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Multi-Variate Gaussian
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Assume:

• we have a data set D = {x1, . . . , xN}
• each data point is a vector of D features:
xi = [xi1 . . . xiD]>

• the data points are i.i.d. (independent and identi-
cally distributed).

One of the simplest probabilistic models is the multi-variate Gaussian (or normal) distribu-
tion. It models the mean of the data and the correlations between the D features in the
data.
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Factor Analysis, Probabilistic Principal Components Analysis
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Observed vector data D = {x1, x2, . . . , xN}; xi ∈ RD

Assumed latent variables {y1, y2, . . . , yN}; yi ∈ RK

Linear generative model: xd =

K∑
k=1

Λdk yk + εd

• yk are independent N (0, 1) Gaussian factors

• εd are independent N (0,Ψdd) Gaussian noise

•K<D

So, model for observations x is still Gaussian with:

p(y) = N (y; 0, I) p(x|y) = N (x;Λy,Ψ)

p(x) =

∫
p(y)p(x|y)dy = N (x; 0,ΛΛ> + Ψ)

where Λ is a D ×K matrix, and Ψ is K ×K and diagonal.
Probabilistic PCA: equivariance noise Ψdd = ψ.
Factor analysis: diagonal Ψ.
Dimensionality reduction: Finds a low-dimensional projection of high dimensional data that
captures the correlation structure of the data.
Psychometrics: factors of personality and intelligence.



Example principal components: Eigenfaces

from www-white.media.mit.edu/vismod/demos/facerec/basic.html



Matrix Factorization

Probabilistic PCA can be cast as a matrix factorization model.

Let X = [x1, . . . , xN ] be a matrix with xi in column i.
Similarly Y = [y1, . . . , yN ] be matrix of latent variables.

Generative model is:
X = ΛY + ε

With ε being matrix of iid Gaussian noise.

The model being symmetric in Λ and Y there is no reason to interpret them as different.
Bayesian approach places prior over Λ and treat Λ and Y both as latent variables to be
inferred from X .

Collaborative filtering: X is matrix of ratings, with Xdi being rating of user i for item d, then
Λd: and Y:i are K dimensional latent properties of items and users to be inferred, with

Xdi =

K∑
k=1

Λd:Y:i + εdi

Singular value decomposition (SVD) produces ML solution if X fully observed.



Limitations of Gaussian, FA and PPCA models

• Gaussian, FA and PCA models are easy to understand and use in practice.

• They are a convenient way to find interesting directions in very high dimensional data
sets, eg as preprocessing

• Their problem is that they make very strong assumptions about the distribution of the
data, only the mean and variance of the data are taken into account.

The class of densities which can be modelled is too restrictive.
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By using mixtures of simple distributions, such as Gaussians, we can expand the class of
densities greatly.



Mixture Distributions
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A mixture distribution has a single discrete latent variable:

si
iid∼ Discrete(π)

xi | si = m ∼ P(θm)

Mixtures arise naturally when observations from different sources have been collated.
They can also be used to approximate arbitrary distributions.



The Mixture Likelihood

The mixture model is

si
iid∼ Discrete(π)

xi | si = m ∼ P(θm)

Under the discrete distribution

p(si = m) = πm; πm ≥ 0,

k∑
m=1

πm = 1

Thus, the probability (density) at a single data point xi is

p(xi) =

k∑
m=1

p(si = m)p(xi | si = m)

=

k∑
m=1

πmP(xi; θm)

The mixture distribution (density) is a convex combination (or weighted average) of the com-
ponent distributions (densities).



Approximation with a Mixture of Gaussians (MoG)

The component densities may be viewed as elements of a basis which can be combined to
approximate arbitrary distributions.

Here are examples where non-Gaussian densities are modelled (aproximated) as a mixture
of Gaussians. The red curves show the (weighted) Gaussians, and the blue curve the
resulting density.
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Given enough mixture components we can model (almost) any density (as accurately as
desired), but still only need to work with the well-known Gaussian form.



Clustering with a MoG



Clustering with a MoG



Clustering with a MoG

In clustering applications, the latent variable si represents the (unknown) identity of the
cluster to which the ith observation belongs.

Thus, the latent distribution gives the prior probability of a data point coming from each
cluster.

p(si = m | π) = πm

Data from the mth cluster are distributed according to the mth component:

p(xi | si = m) = P(xi; θm)

Once we observe a data point, the posterior probability distribution for the cluster it belongs
to is

p(si = m | xi) =
P(xi; θm)πm∑
mP(xi; θm)πm

This is often called the responsibility of the mth cluster for the ith data point.



Modeling time series

Consider a sequence of observations:

x1, x2, x3, . . . , xt

which are not iid.
For example:

• Sequence of images
• Speech signals, English sentences
• Stock prices
• Kinematic variables in a robot
• Sensor readings from an industrial process
• Amino acids, DNA, etc. . .

Goal: To build a probabilistic model of the data p(x1, . . . , xt). This can be used to:
• Predict p(xt|x1, . . . , xt−1)
• Detect abnormal/changed behaviour (if p(xt, xt+1, . . . |x1, . . . , xt−1) small)
• Recover underlying/latent/hidden causes



Markov models

In general:

p(x1, . . . , xt) = p(x1)p(x2|x1)p(x3|x1, x2) · · · p(xt|x1, x2 . . . xt−1)

First-order Markov model:

p(x1, . . . , xt) = p(x1)p(x2|x1) · · · p(xt|xt−1)

x1 I x2 I x3 I u u u I xτ

The term Markov refers to a conditional independence relationship. In this case, the Markov
property is that, given the present observation (xt), the future (xt+1, . . .) is independent of
the past (x1, . . . , xt−1).

Second-order Markov model:

p(x1, . . . , xt) = p(x1)p(x2|x1) · · · p(xt−1|xt−3, xt−2)p(xt|xt−2, xt−1)



Causal structure and latent variables
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Speech recognition:
• y - underlying phonemes or words
• x - acoustic waveform

Vision:
• y - object identities, poses, illumination
• x - image pixel values

Industrial Monitoring:
• y - current state of molten steel in caster
• x - temperature and pressure sensor readings

Two frequently-used tractable models:
• Linear-Gaussian state-space models
• Hidden Markov models



Linear-Gaussian state-space models (SSMs)
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Joint probability factorizes:

p(y1:τ , x1:τ) = p(y1)p(x1|y1)
τ∏
t=2

p(yt|yt−1)p(xt|yt)

where yt and xt are both real-valued vectors, and z1:τ ≡ z1, . . . , zτ .

In a linear Gaussian SSM all conditional distributions are linear and Gaussian:

Output equation: xt= Cyt + vt
State dynamics equation: yt= Ayt−1 + wt

where vt and wt are uncorrelated zero-mean multivariate Gaussian noise vectors.

Also assume y1 is multivariate Gaussian. The joint distribution over all variables x1:τ , y1:τ is
(one big) multivariate Gaussian. Why?

These models are also known as stochastic linear dynamical systems, Kalman filter models.



From factor analysis to state space models
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Factor analysis: xi =

K∑
j=1

Λij yj + εi vs SSM output equation: xt,i =

K∑
j=1

Cij yt,j + vi.

Interpretation 1:

In both models the observations are linearly related to the hidden factors (state-variables)
and all variables are Gaussian.

Linear Gaussian state-space models can therefore be seen as a dynamical generalization
of factor analysis where yt,j can depend linearly on yt−1,k.



Linear dynamical systems
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Interpretation 2:

Markov chain with linear Gaussian dynamics yt−1 → yt.

Observation variables xt are a linear projection of latent variables yt, with Gaussian obser-
vation noise.



Hidden Markov models
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Joint probability factorizes:

p(s1:τ , x1:τ) = p(s1)p(x1|s1)
τ∏
t=2

p(st|st−1)p(xt|st)

Discrete hidden states st ∈ {1 . . . , K}, while outputs xt can be discrete or continuous.

Generative process:

1. A first-order Markov chain generates the hidden state sequence (path):

initial state probs: πj = p(s1 = j) transition matrix: Tij = p(st+1 = j|st = i)

2. A set of emission (output) distributions Aj(·) (one per state) converts this state path into
a sequence of observations xt.

Aj(x) = p(xt = x|st = j) (for continuous xt)
Ajk = p(xt = k|st = j) (for discrete xt)



Hidden Markov models

Two interpretations:

• a Markov chain with stochastic measurements:
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• or a mixture model with states coupled across time:
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yt

Even though hidden state sequence is first-order Markov, the output process may not be
Markov of any order (for example: 1111121111311121111131 . . .).

Discrete state, discrete output models can approximate any continuous dynamics and ob-
servation mapping even if nonlinear; however this is usually not practical.

HMMs are related to stochastic finite state machines/automatas.



HMMs and SSMs
State space models (linear dynamical systems with Gaussian noise) are exactly the
continuous state analogue of hidden Markov models.
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• Continuous vector of states is a very powerful representation.
For an HMM to communicate N bits of information about the past, it needs 2N states.
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• Linear-Gaussian output/dynamics are very weak.
The types of dynamics linear SSMs can capture is very limited. However, HMMs can in
principle represent arbitrary stochastic dynamics and output mappings.



Some Extensions

• Input-output state-space models
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p(s1:τ , x1:τ |u1:τ) = p(s1|u1)p(x1|s1, u1)
τ∏
t=2

p(st|st−1, ut−1)p(xt|st, ut)

• Factorial hidden Markov models and dynamic Bayesian networks
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• Hierarchical HMMs



End Notes

Great review for these basic models are from a paper by Roweis & Ghahramani (1999):
A Unifying Review of Linear Gaussian Models. Neural Computation 11(2):305–345.



End Notes
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