters, Partitions and Trees
Tree: {a b c d e f , a b c‖d‖e‖f , a‖b‖c‖d‖e‖f}

To make computations tractable, we will define the tree likelihood in a
recursive fashion:

s(T ) =
∑

P∈part(T )

mT (P)r(P)

= πT q(leaves(T ))︸ ︷︷ ︸
cluster of leaves

+(1− πT )
∏

Ti∈ch(T )

s(Ti)︸ ︷︷ ︸
partitions of children
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Likelihood of Clusters, Partitions and Trees
Tree: {a b c d e f , a b c‖d‖e‖f , a‖b‖c‖d‖e‖f}
Example:

a b c d e f

a b c

a‖b‖c

a b c d e f

a b c‖d‖e‖f
a‖b‖c‖d‖e‖f

s(Tabc) =πabcq(Dabc) + (1− πabc)s(Ta)s(Tb)s(Tc)

=πabcq(Dabc) + (1− πabc)q(xa)q(xb)q(xc)

s(Tabcdef ) =πabcdef q(Dabcdef ) + (1− πabcdef )s(Tabc)q(xd )q(xe)q(xf )

=πabcdef q(Dabcdef )+

(1− πabcdef )πabcq(Dabc)q(xd )q(xe)q(xf )+

(1− πabcdef )(1− πabc)q(xa)q(xb)q(xc)q(xd )q(xe)q(xf )
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An End to Needless Cascades
Define mixing proportions with parameter 0 < γ < 1:

πT = 1− (1− γ)|ch(T )|−1

Suppose r(a b c‖d) > r(a b‖c‖d) [other partitions of a,b, c as well].

a b c d

Cascading binary tree
m(S, T ) partition S

γ a b c d
(1− γ)γ a b c‖d

(1− γ)(1− γ)γ a b‖c‖d
(1− γ)(1− γ)(1− γ) a‖b‖c‖d

a b c d

Collapsed rose tree
m(S, T ) partition S

γ a b c d
(1− γ)

(
1− (1− γ)2

)
a b c‖d

(1− γ)3 a‖b‖c‖d
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Complexity of Maximising s(D|T )

There are too many rose trees T for an exhausitive search for the
highest s(T ).

With L leaves there are:
Binary trees 2O(L log L)

Rose trees 2O(L log L+L)

0 20 40 60 80 100 120
Number of leaves

100
1018
1036

1054
1072
1090

10108
10126

10144
10162
10180
10198
10216
10234

Number of rose trees
Number of binary trees

0 20 40 60 80 100 120
Number of leaves

100

102

104

106

108

1010

1012

1014

1016

Ratio of rose to binary trees
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Construction by Greedy Model Selection

1. Let Ti = {xi} ∀i .

2. For every ordered pair of trees (Ti ,Tj) and possible merge
operation producing tree Tm, pick the Tm with the largest Bayes
factor:

log
s(Tm)

s(Ti)s(Tj)

3. Merge Ti , Tj into Tm.
4. Repeat 2 and 3 until one tree remains.
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Merging Operations

Ta Tb Tc Td Te

Ti Tj

Ta Tb Tc Td Te

Ti Tj

Join (Tm)

Ta Tb Tc

Td Te

Tj

Absorb (Tm)

Ta Tb Tc Td Te

Collapse (Tm)
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Bayesian Hierarchical Clustering

Relationship between BRT and BHC:
I BHC produces binary trees; BRT can produce non-binary trees.
I BRT and one version of BHC interpret trees as mixtures over

partitions.
I In other version, BHC interpreted as approximate inference in a

DP mixture:
I Uses a different πT related to DP clustering prior.
I BHC includes many partitions in its model as this encourages a

tighter bound on the marginal probability under the DP mixture.
I Unfortunately this leads to overly complicated models with many

more partitions than necessary.
I We found that this tends to produce trees with inferior likelihoods.

[Heller and Ghahramani 2005]
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Results (anecdotal)
apple axe bike bus car
carrot cat chicken chisel clamp
cow crowbar cucumber deer dolphin
drill duck grape grapefruit hammer
helicopter hoe horse jeep jet
lemon lettuce lion motorcycle mouse
nectarine onions orange pig pineapple
pliers potato radish rake rat
scissors screwdriver seal sheep ship
shovel sledgehammer squirrel strawberry submarine
tangerine tiger tomahawk train tricycle
truck van wheelbarrow wrench yacht
a fruit a mammal a tool a vegetable a vehicle
a weapon an animal beh - eats beh - flies beh - roars
beh - swims eaten in salads found in toolboxes grows in Florida grows in gardens
grows on trees grows underground has 2 wheels has 4 legs has 4 wheels
has a blade has a handle has a head has a long handle has a mane
has a metal head has a tail has a wooden handle has an end has an engine
has an inside has doors has eyes has fur has green leaves
has handles has leaves has legs has peel has propellers
has sections has seeds has skin has teeth has vitamin C
has wheels has whiskers has wings hunted by people is black
is brown is citrus is crunchy is cute is dangerous
is domestic is edible is fast is ferocious is green
is grey is heavy is juicy is large is long
is loud is nutritious is orange is red is round
is sharp is small is smooth is white is yellow
lives in wilderness lives on farms made of metal made of wood requires crews
requires drivers requires gasoline tastes good tastes sour tastes sweet
used by riding used for cargo used for carpentry used for construction used for cruising
used for digging used for gardening used for juice used for loosening used for passengers
used for pulling used for tightening used for transportation used for turning used on water

[Cree and McRae 2003]
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Results (anecdotal)
BHC (DP)
log likelihood -1418

468,980,051 partitions
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BHC (fixed)
log likelihood -1266

908,188,506 partitions
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log likelihood -1258

1,441 partitions
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Results (anecdotal)
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Results (quantitative)

Does greedy search find the best tree?
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Results (quantitative)

Log likelihood:

Data set BHC (DP) BHC (fixed) BRT
toy −230 ± 0 −169.4 ± 0 −167 ± 0
spambase −2354 ± 4.7 −2000 ± 4.5 −1991 ± 4.5
digits024 −4154 ± 5.2 −3759 ± 4.6 −3748 ± 4.6
digits −4429 ± 3.3 −3966 ± 3.1 −3954 ± 3.1
newsgroups−11602 ± 104 −10833 ± 106−10827 ± 105

toy spambase digits024 digits newsgroups
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BHC (fixed)
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Mixtures of Gaussian Process Experts

Mixtures of GPs are simple ways to construct nonparametric density
regression models. A type of dependent Dirichlet process mixtures.
MCMC inference can be very time consuming.
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[MacEachern 1999, Rasmussen and Ghahramani 2002,
Müller et al. 2010]
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Discussion

A hierarchical clustering model that:
I allows arbitary branching structure.
I uses this flexibility to find simpler models better explaining data.
I Finding good trees in O(L2 log L) time (same as BHC).

To explore more computationally efficient algorithms.
There are other (unexplored wrt hierarchical clustering) models of
non-binary trees such as Λ-coalescents and Gibbs fragmentation
trees.
[Pitman 1999, McCullagh et al. 2008]
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Thanks
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Animal Features

in tiger/lion?
is fast
has a mane
roars
is ferocious
is dangerous
.
.
.
.
.

not in tiger/lion?
beh - flies
has wings
swims
is domestic
is edible
lives on farms
is cute
taste good
.
.

maybe in both?
lives in wilderness
hunted by people
.
.
.
.
.
.
.
.

in both?
has teeth
has eyes
has fur
has a tail
has 4 legs
eats
an animal
a mammal
has whiskers
has skin
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