
LEARNING TO EVALUATE GO POSITIONS
VIA TEMPORAL DIFFERENCE METHODS

Nicol N. Schraudolph Peter Dayan Terrence J. Sejnowski
IDSIA Gatsby Unit Comput. Neurobiology

Galleria 2 17 Queen Square The Salk Institute
CH-6928 Manno London, WC1N 3AR La Jolla, CA 92037

Switzerland United Kingdom USA
(nic@idsia.ch) (dayan@gatsby.ucl.ac.uk) (terry@salk.edu)

Technical Report IDSIA-05-00�

February 21, 2000

revised May 24, 2000

The game of Go has a high branching factor that defeats the tree search ap-
proach used in computer chess, and long-range spatiotemporal interactions that
make position evaluation extremely difficult. Development of conventional Go
programs is hampered by their knowledge-intensive nature. We demonstrate a
viable alternative by training neural networks to evaluate Go positions via tem-
poral difference (TD) learning.

Our approach is based on neural network architectures that reflect the spatial or-
ganization of both input and reinforcement signals on the Go board, and training
protocols that provide exposure to competent (though unlabelled) play. These
techniques yield far better performance than undifferentiated networks trained
by self-play alone. A network with less than 500 weights learned within 3 000
games of 9x9 Go a position evaluation function superior to that of a commercial
Go program.

�To appear in Soft Computing Techniques in Game Playing, Jain, L. C., and Baba,
N., Eds., Springer Verlag, Berlin, 2000.

1 Introduction

1.1 The Game of Go

Go was developed four millennia ago in China; it is one of the oldest and most
popular board games in the world. Like chess, it is a deterministic, perfect
information, zero-sum game of strategy between two players. They alternate in
placing black and white stones on the intersections of a 19x19 grid (smaller for
beginners) with the objective of surrounding more board area (territory) with
their stones than the opponent. Adjacent stones of the same color form groups;
an empty intersection adjacent to a group is called a liberty of that group. A
group is captured and removed from the board when its last liberty is occupied
by the opponent. To prevent loops, it is illegal to make certain moves which
recreate a prior board position. A player may pass at any time; the game ends
when both players pass in succession. Each player’s score is then calculated
as the territory (number of empty intersections) they have surrounded plus the
number of enemy stones they have captured; the player with the higher score
wins the game.

1.2 Computer Go

Unlike most other games of strategy, Go has remained an elusive skill for com-
puters to acquire — indeed it is increasingly recognized as a “grand challenge”
of Artificial Intelligence [1], [2], [3]. The game tree search approach used ex-
tensively in computer chess is infeasible: the game tree of Go has an average
branching factor of around 200, but even beginners may routinely look ahead up
to 60 plies in some situations. Humans appear to rely mostly on static evaluation
of board positions, aided by highly selective yet deep local lookahead. Conven-
tional Go programs are carefully (and protractedly) tuned expert systems [4].
They are fundamentally limited by their need for human assistance in compil-
ing and integrating domain knowledge, and still play barely above the level of
a human beginner — a machine learning approach may thus offer considerable
advantages. Brügmann [5] has shown that a knowledge-free optimization ap-
proach to Go can work in principle: he obtained respectable (though inefficient)
play by selecting moves through simulated annealing [6] over possible continu-
ations of the game.

2

Creating (respectively preventing) live groups — particular patterns on the board
which are stable against opposing play — is one of the basic elements of strat-
egy, so there is a large component of pattern recognition inherent in Go. It is this
component which is amenable to connectionist methods. Supervised backprop-
agation networks have been applied to the game [7], [8], but face a bottleneck
in the scarcity of hand-labelled training data. By contrast, a vast number of
unlabelled Go game records is readily available on the Internet; we therefore
propose an approach which can utilize this rich supply of data.

2 Temporal Difference Learning

We use an algorithm called temporal difference (TD) learning [9] to acquire
a function that evaluates board positions. It can be seen as an adaptation of
Samuel’s famous program that learned to play checkers [10]. The idea is to
take a representation of the board position xt at time t in the game and from
it produce a number f(xt;w) which specifies how good this board position is.
Here w is a set of parameters which are tuned during learning to turn f(xt;w)
into a good evaluation function — i.e., one that accurately reflects the chances
of winning the game (against a strong opponent) from the given position xt.
In our case, f(xt;w) will be implemented by a neural network, and w are its
weights.

Given an accurate position evaluation function, the computer can choose good
moves by conventional search methods. Since our focus here is on learning
the evaluation function, we use only the most primitive search strategy: our
program typically tries out every legal move, then picks the one leading to the
board position with the highest value of f(xt;w).

2.1 Mathematical Derivation

Consider first trying to learn how to evaluate board positions based on playing a
fixed strategy against randomly selected opponents. If we arrange for a reward
rT =1 if the game ends at time T and the program wins, and set rt=0 if t 6=T

or if the program loses, then the probability of winning the game from position

3

xt can be written as

V (xt) = E

"
1X
s=t

rs

#
; (1)

where E[�] takes an expectation, in this case starting from position xt, over the
play of the opponents as well as any randomization in the program’s own moves.

The TD approach provides a learning rule for changing the parameters w to
improve the fit of our evaluation function f(xt;w) to the true value function
V (xt). Separating the first and subsequent terms of the sum in (1) gives

V (xt) = E[rt] +E

2
4 1X
s=t+1

rs

3
5 (2)

= E[rt] +E[V (xt+1)] (3)

� rt + V (xt+1) (4)

� rt + f(xt+1;w) (5)

where the second expectation in (3) is over the value of xt+1, (4) uses random
samples of rt and xt+1 instead of their expectations (making this a Monte Carlo
method), and (5) replaces the true value V (xt+1) with its current approxima-
tion f(xt+1;w). Using the right-hand side of (5) as a target for f(xt;w), we
construct a prediction error term

�t = rt + f(xt+1;w) � f(xt;w) (6)

which is used to change the weights w. The simplest TD rule, called TD(0),
changes the weights according to

�w / �trwf(xt;w) ; (7)

where rwf(xt;w) is the vector of partial derivatives of the evaluation function
with respect to the parameters. This can be shown under very particular circum-
stances to make f(x;w) converge to V (x). (Our model, together with many
other applications of TD, uses the learning rule successfully in a regime where
these guarantees do not hold.) There is a refinement of TD(0) called TD(�),
which instead uses

�w / �t �ft ; where (8)

�
ft = rwf(xt;w) + ��ft�1 (9)

and whose free parameter 0 � � � 1 can be shown to trade off bias against
variance in the weight changes [11].

4

2.2 Use for Game Playing

Once appropriate parameters w are learned, the evaluation function can be used
to choose moves — naturally favoring those that lead to better board positions.
In this case, as w changes, the program’s strategy will change, leading to dif-
ferent outcomes of the game, which in turn will trigger yet other changes in w.
Done carefully, this process is related to the engineering optimization method
of dynamic programming [9, 12]. However, even when done in a more heuristic
manner, as we are forced to, this can work quite well.

Using the TD approach, a program can thus learn to play a game without ever
having been trained on explicitly labelled examples of good vs. bad play. In
fact, any generator of legal moves — game records, other computer programs,
random move generators, and so forth — can in principle be used for TD train-
ing. At the most extreme, the TD learner itself can be used to play both sides of
the game according to its current evaluation function. Learning from such self-
play is intriguing in that in this setup the program has no access at all to even
implicit knowledge about the game it is to learn, beyond its bare rules (which
must necessarily be hardcoded into the program).

TD learning has been successfully applied to the game of backgammon by
Tesauro [13]. His TD-Gammon program used a backpropagation network to
map preselected features of the board position to an output reflecting the proba-
bility that the player to move would win. It was trained by TD(0) while playing
only itself, yet learned an evaluation function that — coupled with a full two-ply
lookahead to pick the estimated best move — made it competitive with the best
human players in the world [14], [15].

2.3 Naive Application to Go

In an early experiment we investigated a straightforward adaptation of Tesauro’s
approach to the Go domain. Go is similar to backgammon in that complete
expansion of the search tree at even moderate levels is futile. In contrast to
backgammon, however, it has no random element to ensure adequate explo-
ration, or to render extended strategies ineffective. We thus had to supply the
stochasticity necessary for TD learning by randomizing our network’s self-play.
This was achieved by picking moves through Gibbs sampling [16], that is, with

5

probability proportional to e�f(xt+1), over the board positions xt+1 reached by
all legal moves (i.e., a full single-ply search). The pseudo-temperature param-
eter � was gradually increased from zero (random play) towards infinity (best-
predicted play) over the course of training [6].

We trained a fully connected backpropagation network on a 9x9 Go board (a
standard didactic size for humans) in this fashion. The network had 82 inputs
(one for each point on the board, plus a bias input), 40 hidden units with hy-
perbolic tangent activation function, and a single output learning to predict the
difference between the two players’ scores. Inputs were encoded as +1 for a
black stone, -1 for a white one, and zero for an empty intersection. Reward rt

was given for captured enemy stones at the time of capture, and for surrounded
territory at the end of the game.

This network did learn to squeak past Wally, a weak public domain program
[17], but it took 659 000 games of training to do so. One reason for this sloth
lies in the undifferentiated nature of the fully connected network, which fails
to capture any of the spatial structure inherent in the game. Another another
contributing factor is the paucity of the scalar reinforcement signal. An im-
portant difference to backgammon is that the terminal state of a Go board is
quite informative with respect to the play that preceded it: much of the board
will be designated as territory belonging to one or the other player, indicating
a positive local outcome for that player. Finally, while self-play did suffice for
TD-Gammon, Go is a game of far higher complexity, and exposure to some-
what more competent play may be required in order to achieve results within
reasonable training time.

We have found that the efficiency of learning to play Go by TD methods can in-
deed be vastly improved through appropriately structured network architectures,
use of a richer local reinforcement signal, and training strategies that incorpo-
rate but do not rely exclusively on self-play. In the remainder of this chapter, we
will describe these improvements in detail.

3 Network Architecture

Figure 1 illustrates the neural network architecture we propose for TD learning
of a position evaluation function for Go. Its particular features are described

6

symmetry
groups

features

connectivity map

groups
symmetry

Go board

raw feature maps

reinforcement map

processed

value

 constraint satisfaction

Figure 1. A network architecture that takes advantage of board symme-

tries, translation invariance and localized reinforcement. Also shown is

the proposed connectivity prediction mechanism (Section 3.4).

in detail below. In our experiments we implemented all of them except for the
connectivity map and lateral constraint satisfaction, which are the subject of
future work.

3.1 Local Reinforcement

One of the particular advantages of Go for predictive learning is that there is
much richer information available at the end of the game than just who won.
Unlike chess, checkers or backgammon, in which pieces are taken away from
the board until there are few or none left, Go stones generally remain where they
are placed. This makes the final state of the board richly informative with re-
spect to the course of play; indeed the game is scored by summing contributions
from each point on the board.

We make this spatial credit assignment accessible to the network by having it

7

predict the fate of every point on the board rather than just the overall score, and
evaluate whole positions accordingly. (This bears some similarity with the Suc-
cessor Representation [18] which also integrates over vector rather than scalar
destinies.) Specifically, the network now has an output for each point on the
board, which receives a reward rt of �1 for the capture of a prisoner at that
point (during the game), and likewise for that point being black or white terri-
tory at the end of the game.

For reasons of computational efficiency, it is desirable to combine the gradient
information with respect to all outputs into a single scalar for each hidden unit
of a backpropagation network; this forces us to use �= 0 when implementing
of TD(�) with local reinforcement signals (i.e., multiple outputs). Note that
although Tesauro did not have this constraint, he nonetheless found TD(0) to
be optimal [13]. Our experience has been that the advantages of incorporating
the much richer local reinforcement signal by far outweigh the disadvantage of
being limited to �=0.

3.2 Symmetries

Given the knowledge-based approach of existing Go programs, there is an em-
barrassment of input features that one might adopt for Go: Wally already uses
about 30 of them, stronger programs disproportionately more. In order to demon-
strate reinforcement learning as a viable alternative to the conventional ap-
proach, however, we require our networks to learn whatever set of features they
might need. The complexity of this task can, however, be significantly reduced
by exploiting a number of symmetries that hold a priori in this domain. Specifi-
cally, patterns of Go stones retain their properties under color reversal, reflection
and rotation of the board. Each of these invariances should be reflected in the
network architecture.

Color reversal invariance implies that changing the color of every stone in a Go
position, and the player whose turn it is to move, yields an equivalent position
from the other player’s perspective. We build this constraint directly into our
networks by using antisymmetric input values (+1 for black, -1 for white) and
hidden unit activation functions (hyperbolic tangent) throughout, and changing
the bias input from +1 to �1 when it is white’s turn to move. This arrangement
obviously guarantees that the network’s outputs will have identical magnitude
but opposite sign when the input position is color-reversed.

8

Go positions are also invariant with respect to the eightfold (reflection� rotation)
symmetry of the square.1 We provided a mechanism for constraining the net-
work to obey this invariance by creating symmetry groups of eight hidden units,
each seeing the same input under a different reflection/rotation, with appropriate
weight sharing and summing of derivatives [19] within each symmetry group.

Although this was clearly beneficial during the evaluation of the network against
its opponents, it appeared to actually impede the course of learning, for reasons
that are not clear at this point. We settled on using symmetry groups only in
play, using a network trained without them.

3.3 Translation Invariance

Modulo the considerable influence of the board edges, patterns of Go stones
also retain their properties under translation across the board. To implement
translation invariance we use convolution with a weight kernel rather than mul-
tiplication by a weight matrix as the basic mapping operation in our network,
whose layers are thus feature maps produced by scanning a fixed receptive field
(the weight kernel) across the input [20]. One particular advantage of this tech-
nique is the easy transfer of learned weight kernels to different Go board sizes.

It must be noted, however, that strictly speaking, Go is not fully translation-
invariant: the edge of the board not only affects local play but modulates other
aspects of the game, and indeed forms the basis of opening strategy. We cur-
rently account for this by allowing each node in our network to have its own bias
weight, thus giving it one degree of freedom from its neighbors. This enables
the network to encode absolute position at a modest increase in the number of
adjustable parameters. Furthermore, we provide additional redundancy around
the board edges by selective use of convolution kernels twice as wide as the in-
put. Weights near the edge of such extra-wide kernels are used only for points
near the opposite edge in the feature map, and are thus free to specialize in
encoding board edge effects.

For future implementations, we suggest that it is possible to augment the in-
put representation of the network in such a way that its task becomes fully

1There are human conventions about the propriety of starting the game in a particular
corner, which is a concern in teaching the network from recorded human games.

9

translation-invariant, by adding an extra input layer whose nodes are activated
when the corresponding points on the Go board are empty, and zero when they
are occupied (regardless of color). Such a scheme represents board edges in pre-
cisely the fashion in which they influence the game: through the absence of free
board space beyond them. This consistency should make it possible for the net-
work to encode reasonable evaluation functions with fully translation-invariant
receptive fields, thus eliminating the need for any special treatment of the board
edges. As an additional benefit, the augmented input representation also makes
the three possible states of a point on the board (black stone, white stone, or
empty) linearly separable — hence easier to process — for the network.

3.4 Connectivity

The use of limited receptive field sizes raises the problem of how to account
for long-ranging spatial interactions on the board. In Go, the distance at which
groups of stones interact is a function of their arrangement in context; an impor-
tant subproblem of position evaluation is therefore to compute the connectivity
of groups of stones. We propose to model connectivity explicitly by training the
network to predict the correlation pattern of local reinforcement from a given
position. This information can then be used to inform the lateral propagation of
local features in the hidden layer through a constraint satisfaction mechanism.
The task is to segment the board into groups of stones that are (or will be) ef-
fectively connected; image segmentation algorithms from computer vision may
prove useful here.

4 Training Strategies

Temporal difference learning teaches the network to predict the consequences
of following particular strategies on the basis of the play they produce. The
question arises as to which strategies should be used to generate the large num-
ber of Go games needed for training. In principle, any generator of legal Go
moves could be used to play either side of the game; in practice, a carefully
chosen combination of move generation strategies is key to achieving good TD
learning performance.

10

Table 1. Comparison of alternative move generation strategies.

move generator speed quality quantity coverage flexibility

game record fast high limited conventional none
Go program slow medium unlimited questionable some
TD network slow low unlimited questionable high
random play fast none unlimited ergodic high

We evaluate particular move generators according to five criteria: the speed
with which they can provide us with moves, the quality of the moves provided,
the quantity of moves we can obtain from the generator, to what extent these
moves cover the space of plausible Go positions, and finally the flexibility of
the move generator. We regard a move generator as flexible if it can be used
in arbitrary board positions and against arbitrary opponents. Table 1 lists four
types of move generators, and how they fare in regard to these criteria. In what
follows, we shall discuss each type in greater detail.

4.1 Recorded Games

The growth of the Internet, and the popularity of Internet Go Servers — where
Go aficionados from all over the globe congregate to play networked games
— has led to an explosion in the amount of machine-recorded Go games. We
estimate that at present about 500 000 recorded games between Go professionals
and serious amateur players are available in machine-readable format. They
offer a supply of instantaneous (since prerecorded), high-quality Go moves for
TD training. As to their coverage, these games naturally represent conventional
human play, which might help a trained network in routine play against humans
but exposes it to brittleness in the face of unconventional moves by the opponent.

There are other drawbacks to training from recorded games: there is no flexi-
bility (the game record must be played through from the start), and the supply
of suitable games can be quite limited. Specifically, most machine learning
approaches to Go use the smaller 9x9 board due to computational limitations;
among humans, this board size is used only by rank beginners to learn the basics
of the game. Thus only a few thousand 9x9 games, and of questionable quality,
have been recorded to date.

11

Another major obstacle is the human practice of abandoning the game once
both players agree on the outcome — typically well before a position that could
be scored mechanically is reached. While the game record typically contains
the final score (sufficient for our naive TD-Go network), the black and white
territories (required for local reinforcement) are rarely given explicitly. This
issue can be addressed by eliminating early resignations from the training set,
and using existing Go programs to continue the remaining games to a point
where they can be scored mechanically. For verification, the score thus obtained
can then be compared to that given in the game record, with mismatches also
eliminated from the training set.

4.2 Other Go Programs

Existing computer Go programs can also be used as a source of data for TD
training. Although these programs are not as good as typical human players,
they do incorporate a significant body of knowledge about the game, and pro-
vide reasonable moves in unlimited quantity, albeit at relatively slow speed. Re-
garding coverage, these programs typically respond reasonably to conventional
human play, but can react in rather bizarre ways to unconventional moves (e.g.,
those of a computer opponent). The major practical issues in using computer
Go programs for TD learning are the tradeoff between their speed and quality
of moves, and their flexibility (or lack thereof). We have explored the use of two
Go programs in this fashion: Wally and The Many Faces of Go.

Wally [17] is a rather weak public domain program based on simple pattern
matching. It does have the advantages of being quite fast, purely reactive, and
available in source code, so that we were able to seamlessly integrate it into our
TD-Go system, and use it as a move generator with full flexibility.

The commercial Many Faces [4], by contrast, is a self-contained DOS program.
To use it, we had to hook a spare PC to our system via serial cable, and pretend
to be a modem through which a remote opponent (i.e., our system) was playing.
Since it was not possible to set up arbitrary board positions by modem, we
always had to play entire games. Parameters such as its skill level and handicap
had to be set manually as well, so overall flexibility was low, as was the speed of
move generation. These drawbacks are redeemed by the fact that for a computer
program, Many Faces delivers comparatively high-quality moves.

12

4.3 TD Network Moves

Tesauro trained TD-Gammon by self-play — i.e., the network’s own position
evaluation was used (in conjunction with a full search over all legal moves) to
pick both players’ moves during TD training. This technique is impressive in
that does not require any external source of expertise beyond the rules of the
game: the network is its own teacher. We already adopted this approach for
9x9 Go in our “naive” TD-Go network (Section 2.3); now we re-examine it as
one possible move generation strategy. As a move generator, the TD network
is comparable to Go programs like Wally, providing (with full flexibility) an
unlimited supply of relatively slow and (at least early in training) low-quality
moves.

As for coverage, Go (unlike backgammon) is a deterministic game, so we cannot
always pick the estimated best move when training by self-play without running
the risk of trapping the network in some suboptimal fixed state. Theoretically,
this should not happen — the network playing white would be able to predict the
idiosyncrasies of the network playing black, take advantage of them thus chang-
ing the outcome, and forcing black’s predictions to change commensurately —
but in practice it is a concern. We therefore pick moves stochastically by Gibbs
sampling [16], in which the probability of a given move is exponentially related
to the predicted value of the position it leads to, through a pseudo-temperature
parameter that controls the degree of randomness. It is an open question, how-
ever, just how much stochasticity is required for TD learning to proceed most
efficiently.

Although it offers the unique opportunity for the TD network to learn from
its own idiosyncrasies, we found self-play alone to be rather cumbersome for
two reasons: firstly, the single-ply search used to evaluate all legal moves is
computationally intensive — and although we are investigating faster ways to
accomplish it, we expect move evaluation to remain a computational burden.
Secondly, learning from self-play is sluggish as the network must bootstrap it-
self out of ignorance without the benefit of exposure to skilled opponents. When
we do use the TD network as a move generator for its own training, we thus find
it generally preferable to let the TD network play against another Go program,
such as Wally or Many Faces. This also provides a convenient way to moni-
tor the progress of training, and to determine whether the architectures we have
chosen provide enough flexibility to represent a useful evaluation function.

13

4.4 Random Moves

Recorded games aside, the fastest way to generate legal Go moves is to just pick
a random one. Although this approach doesn’t generate play of any apprecia-
ble quality, we found that TD networks can learn a surprising amount of basic
Go knowledge by observing a few thousand quick games of random Go; this
accords well with Brügmann’s results [5]. In particular, this proved an effective
way to prime our networks at the start of training.

The random move generator combines the advantages of high speed and ergod-
icity, i.e., it explores all legally reachable Go positions. In order to provide a
minimum of stability and structure to its play, we do prevent it from filling in its
own single-point eyes — a particular, locally (and easily) recognizable type of
suicidal move.

4.5 Matching Opponents

Sufficiently flexible move generators can in principle be arbitrarily combined
to play a game between two players. In order to create useful training data,
however, the two opponents should be well-matched in their skill level. Other-
wise, trivial predictions of the game’s outcome (such as “white always wins”)
become possible, which undermines the network’s learning process. Human Go
players are matched using a system of ratings and handicaps; our TD-Go frame-
work permits at least three additional ways to ensure that opponents are of equal
strength:

� use the same move generator on both sides (self-play),

� have the players trade sides several times during the game, or

� dilute the stronger player by interspersing it with an appropriate
proportion of random moves.

For move generators that are sufficiently flexible to support it, we favor the di-
lution approach, since it has a number of advantages: firstly, the proportion of
random moves can be changed adaptively, based on the outcome of past games.
When one of the players is the TD network, this not only keeps the opponents
well-matched while the network improves over time, but also — secondly —

14

provides us with a convenient on-line performance measure. Finally, the injec-
tion of random moves also serves to guarantee sufficient variety of play (i.e.,
coverage) in cases where this would otherwise be in doubt.

Since, in all cases, the strategies of both players are intimately intertwined in the
predictions, one would never expect them to be correct overall when the network
is playing a real opponent. This is a particular problem when the strategy for
choosing moves during learning is different from the policy adopted for “opti-
mal” network play. Samuel [10] found it inadvisable to let his checker program
learn from games which it won against an opponent, since its predictions might
otherwise reflect poor as well as good play. This is a particularly pernicious
form of over-fitting — the network can learn to predict one strategy in exquisite
detail, without being able to play well in general.

5 Empirical Results

In our experiments we trained many networks by a variety of methods. A small
sample network that learned to beat Many Faces (at low playing level) in 9x9 Go
within 3 000 games of training is shown in Figure 2. This network was grown
during training by adding hidden layers one at a time; although it was trained
without the (reflection� rotation) symmetry constraint, many of the weight ker-
nels learned approximately symmetric features. The direct projection from
board to reinforcement layer has an interesting structure: the negative central
weight within a positive surround stems from the fact that a placed stone occu-
pies (thus loses) a point of territory even while securing nearby areas. Note that
the wide 17x17 projections from the hidden layers have considerable fringes
— ostensibly a trick the network uses to incorporate edge effects. (Absolute
position is also encoded explicitly in the bias projections from the turn unit.)

We compared training this network architecture by self-play versus play against
r-Wally, a version of Wally diluted with random play in adaptive proportion. Fig-
ure 3 show the network’s performance during training against both r-Wally and
(to evaluate generalization) Many Faces. Although the initial rate of learning
is similar in both cases, the network playing r-Wally soon starts to outperform
the one playing itself; this demonstrates the advantage of having a skilled op-
ponent. After about 2 000 games, however, both start to overfit their opponents,
and consequently worsen against Many Faces.

15

h0!reinf h1!reinf architecture

board!h0 turn!h0 board!h1 turn!h1 board!reinf turn!reinf

Figure 2. A small network that learned to play 9x9 Go. Boxes in the

architecture panel represent 9x9 layers of units, except for turn and value
which are scalar. Arrows indicate convolutions with the corresponding

weight kernels. Black disks represent excitatory, white ones inhibitory

weights; within each panel, disk area is proportional to weight magnitude.

Switching training partner to Many Faces — set to a skill level of 2-3, out of a
maximum of 20 — at this point produced after a further 1 000 games a network
that could reliably beat this opponent (dotted line in Figure 3). The low skill
setting we used essentially disabled Many Faces’ deep lookahead mechanisms
[21]; since our TD network move generator does not search any deeper than a
single ply either, this can be viewed as a fair test of static position evaluation
and move selection capabilities.

Although less capable, the self-play network did manage to edge past Wally after
3 000 games; this compares very favorably with the undifferentiated network
described in Section 2.3. Furthermore, we verified that weights learned from
9x9 Go offer a suitable basis for further training on the full-size (19x19) Go
board. Computational limitations did not permit comprehensive training on the
full-size board though, where recorded games would offer a rapid source of
high-quality play.

Subjectively, our networks appear more competent in the opening than further
into the game. This suggests that although reinforcement information is indeed

16

0 1000 2000 3000

games of Go played

0

10

20

30

40
%

 r
an

do
m

 m
ov

es
 b

y
r-

W
al

ly

TD-Network Performance

stones lost to M
anyF

aces

 against r-Wally against ManyFaces

trained against: itself
r-Wally
ManyFaces

-25

0

25

50

Figure 3. Performance of our 9x9 Go network, measured against two

opponents | Wally diluted with random moves (boxes, left axis), and

Many Faces (diamonds, right axis) | when trained by playing against

itself (dashed), the randomized Wally (solid line), or Many Faces (dotted).

propagating all the way back from the final position, it is hard for the network to
capture the multiplicity of mid-game situations and the complex combinatorics
characteristic of the endgame. These strengths and weaknesses partially com-
plement those of symbolic systems, suggesting that hybrid approaches might be
rewarding [22], [23].

6 Summary

We have shown that with sufficient attention to network architecture and train-
ing procedures, a neural network trained by temporal difference learning can
achieve significant levels of performance in this knowledge-intensive domain.
Specifically, we have identified salient characteristics of Go, such as the infor-
mative nature of the final state of every game, the mixture of translation variance

17

and invariance, and color reversal symmetry, and have shown how to capture
them efficiently in the network architecture. Networks with a relatively small
number of weights learn very quickly to beat complicated conventional pro-
grams, and, judging from the mistakes they exhibit, would perform substantially
better yet if given a small amount of “symbolic” help.

Acknowledgements

We are grateful to Patrice Simard and Gerry Tesauro for helpful discussions, to
Tim Casey for game records from the Internet Go Server, and to Geoff Hinton
for CPU cycles. A condensed description of this work has previously appeared
at the NIPS conference [24]. Support was provided by the McDonnell-Pew Cen-
ter for Cognitive Neuroscience, SERC, NSERC, the Howard Hughes Medical
Institute, and the Swiss National Fund.

References

[1] Rivest, R. (1993), invited talk, Conference on Computational Learning
Theory and Natural Learning Systems, Provincetown, MA.

[2] Johnson, G. (1997), “To test a powerful computer, play an ancient game”,
The New York Times, July 29, http://www.cns.nyu.edu/~mechner/

compgo/times/

[3] Mechner, D. A. (1998), “All systems go”, The Sciences, 38(1):32–37,
http://www.cns.nyu.edu/~mechner/compgo/sciences/

[4] Fotland, D. (1993), “Knowledge representation in the Many Faces of Go”,
ftp://www.joy.ne.jp/welcome/igs/Go/computer/mfg.Z

[5] Brügmann, B. (1993), “Monte Carlo Go”, ftp://www.joy.ne.jp/

welcome/igs/Go/computer/mcgo.tex.Z

[6] Kirkpatrick, S., Gelatt Jr., C., and Vecchi, M. (1983), “Optimization by
simulated annealing”, Science, 220:671–680, reprinted in [25].

[7] Stoutamire, D. (1991), “Machine learning applied to Go”, Master’s thesis,
Case Western Reserve University, ftp://www.joy.ne.jp/welcome/

igs/Go/computer/report.ps.Z

18

[8] Enderton, H. D. (1991), “The Golem Go program”, Tech. Rep. CMU-CS-
92-101, Carnegie Mellon University, ftp://www.joy.ne.jp/welcome/
igs/Go/computer/golem.sh.Z

[9] Sutton, R. S. and Barto, A. G. (1998), Reinforcement Learning: An Intro-
duction, The MIT Press, Cambridge, MA.

[10] Samuel, A. L. (1959), “Some studies in machine learning using the game
of checkers”, IBM Journal of Research and Development, 3:211–229.

[11] Watkins, C. (1989), Learning from Delayed Rewards, PhD thesis, Univer-
sity of Cambridge, England.

[12] Bertsekas, D. P. and Tsitsiklis, J. N. (1996), Neuro-Dynamic Program-
ming, Athena Scientific, Belmont, MA.

[13] Tesauro, G. (1992), “Practical issues in temporal difference learning”,
Machine Learning, 8:257.

[14] Robertie, B. (1992), “Carbon versus silicon: Matching wits with TD-
Gammon”, Inside Backgammon, 2(2):14–22.

[15] Tesauro, G. (1994), “TD-gammon, a self-teaching backgammon program,
achieves master-level play”, Neural Computation, 6(2):215–219.

[16] Geman, S. and Geman, D. (1984), “Stochastic relaxation, Gibbs distri-
butions, and the Bayesian restoration of images”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 6, reprinted in [25].

[17] Newman, W. H. (1988), “Wally, a Go playing program”, ftp://www.

joy.ne.jp/welcome/igs/Go/computer/wally.sh.Z

[18] Dayan, P. (1993), “Improving generalization for temporal difference learn-
ing: The successor representation”, Neural Computation, 5(4):613–624.

[19] LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard,
W., and Jackel, L. (1989), “Backpropagation applied to handwritten zip
code recognition”, Neural Computation, 1:541–551.

[20] Fukushima, K., Miyake, S., and Ito, T. (1983), “Neocognitron: A neu-
ral network model for a mechanism of visual pattern recognition”, IEEE
Transactions on Systems, Man, and Cybernetics, 13, reprinted in [25].

[21] Fotland, D. (1994), personal communication.

19

[22] Enzensberger, M. (1996), “The integration of a priori knowledge into a Go
playing neural network”, http://www.cgl.ucsf.edu/go/Programs/

neurogo-html/NeuroGo.html

[23] Dahl, F. A. (1999), “Honte, a Go-playing program using neural
nets”, http://www.ai.univie.ac.at/icml-99-ws-games/papers/
dahl.ps.gz

[24] Schraudolph, N. N., Dayan, P., and Sejnowski, T. J. (1994), “Temporal
difference learning of position evaluation in the game of Go”, in Advances
in Neural Information Processing Systems, Cowan, J. D., Tesauro, G., and
Alspector, J., Eds. vol. 6, pp. 817–824, Morgan Kaufmann, San Francisco.

[25] Anderson, J. and Rosenfeld, E., Eds. (1988), Neurocomputing: Founda-
tions of Research, MIT Press, Cambridge.

20

