
Formative Assignments

Probabilistic and Unsupervised Learning

Peter Orbanz

These problems will not be marked, but you should attempt to solve them before they are discussed
in the tutorial.

1. [28 marks] Statistics and Distributions.

Prepare for: Tutorial on 16 October 2024

In the coming weeks we will be making extensive use of the following distributions, all of which
belong to the exponential family. For each of these distributions, find:

(a) The standard exponential form, identifying the natural parameters in terms of the conven-
tional parameters given in the table (i.e. the function ϕ(θ)), and the sufficient statistic (i.e.
T(x)).

(b) The expected value of the sufficient statistics in terms of the natural or conventional pa-
rameters (i.e. ⟨T(x)⟩p(x|θ)). These expectations are often called the “mean” or “moment”
parameters of the distribution. [Note: show your derivation of the expectations; don’t just
look them up.]

The distributions to consider are:

Name Domain Symbol Density or Probability fn

Multivariate Normal RD x ∼ N (µ,Σ) |2πΣ|−1/2 e−
1
2
(x−µ)TΣ−1(x−µ)

Binomial Z0−N x ∼ Binom(p)

(
N

x

)
px(1− p)N−x

Multinomial [Z0−N ]D x ∼ Multinom(p)
N !

x1! x2! . . . xD!

D∏
d=1

pxd
d

Poisson Z0+ x ∼ Poisson(µ) µxe−µ/x!

Beta [0, 1] x ∼ Beta(α, β)
1

B(α, β)
xα−1(1− x)β−1

Gamma R+ x ∼ Gamma(α, β)
βα

Γ(α)
xα−1e−βx

Dirichlet [0, 1]D x ∼ Dirichlet(α)
Γ
(∑D

d=1 αd

)∏D
d=1 Γ(αd)

D∏
d=1

xαd−1
d

[4 marks each]

2. [5 marks] Basic spectral properties.

Prepare for: 16 October 2024

Let A be a symmetric n× n-matrix, with eigenvalues λ1, . . . , λn.

(a) Show that the matrix B = A+cI, where I is the identity matrix and c ∈ R, has eigenvalues
λ1 + c, . . . , λn + c. [3 marks]

(b) Suppose v and w are eigenvectors of A, with the same eigenvalue λ. Show that any linear
combination of v and w is again an eigenvector of A. What is its eigenvalue? [2 marks]



3. [7 marks] ML in the exponential family.

Prepare for: 23 October 2024

Express the maximum-likelihood value of the mean parameters (as defined in the question above)
of the general exponential family distribution

p(x|θ) = g(θ)f(x)eθ
TT(x)

as a function of a data set of iid observations D = {x1, x2, . . . , xN}.

4. [20 marks] Modelling Data.

Prepare for: 23 October 2024

(a) Download the data file called geyser.txt from the course web site. This is a sequence
of 295 consecutive measurements of two variables from Old Faithful geyser in Yellowstone
National Park: the duration of the current eruption in minutes (rounded to the nearest
second), and the waiting time since the last eruption in minutes (to the nearest minute).

Examine the data by plotting the variables within (plot(geyser(:,1),geyser(:,2),’o’);)
and between (e.g. plot(geyser(1:end-n,1),geyser(n+1:end,1 or 2),’o’); for various
n) time steps. Discuss and justify based on your observations what kind of model might
be most appropriate for this data set. Consider each of the models we have encountered
in the course through week 3: a multivariate normal, a mixture of Gaussians, a Markov
chain, a hidden Markov model, an observed stochastic linear dynamical system and a linear-
Gaussian state-space model. Can you guess how many discrete states or (continuous) latent
dimensions the model might have? [10 marks]

(b) Consider a data set consisting of the following string of 160 symbols from the alphabet
{A, B, C}:

AABBBACABBBACAAAAAAAAABBBACAAAAABACAAAAAABBBBACAAAAAAAAAAAABACABACAABBACAAABBBBA

CAAABACAAAABACAABACAAABBACAAAABBBBACABBACAAAAAABACABACAAABACAABBBACAAAABACABBACA

Study this string and suggest the structure of an HMM model that may have generated it.
Specify the number of hidden states in the HMM, the transition matrix with any constraints
and estimates of the transition probabilities and the output or emission matrix probalities,
and the intial state probabilities. You need to provide some description/justification for
how you arrived at these numbers. We do not expect you to implement the Baum-Welch
algorithm—you should be able to answer this question just by examining the sequence
carefully. [10 marks]

5. [15 marks] Zero-temperature EM.

Prepare for: 23 October 2024

In the automatic speech recognition community HMMs are sometimes trained by using the
Viterbi algorithm in place of the forward–backward algorithm. In other words, in the E step
of EM (Baum–Welch), instead of computing the expected sufficient statistics from the posterior
distribution over hidden states: p(s1:T |x1:T , θ), the sufficient statistics are computed using the
single most probable hidden state sequence: s∗1:T = argmaxs1:T p(s1:T |x1:T , θ).

(a) Is this algorithm guaranteed to converge (in the sense that the free-energy or some other
reaches an asymptote)? To answer this you might want to consider the discussion of the
real EM algorithm and what happens if we constrain q(s) to put all its mass on one setting
of the hidden variables. Support your arguments. [10 marks]

(b) If it converges, will it converge to a maximum of the likelihood? If it does not converge
what will happen? Support your arguments. [5 marks]

(c) [Bonus (just for culture)] Why do you think this question is labelled “Zero-temperature
EM” Hint: think about where temperature would appear in the the free-energy. [no marks]

http://www.gatsby.ucl.ac.uk/teaching/courses/ml1-2012/geyser.txt


6. [35 points] Deriving Gibbs Sampling for LDA.

Prepare for: 30 October 2024

In this question we derive two Gibbs sampling algorithms for latent Dirichlet allocation (LDA).
LDA is a topic model that defines multiple mixtures of discrete distributions with shared com-
ponents. The archetypical application is to words in documents. Suppose there are W possible
words, D documents and K topics. The LDA model specifies the distribution of the ith word in
the dth document, xid ∈ {1 . . .W}, in terms of the hyperparameters α and β, by way of latent
Dirichlet parameters:

topic distribution for dth document θd|α ∼ Dirichlet(α, . . . , α) (1)

word distribution for kth topic ϕk|β ∼ Dirichlet(β, . . . , β) (2)

topic for ith word in dth document zid|θd ∼ Discrete(θd) (3)

identity of ith word in dth document xid|zid,ϕzid
∼ Discrete(ϕzid

) (4)

Let Adk =
∑

i δ(zid = k) be the number of zid variables taking on value k in document d, and
Bkw =

∑
d

∑
i δ(xid = w)δ(zid = k) be the number of times word w is assigned to topic k across

all the documents. Let Nd be the total number of words in document d and let Mk =
∑

w Bkw

be the total number of words assigned to topic k.

(a) Write down the joint probability over the observed data and latent variables, expressing
the joint probability in terms of the counts Nd, Mk, Adk, and Bkw. [5 points]

(b) Derive the Gibbs sampling updates for all the latent variables zid and parameters θd and
ϕk. [10 points]

(c) Integrate out all the parameters θd and ϕk from the joint probability in (a), resulting in
a joint probability over only the zid topic assignment variables and xid observed variables.
Again this expression should relate to zid’s and xid’s only through the counts Nd, Mk, Adk,
and Bkw. [5 points]

(d) Derive the Gibbs sampling updates for the zid with all parameters integrated out. This is
called collapsed Gibbs sampling. You will need the the following identity of the Gamma
function: Γ(1 + x) = xΓ(x) for x > 0. [10 points]

(e) What hyperpriors would you give to α and β? How would you generate samples of α
and β from the appropriate conditionals? [You should suggest an algorithm and justify its
feasibility, but do not need to derive the update equations; 5 points]


