
Probabilistic & Unsupervised Learning
Approximate Inference

Parametric Variational Methods
and Recognition Models

Maneesh Sahani
maneesh@gatsby.ucl.ac.uk

Gatsby Computational Neuroscience Unit, and
MSc ML/CSML, Dept Computer Science

University College London

Term 1, Autumn 2024



Variational methods

▶ Our treatment of variational methods has (except EP) emphasised ‘natural’ choices of
variational family – often factorised using the same functional (ExpFam) form as joint.
▶ mostly restricted to joint exponential families – facilitates hierarchical and

distributed models, but not non-linear/non-conjugate.

▶ Consider parametric variational approximations using a constrained family q(Z; ρ).

The constrained (approximate) variational E-step becomes:

q(Z) := argmax
q∈{q(Z;ρ)}

F
(
q(Z), θ(k−1)) ⇒ ρ(k) := argmax

ρ
F
(
q(Z; ρ), θ(k−1))

and so we can replace constrained optimisation of F(q, θ) with unconstrained
optimisation of a constrained F(ρ, θ) :

F(ρ, θ) =
〈
log P(X ,Z|θ(k−1))

〉
q(Z;ρ)

+ H[ρ]

It might still be valuable to use coordinate ascent in ρ and θ, although this is no longer
necessary.



Variational methods

▶ Our treatment of variational methods has (except EP) emphasised ‘natural’ choices of
variational family – often factorised using the same functional (ExpFam) form as joint.
▶ mostly restricted to joint exponential families – facilitates hierarchical and

distributed models, but not non-linear/non-conjugate.

▶ Consider parametric variational approximations using a constrained family q(Z; ρ).

The constrained (approximate) variational E-step becomes:

q(Z) := argmax
q∈{q(Z;ρ)}

F
(
q(Z), θ(k−1)) ⇒ ρ(k) := argmax

ρ
F
(
q(Z; ρ), θ(k−1))

and so we can replace constrained optimisation of F(q, θ) with unconstrained
optimisation of a constrained F(ρ, θ) :

F(ρ, θ) =
〈
log P(X ,Z|θ(k−1))

〉
q(Z;ρ)

+ H[ρ]

It might still be valuable to use coordinate ascent in ρ and θ, although this is no longer
necessary.



Optimising the variational parameters

F(ρ, θ) =
〈
log P(X ,Z|θ(k−1))

〉
q(Z;ρ)

+ H[ρ]

▶ In some special cases, the expectations of the log-joint under q(Z; ρ) can be expressed
in closed form, but these are rare.

▶ Otherwise we might seek to follow∇ρF .

▶ Naively, this requires evaluting a high-dimensional expectation wrt q(Z, ρ) as a function
of ρ – not simple.

▶ At least three solutions:

▶ “Score-based” gradient estimate, and Monte-Carlo (Ranganath et al. 2014).

▶ Recognition network trained in separate phase – not strictly variational (Dayan et
al. 1995).

▶ Recognition network trained simultaneously with generative model using “frozen”
samples (Kingma and Welling 2014; Rezende et al. 2014).



Optimising the variational parameters

F(ρ, θ) =
〈
log P(X ,Z|θ(k−1))

〉
q(Z;ρ)

+ H[ρ]

▶ In some special cases, the expectations of the log-joint under q(Z; ρ) can be expressed
in closed form, but these are rare.

▶ Otherwise we might seek to follow∇ρF .

▶ Naively, this requires evaluting a high-dimensional expectation wrt q(Z, ρ) as a function
of ρ – not simple.

▶ At least three solutions:

▶ “Score-based” gradient estimate, and Monte-Carlo (Ranganath et al. 2014).

▶ Recognition network trained in separate phase – not strictly variational (Dayan et
al. 1995).

▶ Recognition network trained simultaneously with generative model using “frozen”
samples (Kingma and Welling 2014; Rezende et al. 2014).



Optimising the variational parameters

F(ρ, θ) =
〈
log P(X ,Z|θ(k−1))

〉
q(Z;ρ)

+ H[ρ]

▶ In some special cases, the expectations of the log-joint under q(Z; ρ) can be expressed
in closed form, but these are rare.

▶ Otherwise we might seek to follow∇ρF .

▶ Naively, this requires evaluting a high-dimensional expectation wrt q(Z, ρ) as a function
of ρ – not simple.

▶ At least three solutions:

▶ “Score-based” gradient estimate, and Monte-Carlo (Ranganath et al. 2014).

▶ Recognition network trained in separate phase – not strictly variational (Dayan et
al. 1995).

▶ Recognition network trained simultaneously with generative model using “frozen”
samples (Kingma and Welling 2014; Rezende et al. 2014).



Optimising the variational parameters

F(ρ, θ) =
〈
log P(X ,Z|θ(k−1))

〉
q(Z;ρ)

+ H[ρ]

▶ In some special cases, the expectations of the log-joint under q(Z; ρ) can be expressed
in closed form, but these are rare.

▶ Otherwise we might seek to follow∇ρF .

▶ Naively, this requires evaluting a high-dimensional expectation wrt q(Z, ρ) as a function
of ρ – not simple.

▶ At least three solutions:

▶ “Score-based” gradient estimate, and Monte-Carlo (Ranganath et al. 2014).

▶ Recognition network trained in separate phase – not strictly variational (Dayan et
al. 1995).

▶ Recognition network trained simultaneously with generative model using “frozen”
samples (Kingma and Welling 2014; Rezende et al. 2014).



Optimising the variational parameters

F(ρ, θ) =
〈
log P(X ,Z|θ(k−1))

〉
q(Z;ρ)

+ H[ρ]

▶ In some special cases, the expectations of the log-joint under q(Z; ρ) can be expressed
in closed form, but these are rare.

▶ Otherwise we might seek to follow∇ρF .

▶ Naively, this requires evaluting a high-dimensional expectation wrt q(Z, ρ) as a function
of ρ – not simple.

▶ At least three solutions:
▶ “Score-based” gradient estimate, and Monte-Carlo (Ranganath et al. 2014).

▶ Recognition network trained in separate phase – not strictly variational (Dayan et
al. 1995).

▶ Recognition network trained simultaneously with generative model using “frozen”
samples (Kingma and Welling 2014; Rezende et al. 2014).



Optimising the variational parameters

F(ρ, θ) =
〈
log P(X ,Z|θ(k−1))

〉
q(Z;ρ)

+ H[ρ]

▶ In some special cases, the expectations of the log-joint under q(Z; ρ) can be expressed
in closed form, but these are rare.

▶ Otherwise we might seek to follow∇ρF .

▶ Naively, this requires evaluting a high-dimensional expectation wrt q(Z, ρ) as a function
of ρ – not simple.

▶ At least three solutions:
▶ “Score-based” gradient estimate, and Monte-Carlo (Ranganath et al. 2014).

▶ Recognition network trained in separate phase – not strictly variational (Dayan et
al. 1995).

▶ Recognition network trained simultaneously with generative model using “frozen”
samples (Kingma and Welling 2014; Rezende et al. 2014).



Optimising the variational parameters

F(ρ, θ) =
〈
log P(X ,Z|θ(k−1))

〉
q(Z;ρ)

+ H[ρ]

▶ In some special cases, the expectations of the log-joint under q(Z; ρ) can be expressed
in closed form, but these are rare.

▶ Otherwise we might seek to follow∇ρF .

▶ Naively, this requires evaluting a high-dimensional expectation wrt q(Z, ρ) as a function
of ρ – not simple.

▶ At least three solutions:
▶ “Score-based” gradient estimate, and Monte-Carlo (Ranganath et al. 2014).

▶ Recognition network trained in separate phase – not strictly variational (Dayan et
al. 1995).

▶ Recognition network trained simultaneously with generative model using “frozen”
samples (Kingma and Welling 2014; Rezende et al. 2014).



Score-based gradient estimate

We have:

∇ρF(ρ, θ) = ∇ρ
∫

dZ q(Z; ρ)(log P(X ,Z|θ)− log q(Z; ρ))

=

∫
dZ

(
[∇ρq(Z; ρ)](log P(X ,Z|θ)− log q(Z; ρ))

+ q(Z; ρ)∇ρ[ log P(X ,Z|θ)− log q(Z; ρ)]
)

Now,

∇ρ log P(X ,Z|θ) = 0 (no direct dependence)∫
dZ q(Z; ρ)∇ρ log q(Z; ρ) =

∫
dZ ∇ρq(Z; ρ) = 0 (always normalised)

∇ρq(Z; ρ) = q(Z; ρ)∇ρ log q(Z; ρ) ← “score trick”

So,

∇ρF(ρ, θ) =
〈
[∇ρ log q(Z; ρ)](log P(X ,Z|θ)− log q(Z; ρ))

〉
q(Z;ρ)

Reduced gradient of expectation to expectation of gradient – easier to compute. Also called
the REINFORCE trick.



Score-based gradient estimate

We have:

∇ρF(ρ, θ) = ∇ρ
∫

dZ q(Z; ρ)(log P(X ,Z|θ)− log q(Z; ρ))

=

∫
dZ

(
[∇ρq(Z; ρ)](log P(X ,Z|θ)− log q(Z; ρ))

+ q(Z; ρ)∇ρ[ log P(X ,Z|θ)− log q(Z; ρ)]
)

Now,

∇ρ log P(X ,Z|θ) = 0 (no direct dependence)

∫
dZ q(Z; ρ)∇ρ log q(Z; ρ) =

∫
dZ ∇ρq(Z; ρ) = 0 (always normalised)

∇ρq(Z; ρ) = q(Z; ρ)∇ρ log q(Z; ρ) ← “score trick”

So,

∇ρF(ρ, θ) =
〈
[∇ρ log q(Z; ρ)](log P(X ,Z|θ)− log q(Z; ρ))

〉
q(Z;ρ)

Reduced gradient of expectation to expectation of gradient – easier to compute. Also called
the REINFORCE trick.



Score-based gradient estimate

We have:

∇ρF(ρ, θ) = ∇ρ
∫

dZ q(Z; ρ)(log P(X ,Z|θ)− log q(Z; ρ))

=

∫
dZ

(
[∇ρq(Z; ρ)](log P(X ,Z|θ)− log q(Z; ρ))

+ q(Z; ρ)∇ρ[ log P(X ,Z|θ)− log q(Z; ρ)]
)

Now,

∇ρ log P(X ,Z|θ) = 0 (no direct dependence)∫
dZ q(Z; ρ)∇ρ log q(Z; ρ) =

∫
dZ ∇ρq(Z; ρ) = 0 (always normalised)

∇ρq(Z; ρ) = q(Z; ρ)∇ρ log q(Z; ρ) ← “score trick”

So,

∇ρF(ρ, θ) =
〈
[∇ρ log q(Z; ρ)](log P(X ,Z|θ)− log q(Z; ρ))

〉
q(Z;ρ)

Reduced gradient of expectation to expectation of gradient – easier to compute. Also called
the REINFORCE trick.



Score-based gradient estimate

We have:

∇ρF(ρ, θ) = ∇ρ
∫

dZ q(Z; ρ)(log P(X ,Z|θ)− log q(Z; ρ))

=

∫
dZ

(
[∇ρq(Z; ρ)](log P(X ,Z|θ)− log q(Z; ρ))

+ q(Z; ρ)∇ρ[ log P(X ,Z|θ)− log q(Z; ρ)]
)

Now,

∇ρ log P(X ,Z|θ) = 0 (no direct dependence)∫
dZ q(Z; ρ)∇ρ log q(Z; ρ) =

∫
dZ ∇ρq(Z; ρ) = 0 (always normalised)

∇ρq(Z; ρ) = q(Z; ρ)∇ρ log q(Z; ρ) ← “score trick”

So,

∇ρF(ρ, θ) =
〈
[∇ρ log q(Z; ρ)](log P(X ,Z|θ)− log q(Z; ρ))

〉
q(Z;ρ)

Reduced gradient of expectation to expectation of gradient – easier to compute. Also called
the REINFORCE trick.



Score-based gradient estimate

We have:

∇ρF(ρ, θ) = ∇ρ
∫

dZ q(Z; ρ)(log P(X ,Z|θ)− log q(Z; ρ))

=

∫
dZ

(
[∇ρq(Z; ρ)](log P(X ,Z|θ)− log q(Z; ρ))

+ q(Z; ρ)∇ρ[ log P(X ,Z|θ)− log q(Z; ρ)]
)

Now,

∇ρ log P(X ,Z|θ) = 0 (no direct dependence)∫
dZ q(Z; ρ)∇ρ log q(Z; ρ) =

∫
dZ ∇ρq(Z; ρ) = 0 (always normalised)

∇ρq(Z; ρ) = q(Z; ρ)∇ρ log q(Z; ρ) ← “score trick”

So,

∇ρF(ρ, θ) =
〈
[∇ρ log q(Z; ρ)](log P(X ,Z|θ)− log q(Z; ρ))

〉
q(Z;ρ)

Reduced gradient of expectation to expectation of gradient – easier to compute. Also called
the REINFORCE trick.



Score-based gradient estimate

We have:

∇ρF(ρ, θ) = ∇ρ
∫

dZ q(Z; ρ)(log P(X ,Z|θ)− log q(Z; ρ))

=

∫
dZ

(
[∇ρq(Z; ρ)](log P(X ,Z|θ)− log q(Z; ρ))

+ q(Z; ρ)∇ρ[ log P(X ,Z|θ)− log q(Z; ρ)]
)

Now,

∇ρ log P(X ,Z|θ) = 0 (no direct dependence)∫
dZ q(Z; ρ)∇ρ log q(Z; ρ) =

∫
dZ ∇ρq(Z; ρ) = 0 (always normalised)

∇ρq(Z; ρ) = q(Z; ρ)∇ρ log q(Z; ρ) ← “score trick”

So,

∇ρF(ρ, θ) =
〈
[∇ρ log q(Z; ρ)](log P(X ,Z|θ)− log q(Z; ρ))

〉
q(Z;ρ)

Reduced gradient of expectation to expectation of gradient – easier to compute. Also called
the REINFORCE trick.



Factorisation

∇ρF(ρ, θ) =
〈
[∇ρ log q(Z; ρ)](log P(X ,Z|θ)− log q(Z; ρ))

〉
q(Z;ρ)

▶ Still requires a high-dimensional expectation, but can now be evaluated by Monte-Carlo.
▶ Dimensionality reduced by factorisation (particularly where P(X ,Z) is factorised).

Let q(Z) =
∏

i q(Zi |ρi) factor over disjoint cliques; let Z̄i be the minimal Markov
blanket of Zi in the joint; PZ̄i

be the product of joint factors that include any element of
Zi (so the union of their arguments is Z̄i ); and P¬Z̄i

the remaining factors. Then,

∇ρiF({ρj}, θ) =
〈
[∇ρi

∑
j log q(Zj ; ρj)](log P(X ,Z|θ)−

∑
j log q(Zj ; ρj))

〉
q(Z)

=
〈
[∇ρi log q(Zi ; ρi)](log PZ̄i

(X , Z̄i)− log q(Zi ; ρi)
〉

q(Z̄i )

+
〈
[∇ρi log q(Zi ; ρi)] (log P¬Z̄i

(X ,Z¬i )−
∑
j ̸=i

log q(Zj ; ρj)︸ ︷︷ ︸
constant wrt Zi

〉
q(Z)

So the second term is proportional to ⟨∇ρi log q(Zi ; ρi)⟩q(Zi )
, this = 0 as before.

So expectations are only needed wrt q(Z̄i)→ variational message passing!



Sampling

So the “black-box” variational approach is as follows:

▶ Choose a parametric (factored) variational family q(Z) =
∏

i q(Zi ; ρi).
▶ Initialise factors.
▶ Repeat to convergence:

▶ Stochastic VE-step. For each i :
▶ Sample from q(Z̄i) and estimate expected gradient∇ρiF .
▶ Update ρi along gradient.

▶ Stochastic M-step. For each i :
▶ Sample from each q(Z̄i).
▶ Update corresponding parameters.

▶ Stochastic gradient steps may employ a Robbins-Munro step-size sequence to promote
convergence.

▶ Variance of the gradient estimators can also be controlled by clever Monte-Carlo
techniques (orginal authors used a “control variate” method that we have not studied).



Recognition Models

We have not generally distinguished between multivariate models and iid data instances,
grouping all variables together in Z .

However, even for large models (such as HMMs), we often work with multiple data draws (e.g.
multiple strings) and each instance requires a separate variational optimisation.

Suppose that we have fixed length vectors {(xi , zi)} (z is still latent).

▶ Optimal variational distribution q∗(zi) depends on xi .
▶ Learn this mapping (in parametric form): q

(
zi ; ρ = f (xi ;ϕ)

)
.

▶ Now ρ is the output of a general function approximator f (a GP, neural network or similar)
parametrised by ϕ, trained to map xi to the variational parameters of q(zi).

▶ The mapping function f is called a recognition model.
▶ This is approach is now often called amortised inference.

How to learn f?



The Helmholtz Machine
Dayan et al. (1995) originally studied binary sigmoid belief net, with parallel recognition
model:

• • •

• • •

• • •

• • •

• • •

• • •

Two phase learning:
▶ Wake phase: given current f , estimate mean-field representation from data (mean

sufficient stats for Bernoulli are just probabilities):

q(zi) = Bernoulli[ẑi ] ẑi = f (xi ;ϕ)

Update generative parameters θ according to∇θF({ẑi}, θ).
▶ Sleep phase: sample {zs, xs}S

s=1 from current generative model. Update recognition
parameters ϕ to direct f (xs) towards zs (simple gradient learning).

∆ϕ ∝
∑

s

(zs − f (xs;ϕ))∇ϕf (xs;ϕ)



The Helmholtz Machine

▶ Can sample z from recognition model rather than just evaluate means.

▶ Expectations in free-energy can be computed directly rather than by mean
substitution.

▶ In hierarchical models, output of higher recognition layers then depends on
samples at previous stages, which introduces correlations between samples at
different layers.

▶ Recognition model structure need not exactly echo generative model.

▶ More general approach is to train f to yield mean parameters of ExpFam q(z) (later).

▶ Sleep phase learning minimises KL[pθ(z|x)∥q(z; f (x, ϕ))]. Opposite to variational
objective, but may not matter if divergence is small enough.



Variational Autoencoders

x1 x2 xD• • •

• • •

z1 zK• • •

x1 x2 xD• • •

• • •

z1 zK• • •

x1 x2 xD• • •

• • •

x1 x2 xD• • •

x̂1 x̂2 x̂D• • •

• • •

z1 zK• • •

x1 x2 xD• • •

• • •

▶ Fuse wake and sleep phases, optimising F wrt generative
and recognition parameters using reparametrisation.

▶ Canonical generative conditional is Gaussian with NN
(usually MLP) mean (variance may also be parametrised by
another NN):

P(z) = N (0, I)

P(x|z) = N
(
gNN(z;θ), σ

2I
)

▶ NN recognition model estimates parameters of posterior:
q(z|x; f(x, ϕ)).

▶ Free energy:

F(θ, ϕ) =
∑
data

⟨log P(x|z)⟩q(z|x) − KL[q(z|x)∥P(z)]

= −
∑
data

〈∥x− g(z)∥2

2σ2

〉
q
+ KL[q(z|x)∥P(z)]



Variational Autoencoders

x1 x2 xD• • •

• • •

z1 zK• • •

x1 x2 xD• • •

• • •

z1 zK• • •

x1 x2 xD• • •

• • •

x1 x2 xD• • •

x̂1 x̂2 x̂D• • •

• • •

z1 zK• • •

x1 x2 xD• • •

• • •

▶ Fuse wake and sleep phases, optimising F wrt generative
and recognition parameters using reparametrisation.

▶ Canonical generative conditional is Gaussian with NN
(usually MLP) mean (variance may also be parametrised by
another NN):

P(z) = N (0, I)

P(x|z) = N
(
gNN(z;θ), σ

2I
)

▶ NN recognition model estimates parameters of posterior:
q(z|x; f(x, ϕ)).

▶ Free energy:

F(θ, ϕ) =
∑
data

⟨log P(x|z)⟩q(z|x) − KL[q(z|x)∥P(z)]

= −
∑
data

〈∥x− g(z)∥2

2σ2

〉
q
+ KL[q(z|x)∥P(z)]



Variational Autoencoders

x1 x2 xD• • •

• • •

z1 zK• • •

x1 x2 xD• • •

• • •

z1 zK• • •

x1 x2 xD• • •

• • •

x1 x2 xD• • •

x̂1 x̂2 x̂D• • •

• • •

z1 zK• • •

x1 x2 xD• • •

• • •

▶ Fuse wake and sleep phases, optimising F wrt generative
and recognition parameters using reparametrisation.

▶ Canonical generative conditional is Gaussian with NN
(usually MLP) mean (variance may also be parametrised by
another NN):

P(z) = N (0, I)

P(x|z) = N
(
gNN(z;θ), σ

2I
)

▶ NN recognition model estimates parameters of posterior:
q(z|x; f(x, ϕ)).

▶ Free energy:

F(θ, ϕ) =
∑
data

⟨log P(x|z)⟩q(z|x) − KL[q(z|x)∥P(z)]

= −
∑
data

〈∥x− g(z)∥2

2σ2

〉
q
+ KL[q(z|x)∥P(z)]



Variational Autoencoders

x1 x2 xD• • •

• • •

z1 zK• • •

x1 x2 xD• • •

• • •

z1 zK• • •

x1 x2 xD• • •

• • •

x1 x2 xD• • •

x̂1 x̂2 x̂D• • •

• • •

z1 zK• • •

x1 x2 xD• • •

• • •

▶ Fuse wake and sleep phases, optimising F wrt generative
and recognition parameters using reparametrisation.

▶ Canonical generative conditional is Gaussian with NN
(usually MLP) mean (variance may also be parametrised by
another NN):

P(z) = N (0, I)

P(x|z) = N
(
gNN(z;θ), σ

2I
)

▶ NN recognition model estimates parameters of posterior:
q(z|x; f(x, ϕ)).

▶ Free energy:

F(θ, ϕ) =
∑
data

⟨log P(x|z)⟩q(z|x) − KL[q(z|x)∥P(z)]

= −
∑
data

〈∥x− g(z)∥2

2σ2

〉
q
+ KL[q(z|x)∥P(z)]



Variational Autoencoders

x1 x2 xD• • •

• • •

z1 zK• • •

x1 x2 xD• • •

• • •

z1 zK• • •

x1 x2 xD• • •

• • •

x1 x2 xD• • •

x̂1 x̂2 x̂D• • •

• • •

z1 zK• • •

x1 x2 xD• • •

• • •

▶ Fuse wake and sleep phases, optimising F wrt generative
and recognition parameters using reparametrisation.

▶ Canonical generative conditional is Gaussian with NN
(usually MLP) mean (variance may also be parametrised by
another NN):

P(z) = N (0, I)

P(x|z) = N
(
gNN(z;θ), σ

2I
)

▶ NN recognition model estimates parameters of posterior:
q(z|x; f(x, ϕ)).

▶ Free energy:

F(θ, ϕ) =
∑
data

⟨log P(x|z)⟩q(z|x) − KL[q(z|x)∥P(z)]

= −
∑
data

〈∥x− ← “reconstruction”x̂︷ ︸︸ ︷
g(z)∥2

2σ2

〉
q︸ ︷︷ ︸

“reconstruction cost”

+ KL[q(z|x)∥P(z)]︸ ︷︷ ︸
“regulariser”



Variational Autoencoders

x1 x2 xD• • •

x̂1 x̂2 x̂D• • •

• • •

z1 zK• • •

x1 x2 xD• • •

• • •

ϵ

▶ The expectation of a non-linear (NN) function is intractable.
▶ Generate S samples from q(z|x) using deterministic

transformation of standard random variates
(reparametrisation trick).

▶ E.g. if f gives marginal µi and σi for latents zi and
ϵs

i ∼ N (0, 1), then zs
i = µi + σiϵ

s
i .

▶ Now generative and recognition parameters can be trained
together by gradient descent (backprop), holding ϵs fixed.

Fi(θ, ϕ) =
1
S

∑
s

log P(xi , z
s
i ; θ)− log q(zs

i ; f(xi , ϕ))

∂

∂θ
Fi =

1
S

∑
s

∇θ log P(xi , z
s
i ; θ)

∂

∂ϕ
Fi =

1
S

∑
s

∂

∂zs
i
(log P(xi , z

s
i ; θ)− log q(zs

i ; f(xi)))
dzs

i

dϕ

+
∂

∂f(xi)
log q(zs

i ; f(xi))
df(xi)

dϕ



Variational Autoencoders

x1 x2 xD• • •

x̂1 x̂2 x̂D• • •

• • •

z1 zK• • •

x1 x2 xD• • •

• • •

ϵ

▶ The expectation of a non-linear (NN) function is intractable.

▶ Generate S samples from q(z|x) using deterministic
transformation of standard random variates
(reparametrisation trick).

▶ E.g. if f gives marginal µi and σi for latents zi and
ϵs

i ∼ N (0, 1), then zs
i = µi + σiϵ

s
i .

▶ Now generative and recognition parameters can be trained
together by gradient descent (backprop), holding ϵs fixed.

Fi(θ, ϕ) =
1
S

∑
s

log P(xi , z
s
i ; θ)− log q(zs

i ; f(xi , ϕ))

∂

∂θ
Fi =

1
S

∑
s

∇θ log P(xi , z
s
i ; θ)

∂

∂ϕ
Fi =

1
S

∑
s

∂

∂zs
i
(log P(xi , z

s
i ; θ)− log q(zs

i ; f(xi)))
dzs

i

dϕ

+
∂

∂f(xi)
log q(zs

i ; f(xi))
df(xi)

dϕ



Variational Autoencoders

x1 x2 xD• • •

x̂1 x̂2 x̂D• • •

• • •

z1 zK• • •

x1 x2 xD• • •

• • •

ϵ

▶ The expectation of a non-linear (NN) function is intractable.
▶ Generate S samples from q(z|x) using deterministic

transformation of standard random variates
(reparametrisation trick).

▶ E.g. if f gives marginal µi and σi for latents zi and
ϵs

i ∼ N (0, 1), then zs
i = µi + σiϵ

s
i .

▶ Now generative and recognition parameters can be trained
together by gradient descent (backprop), holding ϵs fixed.

Fi(θ, ϕ) =
1
S

∑
s

log P(xi , z
s
i ; θ)− log q(zs

i ; f(xi , ϕ))

∂

∂θ
Fi =

1
S

∑
s

∇θ log P(xi , z
s
i ; θ)

∂

∂ϕ
Fi =

1
S

∑
s

∂

∂zs
i
(log P(xi , z

s
i ; θ)− log q(zs

i ; f(xi)))
dzs

i

dϕ

+
∂

∂f(xi)
log q(zs

i ; f(xi))
df(xi)

dϕ



Variational Autoencoders

x1 x2 xD• • •

x̂1 x̂2 x̂D• • •

• • •

z1 zK• • •

x1 x2 xD• • •

• • •

ϵ

▶ The expectation of a non-linear (NN) function is intractable.
▶ Generate S samples from q(z|x) using deterministic

transformation of standard random variates
(reparametrisation trick).
▶ E.g. if f gives marginal µi and σi for latents zi and

ϵs
i ∼ N (0, 1), then zs

i = µi + σiϵ
s
i .

▶ Now generative and recognition parameters can be trained
together by gradient descent (backprop), holding ϵs fixed.

Fi(θ, ϕ) =
1
S

∑
s

log P(xi , z
s
i ; θ)− log q(zs

i ; f(xi , ϕ))

∂

∂θ
Fi =

1
S

∑
s

∇θ log P(xi , z
s
i ; θ)

∂

∂ϕ
Fi =

1
S

∑
s

∂

∂zs
i
(log P(xi , z

s
i ; θ)− log q(zs

i ; f(xi)))
dzs

i

dϕ

+
∂

∂f(xi)
log q(zs

i ; f(xi))
df(xi)

dϕ



Variational Autoencoders

x1 x2 xD• • •

x̂1 x̂2 x̂D• • •

• • •

z1 zK• • •

x1 x2 xD• • •

• • •

ϵ

▶ The expectation of a non-linear (NN) function is intractable.
▶ Generate S samples from q(z|x) using deterministic

transformation of standard random variates
(reparametrisation trick).
▶ E.g. if f gives marginal µi and σi for latents zi and

ϵs
i ∼ N (0, 1), then zs

i = µi + σiϵ
s
i .

▶ Now generative and recognition parameters can be trained
together by gradient descent (backprop), holding ϵs fixed.

Fi(θ, ϕ) =
1
S

∑
s

log P(xi , z
s
i ; θ)− log q(zs

i ; f(xi , ϕ))

∂

∂θ
Fi =

1
S

∑
s

∇θ log P(xi , z
s
i ; θ)

∂

∂ϕ
Fi =

1
S

∑
s

∂

∂zs
i
(log P(xi , z

s
i ; θ)− log q(zs

i ; f(xi)))
dzs

i

dϕ

+
∂

∂f(xi)
log q(zs

i ; f(xi))
df(xi)

dϕ



Variational Autoencoders

▶ Frozen samples ϵs can be redrawn to avoid overfitting.

▶ May be possible to evaluate entropy and ⟨log P(z)⟩ without sampling, reducing variance.

▶ Differentiable reparametrisations are available for a number of different distributions.
▶ requires approximation for discrete-valued variables (Gumbel or “concrete”

distributions)

▶ Conditional P(x|z, θ) may be more complex: RNNs, transformers, . . . .
▶ May include internal stochastic nodes: requires recognition network to estimate all

distributions (see “ladder VAE”).
▶ In practice, hierarchical models appear difficult to learn.



More recent work

▶ Changing the variational cost function (tightening the bound):
▶ Importance-Weighted autoencoder (IWAE)
▶ Filtering variational objective (FIVO)
▶ Thermodynamic variational objective (TVO)

▶ Flexible variational distributions (and avoiding inference)
▶ Normalising flows
▶ DDC-Helmholtz machine
▶ Amortised learning
▶ Diffusion models

▶ Structured generative models
▶ “standard” VAE generative model both too powerful and too simple for learning
▶ local conjugate inference – structured VAEs

▶ Recognition-parametrised models
▶ RPMs model (latent-induced) joint dependence, but not marginals of observations

Far from exhaustive . . . these are all areas of active research. We’ll survey a few ideas.



Importance-weighted free energy

Another interpretation of F : Jensen bound on importance sampled estimate.

ℓ(θ) = log

⇔ marginalising z from joint

Ez∼p(z|x)[p(x)]

= logEz∼q

[
p(x)p(z|x)

q(z)

]
≥ Ez∼q

[
log

p(x, z)
q(z)

]
So

F(q, θ) =
〈
log

p(x, z)
q(z)

〉
q

= Ez∼q

[
log p(x) p(z|x)

q(z)

]
-

Suggests more accurate importance sampling:

ℓ(θ) = logE
z1...zK

iid∼ q

[
1
K

∑
k

p(x, zk)

q(zk)

]
≥ E

z1...zK
iid∼ q

[
log

1
K

∑
k

p(x, zk)

q(zk)

]

Tighter bound, and reparametrisation friendly, but as K →∞ the signal for learning
amortised q grows weaker so VAE learning doesn’t always improve.



Importance-weighted free energy

Another interpretation of F : Jensen bound on importance sampled estimate.

ℓ(θ) = logEz∼p(z|x)[p(x)] = logEz∼q

[
p(x)p(z|x)

q(z)

]

≥ Ez∼q

[
log

p(x, z)
q(z)

]
So

F(q, θ) =
〈
log

p(x, z)
q(z)

〉
q

= Ez∼q

[
log p(x) p(z|x)

q(z)

]
-

Suggests more accurate importance sampling:

ℓ(θ) = logE
z1...zK

iid∼ q

[
1
K

∑
k

p(x, zk)

q(zk)

]
≥ E

z1...zK
iid∼ q

[
log

1
K

∑
k

p(x, zk)

q(zk)

]

Tighter bound, and reparametrisation friendly, but as K →∞ the signal for learning
amortised q grows weaker so VAE learning doesn’t always improve.



Importance-weighted free energy

Another interpretation of F : Jensen bound on importance sampled estimate.

ℓ(θ) = logEz∼p(z|x)[p(x)] = logEz∼q

[
p(x)p(z|x)

q(z)

]
≥ Ez∼q

[
log

p(x, z)
q(z)

]

So

F(q, θ) =
〈
log

p(x, z)
q(z)

〉
q

= Ez∼q

[
log p(x) p(z|x)

q(z)

]
-

Suggests more accurate importance sampling:

ℓ(θ) = logE
z1...zK

iid∼ q

[
1
K

∑
k

p(x, zk)

q(zk)

]
≥ E

z1...zK
iid∼ q

[
log

1
K

∑
k

p(x, zk)

q(zk)

]

Tighter bound, and reparametrisation friendly, but as K →∞ the signal for learning
amortised q grows weaker so VAE learning doesn’t always improve.



Importance-weighted free energy

Another interpretation of F : Jensen bound on importance sampled estimate.

ℓ(θ) = logEz∼p(z|x)[p(x)] = logEz∼q

[
p(x)p(z|x)

q(z)

]
≥ Ez∼q

[
log

p(x, z)
q(z)

]
So

F(q, θ) =
〈
log

p(x, z)
q(z)

〉
q

= E

proposal

z∼q

[
log p(x)

importance weight

p(z|x)
q(z)

]
-

Suggests more accurate importance sampling:

ℓ(θ) = logE
z1...zK

iid∼ q

[
1
K

∑
k

p(x, zk)

q(zk)

]
≥ E

z1...zK
iid∼ q

[
log

1
K

∑
k

p(x, zk)

q(zk)

]

Tighter bound, and reparametrisation friendly, but as K →∞ the signal for learning
amortised q grows weaker so VAE learning doesn’t always improve.



Importance-weighted free energy

Another interpretation of F : Jensen bound on importance sampled estimate.

ℓ(θ) = logEz∼p(z|x)[p(x)] = logEz∼q

[
p(x)p(z|x)

q(z)

]
≥ Ez∼q

[
log

p(x, z)
q(z)

]
So

F(q, θ) =
〈
log

p(x, z)
q(z)

〉
q

= E

proposal

z∼q

[
log p(x)

importance weight

p(z|x)
q(z)

]
-

Suggests more accurate importance sampling:

ℓ(θ) = logE
z1...zK

iid∼ q

[
1
K

∑
k

p(x, zk)

q(zk)

]
≥ E

z1...zK
iid∼ q

[
log

1
K

∑
k

p(x, zk)

q(zk)

]

Tighter bound, and reparametrisation friendly, but as K →∞ the signal for learning
amortised q grows weaker so VAE learning doesn’t always improve.



Normalising flows

F(q, θ) = ⟨log p(x, z|θ)⟩q − ⟨log q(z)⟩q

To evaluate F (or its gradients) we need to be able to find expectations wrt q (e.g. by Monte
Carlo) and evaluate the log-density – usually restricts us to tractable inferential families.

Consider defining a recognition model q(z) implicitly by:

z0 ∼ q0(·; x) ← fixed, tractable, e.g. N (x, I)

z = fK (fK−1(. . . f1(z0))) ← fk smooth, invertible, parametrised by ϕ

Then we can both compute expectations under q and evaluate its log density:

⟨F(z)⟩q = ⟨F(fK (fK−1(. . . f1(z0))))⟩q0

log q(z) = log q0(f
−1
1 (f−1

2 (. . . f−1
K (z))))−

∑
k

log|∇fk |

where the second result applies from repeated transformations of variables

zk = fk(zk−1) ⇒ q(zk) = q(f−1
k (zk))

∣∣∣∣∂zk−1

∂zk

∣∣∣∣ = q(f−1
k (zk))|∇fk(zk−1)|−1



Normalising flows

F(q, θ) = ⟨log p(x, z|θ)⟩q − ⟨log q(z)⟩q

To evaluate F (or its gradients) we need to be able to find expectations wrt q (e.g. by Monte
Carlo) and evaluate the log-density – usually restricts us to tractable inferential families.

Consider defining a recognition model q(z) implicitly by:

z0 ∼ q0(·; x) ← fixed, tractable, e.g. N (x, I)

z = fK (fK−1(. . . f1(z0))) ← fk smooth, invertible, parametrised by ϕ

Then we can both compute expectations under q and evaluate its log density:

⟨F(z)⟩q = ⟨F(fK (fK−1(. . . f1(z0))))⟩q0

log q(z) = log q0(f
−1
1 (f−1

2 (. . . f−1
K (z))))−

∑
k

log|∇fk |

where the second result applies from repeated transformations of variables

zk = fk(zk−1) ⇒ q(zk) = q(f−1
k (zk))

∣∣∣∣∂zk−1

∂zk

∣∣∣∣ = q(f−1
k (zk))|∇fk(zk−1)|−1



Normalising flows

F(q, θ) = ⟨log p(x, z|θ)⟩q − ⟨log q(z)⟩q

To evaluate F (or its gradients) we need to be able to find expectations wrt q (e.g. by Monte
Carlo) and evaluate the log-density – usually restricts us to tractable inferential families.

Consider defining a recognition model q(z) implicitly by:

z0 ∼ q0(·; x) ← fixed, tractable, e.g. N (x, I)

z = fK (fK−1(. . . f1(z0))) ← fk smooth, invertible, parametrised by ϕ

Then we can both compute expectations under q and evaluate its log density:

⟨F(z)⟩q = ⟨F(fK (fK−1(. . . f1(z0))))⟩q0

log q(z) = log q0(f
−1
1 (f−1

2 (. . . f−1
K (z))))−

∑
k

log|∇fk |

where the second result applies from repeated transformations of variables

zk = fk(zk−1) ⇒ q(zk) = q(f−1
k (zk))

∣∣∣∣∂zk−1

∂zk

∣∣∣∣ = q(f−1
k (zk))|∇fk(zk−1)|−1



Normalising flows

So, given a sample zs
0

iid∼ q0(·; x):

F(ϕ, θ) ≈ 1
S

∑
s

log p(x, fK (. . . f1(z
s
0))))+H[q0]+

1
S

∑
s

∑
k

log
∣∣∇fk(fk−1(. . . f1(z

s
0)))

∣∣
and we can compute gradients of this expression wrt θ and ϕ.

Useful fs (from Rezende & Mohammed 2015):

f (z) = z + uh(wTz + b) ⇒ |∇f | =
∣∣∣1 + uTψ(z)

∣∣∣ ψ(z) = h′(wTz + b)w

f (z) = z +
β

α+ |z− z0|
⇒ |∇f | = [1 + βh]d−1[1 + βh + βh′r ]

r = |z− z0|, h =
1

α+ r

Both can be cascaded to give a flexible variational family.



Diffusion probabilistic models

Multi-stage flexible generative process (like normalising flow) with fixed recognition model.

In our notation:

▶ Define observations x and latents z1 . . . zK .
▶ Fix “diffusion” recognition model (the “forward” model)

q(z1|x) = N
(√

1–β1x, β1I
)

q(zk |zk−1) = N
(√

1–βk zk−1, βk I
)

▶ Parametrise generative model (the “backward” model)

p(zK ) = N (0, I)

p(zk−1|zk ; θ) = N (µθ(zk , k),Σθ(zk , k))

p(x|z1; θ) = N
(
µθ(z1, 1),Σθ(z1, 1)︸ ︷︷ ︸

usually NNs

)
x

z1

z2

zK
•

•
•

Diffusion recognition sends q(zK )
K→∞→ N (0, I).

In the limit βk → 0 the reciprocal normal generation is correct.
But as β → 0 and K →∞ the link between observation and zK becomes uninformative.



Diffusion probabilistic models

Multi-stage flexible generative process (like normalising flow) with fixed recognition model.

In our notation:
▶ Define observations x and latents z1 . . . zK .

▶ Fix “diffusion” recognition model (the “forward” model)

q(z1|x) = N
(√

1–β1x, β1I
)

q(zk |zk−1) = N
(√

1–βk zk−1, βk I
)

▶ Parametrise generative model (the “backward” model)

p(zK ) = N (0, I)

p(zk−1|zk ; θ) = N (µθ(zk , k),Σθ(zk , k))

p(x|z1; θ) = N
(
µθ(z1, 1),Σθ(z1, 1)︸ ︷︷ ︸

usually NNs

)

x

z1

z2

zK
•

•
•

Diffusion recognition sends q(zK )
K→∞→ N (0, I).

In the limit βk → 0 the reciprocal normal generation is correct.
But as β → 0 and K →∞ the link between observation and zK becomes uninformative.



Diffusion probabilistic models

Multi-stage flexible generative process (like normalising flow) with fixed recognition model.

In our notation:
▶ Define observations x and latents z1 . . . zK .
▶ Fix “diffusion” recognition model (the “forward” model)

q(z1|x) = N
(√

1–β1x, β1I
)

q(zk |zk−1) = N
(√

1–βk zk−1, βk I
)

▶ Parametrise generative model (the “backward” model)

p(zK ) = N (0, I)

p(zk−1|zk ; θ) = N (µθ(zk , k),Σθ(zk , k))

p(x|z1; θ) = N
(
µθ(z1, 1),Σθ(z1, 1)︸ ︷︷ ︸

usually NNs

)

x

z1

z2

zK
•

•
•

Diffusion recognition sends q(zK )
K→∞→ N (0, I).

In the limit βk → 0 the reciprocal normal generation is correct.
But as β → 0 and K →∞ the link between observation and zK becomes uninformative.



Diffusion probabilistic models

Multi-stage flexible generative process (like normalising flow) with fixed recognition model.

In our notation:
▶ Define observations x and latents z1 . . . zK .
▶ Fix “diffusion” recognition model (the “forward” model)

q(z1|x) = N
(√

1–β1x, β1I
)

q(zk |zk−1) = N
(√

1–βk zk−1, βk I
)

▶ Parametrise generative model (the “backward” model)

p(zK ) = N (0, I)

p(zk−1|zk ; θ) = N (µθ(zk , k),Σθ(zk , k))

p(x|z1; θ) = N
(
µθ(z1, 1),Σθ(z1, 1)︸ ︷︷ ︸

usually NNs

)
x

z1

z2

zK
•

•
•

Diffusion recognition sends q(zK )
K→∞→ N (0, I).

In the limit βk → 0 the reciprocal normal generation is correct.
But as β → 0 and K →∞ the link between observation and zK becomes uninformative.



Diffusion probabilistic models

Multi-stage flexible generative process (like normalising flow) with fixed recognition model.

In our notation:
▶ Define observations x and latents z1 . . . zK .
▶ Fix “diffusion” recognition model (the “forward” model)

q(z1|x) = N
(√

1–β1x, β1I
)

q(zk |zk−1) = N
(√

1–βk zk−1, βk I
)

▶ Parametrise generative model (the “backward” model)

p(zK ) = N (0, I)

p(zk−1|zk ; θ) = N (µθ(zk , k),Σθ(zk , k))

p(x|z1; θ) = N
(
µθ(z1, 1),Σθ(z1, 1)︸ ︷︷ ︸

usually NNs

)
x

z1

z2

zK
•

•
•

Diffusion recognition sends q(zK )
K→∞→ N (0, I).

In the limit βk → 0 the reciprocal normal generation is correct.

But as β → 0 and K →∞ the link between observation and zK becomes uninformative.



Diffusion probabilistic models

Multi-stage flexible generative process (like normalising flow) with fixed recognition model.

In our notation:
▶ Define observations x and latents z1 . . . zK .
▶ Fix “diffusion” recognition model (the “forward” model)

q(z1|x) = N
(√

1–β1x, β1I
)

q(zk |zk−1) = N
(√

1–βk zk−1, βk I
)

▶ Parametrise generative model (the “backward” model)

p(zK ) = N (0, I)

p(zk−1|zk ; θ) = N (µθ(zk , k),Σθ(zk , k))

p(x|z1; θ) = N
(
µθ(z1, 1),Σθ(z1, 1)︸ ︷︷ ︸

usually NNs

)
x

z1

z2

zK
•

•
•

Diffusion recognition sends q(zK )
K→∞→ N (0, I).

In the limit βk → 0 the reciprocal normal generation is correct.
But as β → 0 and K →∞ the link between observation and zK becomes uninformative.



Diffusion models
Free energy

F =

〈
log p(x|z1) +

K∑
k=2

log p(zk−1|zK ) + log p(zk)

〉
q(z1:K |x)

− H[q(z1:K |x)]

= ⟨log p(x|z1)⟩q(z1|x) +
K∑

k=2

⟨log p(zk−1|zk)⟩q(zk ,zk−1|x) + ⟨log p(zK )⟩q(zK |x) −
K∑

k=1

H[·]

So learning requires expectations (usually based on samples) under q(zk) and q(zk−1|zk).
The diffusion assumption makes these marginals easy to compute.

q(z1|x) = N
(√

1–β1x, β1I
)

q(z2|x) = N
(√

1–β2

√
1–β1x,

√
1–β2(β1I)

√
1–β2 + β2I

)
= N

(√
1–β2

√
1–β1x, (1− (1–β2)(1–β1))I

)

Let αk = 1− βk and ᾱk =
∏k

i=1 αi and suppose

q(zk |x) = N
(√
ᾱk x, (1− ᾱk)I

)
⇒ q(zk+1|x) = N

(√
αk+1
√
ᾱk x, αk+1(1− ᾱk)I + βk1 I

)
= N

(√
ᾱk+1x, αk+1(1− ᾱk)I + βk1 I

)

demonstrating the premise by recursion.



Diffusion models
Free energy

F =

〈
log p(x|z1) +

K∑
k=2

log p(zk−1|zK ) + log p(zk)

〉
q(z1:K |x)

− H[q(z1:K |x)]

= ⟨log p(x|z1)⟩q(z1|x) +
K∑

k=2

⟨log p(zk−1|zk)⟩q(zk ,zk−1|x) + ⟨log p(zK )⟩q(zK |x) −
K∑

k=1

H[·]

So learning requires expectations (usually based on samples) under q(zk) and q(zk−1|zk).

The diffusion assumption makes these marginals easy to compute.

q(z1|x) = N
(√

1–β1x, β1I
)

q(z2|x) = N
(√

1–β2

√
1–β1x,

√
1–β2(β1I)

√
1–β2 + β2I

)
= N

(√
1–β2

√
1–β1x, (1− (1–β2)(1–β1))I

)

Let αk = 1− βk and ᾱk =
∏k

i=1 αi and suppose

q(zk |x) = N
(√
ᾱk x, (1− ᾱk)I

)
⇒ q(zk+1|x) = N

(√
αk+1
√
ᾱk x, αk+1(1− ᾱk)I + βk1 I

)
= N

(√
ᾱk+1x, αk+1(1− ᾱk)I + βk1 I

)

demonstrating the premise by recursion.



Diffusion models
Free energy

F =

〈
log p(x|z1) +

K∑
k=2

log p(zk−1|zK ) + log p(zk)

〉
q(z1:K |x)

− H[q(z1:K |x)]

= ⟨log p(x|z1)⟩q(z1|x) +
K∑

k=2

⟨log p(zk−1|zk)⟩q(zk ,zk−1|x) + ⟨log p(zK )⟩q(zK |x) −
K∑

k=1

H[·]

So learning requires expectations (usually based on samples) under q(zk) and q(zk−1|zk).
The diffusion assumption makes these marginals easy to compute.

q(z1|x) = N
(√

1–β1x, β1I
)

q(z2|x) = N
(√

1–β2

√
1–β1x,

√
1–β2(β1I)

√
1–β2 + β2I

)
= N

(√
1–β2

√
1–β1x, (1− (1–β2)(1–β1))I

)
Let αk = 1− βk and ᾱk =

∏k
i=1 αi and suppose

q(zk |x) = N
(√
ᾱk x, (1− ᾱk)I

)
⇒ q(zk+1|x) = N

(√
αk+1
√
ᾱk x, αk+1(1− ᾱk)I + βk1 I

)
= N

(√
ᾱk+1x, αk+1(1− ᾱk)I + βk1 I

)

demonstrating the premise by recursion.



Diffusion models
Free energy

F =

〈
log p(x|z1) +

K∑
k=2

log p(zk−1|zK ) + log p(zk)

〉
q(z1:K |x)

− H[q(z1:K |x)]

= ⟨log p(x|z1)⟩q(z1|x) +
K∑

k=2

⟨log p(zk−1|zk)⟩q(zk ,zk−1|x) + ⟨log p(zK )⟩q(zK |x) −
K∑

k=1

H[·]

So learning requires expectations (usually based on samples) under q(zk) and q(zk−1|zk).
The diffusion assumption makes these marginals easy to compute.

q(z1|x) = N
(√

1–β1x, β1I
)

q(z2|x) = N
(√

1–β2

√
1–β1x,

√
1–β2(β1I)

√
1–β2 + β2I

)
= N

(√
1–β2

√
1–β1x, (1− (1–β2)(1–β1))I

)
Let αk = 1− βk and ᾱk =

∏k
i=1 αi and suppose

q(zk |x) = N
(√
ᾱk x, (1− ᾱk)I

)
⇒ q(zk+1|x) = N

(√
αk+1
√
ᾱk x, αk+1(1− ᾱk)I + βk1 I

)
= N

(√
ᾱk+1x, αk+1(1− ᾱk)I + βk1 I

)

demonstrating the premise by recursion.



Diffusion models
Free energy

F =

〈
log p(x|z1) +

K∑
k=2

log p(zk−1|zK ) + log p(zk)

〉
q(z1:K |x)

− H[q(z1:K |x)]

= ⟨log p(x|z1)⟩q(z1|x) +
K∑

k=2

⟨log p(zk−1|zk)⟩q(zk ,zk−1|x) + ⟨log p(zK )⟩q(zK |x) −
K∑

k=1

H[·]

So learning requires expectations (usually based on samples) under q(zk) and q(zk−1|zk).
The diffusion assumption makes these marginals easy to compute.

q(z1|x) = N
(√

1–β1x, β1I
)

q(z2|x) = N
(√

1–β2

√
1–β1x,

√
1–β2(β1I)

√
1–β2 + β2I

)

= N
(√

1–β2

√
1–β1x, (1− (1–β2)(1–β1))I

)
Let αk = 1− βk and ᾱk =

∏k
i=1 αi and suppose

q(zk |x) = N
(√
ᾱk x, (1− ᾱk)I

)
⇒ q(zk+1|x) = N

(√
αk+1
√
ᾱk x, αk+1(1− ᾱk)I + βk1 I

)
= N

(√
ᾱk+1x, αk+1(1− ᾱk)I + βk1 I

)

demonstrating the premise by recursion.



Diffusion models
Free energy

F =

〈
log p(x|z1) +

K∑
k=2

log p(zk−1|zK ) + log p(zk)

〉
q(z1:K |x)

− H[q(z1:K |x)]

= ⟨log p(x|z1)⟩q(z1|x) +
K∑

k=2

⟨log p(zk−1|zk)⟩q(zk ,zk−1|x) + ⟨log p(zK )⟩q(zK |x) −
K∑

k=1

H[·]

So learning requires expectations (usually based on samples) under q(zk) and q(zk−1|zk).
The diffusion assumption makes these marginals easy to compute.

q(z1|x) = N
(√

1–β1x, β1I
)

q(z2|x) = N
(√

1–β2

√
1–β1x,

√
1–β2(β1I)

√
1–β2 + β2I

)
= N

(√
1–β2

√
1–β1x, (1− (1–β2)(1–β1))I

)

Let αk = 1− βk and ᾱk =
∏k

i=1 αi and suppose

q(zk |x) = N
(√
ᾱk x, (1− ᾱk)I

)
⇒ q(zk+1|x) = N

(√
αk+1
√
ᾱk x, αk+1(1− ᾱk)I + βk1 I

)
= N

(√
ᾱk+1x, αk+1(1− ᾱk)I + βk1 I

)

demonstrating the premise by recursion.



Diffusion models
Free energy

F =

〈
log p(x|z1) +

K∑
k=2

log p(zk−1|zK ) + log p(zk)

〉
q(z1:K |x)

− H[q(z1:K |x)]

= ⟨log p(x|z1)⟩q(z1|x) +
K∑

k=2

⟨log p(zk−1|zk)⟩q(zk ,zk−1|x) + ⟨log p(zK )⟩q(zK |x) −
K∑

k=1

H[·]

So learning requires expectations (usually based on samples) under q(zk) and q(zk−1|zk).
The diffusion assumption makes these marginals easy to compute.

q(z1|x) = N
(√

1–β1x, β1I
)

q(z2|x) = N
(√

1–β2

√
1–β1x,

√
1–β2(β1I)

√
1–β2 + β2I

)
= N

(√
1–β2

√
1–β1x, (1− (1–β2)(1–β1))I

)
Let αk = 1− βk and ᾱk =

∏k
i=1 αi and suppose

q(zk |x) = N
(√
ᾱk x, (1− ᾱk)I

)

⇒ q(zk+1|x) = N
(√
αk+1
√
ᾱk x, αk+1(1− ᾱk)I + βk1 I

)
= N

(√
ᾱk+1x, αk+1(1− ᾱk)I + βk1 I

)
demonstrating the premise by recursion.



Diffusion models
Free energy

F =

〈
log p(x|z1) +

K∑
k=2

log p(zk−1|zK ) + log p(zk)

〉
q(z1:K |x)

− H[q(z1:K |x)]

= ⟨log p(x|z1)⟩q(z1|x) +
K∑

k=2

⟨log p(zk−1|zk)⟩q(zk ,zk−1|x) + ⟨log p(zK )⟩q(zK |x) −
K∑

k=1

H[·]

So learning requires expectations (usually based on samples) under q(zk) and q(zk−1|zk).
The diffusion assumption makes these marginals easy to compute.

q(z1|x) = N
(√

1–β1x, β1I
)

q(z2|x) = N
(√

1–β2

√
1–β1x,

√
1–β2(β1I)

√
1–β2 + β2I

)
= N

(√
1–β2

√
1–β1x, (1− (1–β2)(1–β1))I

)
Let αk = 1− βk and ᾱk =

∏k
i=1 αi and suppose

q(zk |x) = N
(√
ᾱk x, (1− ᾱk)I

)
⇒ q(zk+1|x) = N

(√
αk+1
√
ᾱk x, αk+1(1− ᾱk)I + βk1 I

)

= N
(√
ᾱk+1x, αk+1(1− ᾱk)I + βk1 I

)
demonstrating the premise by recursion.



Diffusion models
Free energy

F =

〈
log p(x|z1) +

K∑
k=2

log p(zk−1|zK ) + log p(zk)

〉
q(z1:K |x)

− H[q(z1:K |x)]

= ⟨log p(x|z1)⟩q(z1|x) +
K∑

k=2

⟨log p(zk−1|zk)⟩q(zk ,zk−1|x) + ⟨log p(zK )⟩q(zK |x) −
K∑

k=1

H[·]

So learning requires expectations (usually based on samples) under q(zk) and q(zk−1|zk).
The diffusion assumption makes these marginals easy to compute.

q(z1|x) = N
(√

1–β1x, β1I
)

q(z2|x) = N
(√

1–β2

√
1–β1x,

√
1–β2(β1I)

√
1–β2 + β2I

)
= N

(√
1–β2

√
1–β1x, (1− (1–β2)(1–β1))I

)
Let αk = 1− βk and ᾱk =

∏k
i=1 αi and suppose

q(zk |x) = N
(√
ᾱk x, (1− ᾱk)I

)
⇒ q(zk+1|x) = N

(√
αk+1
√
ᾱk x, αk+1(1− ᾱk)I + βk1 I

)
= N

(√
ᾱk+1x, αk+1(1− ᾱk)I + βk1 I

)

demonstrating the premise by recursion.



Diffusion models
Free energy

F =

〈
log p(x|z1) +

K∑
k=2

log p(zk−1|zK ) + log p(zk)

〉
q(z1:K |x)

− H[q(z1:K |x)]

= ⟨log p(x|z1)⟩q(z1|x) +
K∑

k=2

⟨log p(zk−1|zk)⟩q(zk ,zk−1|x) + ⟨log p(zK )⟩q(zK |x) −
K∑

k=1

H[·]

So learning requires expectations (usually based on samples) under q(zk) and q(zk−1|zk).
The diffusion assumption makes these marginals easy to compute.

q(z1|x) = N
(√

1–β1x, β1I
)

q(z2|x) = N
(√

1–β2

√
1–β1x,

√
1–β2(β1I)

√
1–β2 + β2I

)
= N

(√
1–β2

√
1–β1x, (1− (1–β2)(1–β1))I

)
Let αk = 1− βk and ᾱk =

∏k
i=1 αi and suppose

q(zk |x) = N
(√
ᾱk x, (1− ᾱk)I

)
⇒ q(zk+1|x) = N

(√
αk+1
√
ᾱk x, αk+1(1− ᾱk)I + βk1 I

)
= N

(√
ᾱk+1x, αk+1(1− ᾱk)I + βk1 I

)
demonstrating the premise by recursion.



Diffusion models

F = ⟨log p(x|z1)⟩q(z1|x) +
K∑

k=2

⟨log p(zk−1|zk)⟩q(zk ,zk−1|x) + ⟨log p(zK )⟩q(zK |x) −
K∑

k=1

H[·]

q(zk |x) = N
(√
ᾱk x, (1− ᾱk)I

)

Now,

q(zk−1|x) = N
(√

ᾱk−1x, (1− ᾱk−1)I
)

q(zk |zk−1) ∝ N
(

zk−1;
1√

1− βk
zK ,

βk

1− βk
I
)

⇒ q(zk−1|zk , x) = N
(√

ᾱk−1βk

1− ᾱk
x +

√
αk(1− ᾱk−1)

1− ᾱk
zk ,

βk(1− ᾱk−1)

1− ᾱk

)
▶ So ⟨log p(zk−1|zk)⟩q(zk−1,zk |x) can be computed by sampling from zk and using (closed

form) conditional for q(zk−1|zk , x).
▶ Reparametrisation (as in the VAE) makes it possible to also optimise βk .
▶ Considerable recent work: noise-target NNs; conditional models; score-based diffusions

. . . .



Diffusion models

F = ⟨log p(x|z1)⟩q(z1|x) +
K∑

k=2

⟨log p(zk−1|zk)⟩q(zk ,zk−1|x) + ⟨log p(zK )⟩q(zK |x) −
K∑

k=1

H[·]

q(zk |x) = N
(√
ᾱk x, (1− ᾱk)I

)
Now,

q(zk−1|x) = N
(√

ᾱk−1x, (1− ᾱk−1)I
)

q(zk |zk−1) ∝ N
(

zk−1;
1√

1− βk
zK ,

βk

1− βk
I
)

⇒ q(zk−1|zk , x) = N
(√

ᾱk−1βk

1− ᾱk
x +

√
αk(1− ᾱk−1)

1− ᾱk
zk ,

βk(1− ᾱk−1)

1− ᾱk

)
▶ So ⟨log p(zk−1|zk)⟩q(zk−1,zk |x) can be computed by sampling from zk and using (closed

form) conditional for q(zk−1|zk , x).
▶ Reparametrisation (as in the VAE) makes it possible to also optimise βk .
▶ Considerable recent work: noise-target NNs; conditional models; score-based diffusions

. . . .



Diffusion models

F = ⟨log p(x|z1)⟩q(z1|x) +
K∑

k=2

⟨log p(zk−1|zk)⟩q(zk ,zk−1|x) + ⟨log p(zK )⟩q(zK |x) −
K∑

k=1

H[·]

q(zk |x) = N
(√
ᾱk x, (1− ᾱk)I

)
Now,

q(zk−1|x) = N
(√

ᾱk−1x, (1− ᾱk−1)I
)

q(zk |zk−1) ∝ N
(

zk−1;
1√

1− βk
zK ,

βk

1− βk
I
)

⇒ q(zk−1|zk , x) = N
(√

ᾱk−1βk

1− ᾱk
x +

√
αk(1− ᾱk−1)

1− ᾱk
zk ,

βk(1− ᾱk−1)

1− ᾱk

)

▶ So ⟨log p(zk−1|zk)⟩q(zk−1,zk |x) can be computed by sampling from zk and using (closed
form) conditional for q(zk−1|zk , x).

▶ Reparametrisation (as in the VAE) makes it possible to also optimise βk .
▶ Considerable recent work: noise-target NNs; conditional models; score-based diffusions

. . . .



Diffusion models

F = ⟨log p(x|z1)⟩q(z1|x) +
K∑

k=2

⟨log p(zk−1|zk)⟩q(zk ,zk−1|x) + ⟨log p(zK )⟩q(zK |x) −
K∑

k=1

H[·]

q(zk |x) = N
(√
ᾱk x, (1− ᾱk)I

)
Now,

q(zk−1|x) = N
(√

ᾱk−1x, (1− ᾱk−1)I
)

q(zk |zk−1) ∝ N
(

zk−1;
1√

1− βk
zK ,

βk

1− βk
I
)

⇒ q(zk−1|zk , x) = N
(√

ᾱk−1βk

1− ᾱk
x +

√
αk(1− ᾱk−1)

1− ᾱk
zk ,

βk(1− ᾱk−1)

1− ᾱk

)
▶ So ⟨log p(zk−1|zk)⟩q(zk−1,zk |x) can be computed by sampling from zk and using (closed

form) conditional for q(zk−1|zk , x).

▶ Reparametrisation (as in the VAE) makes it possible to also optimise βk .
▶ Considerable recent work: noise-target NNs; conditional models; score-based diffusions

. . . .



Diffusion models

F = ⟨log p(x|z1)⟩q(z1|x) +
K∑

k=2

⟨log p(zk−1|zk)⟩q(zk ,zk−1|x) + ⟨log p(zK )⟩q(zK |x) −
K∑

k=1

H[·]

q(zk |x) = N
(√
ᾱk x, (1− ᾱk)I

)
Now,

q(zk−1|x) = N
(√

ᾱk−1x, (1− ᾱk−1)I
)

q(zk |zk−1) ∝ N
(

zk−1;
1√

1− βk
zK ,

βk

1− βk
I
)

⇒ q(zk−1|zk , x) = N
(√

ᾱk−1βk

1− ᾱk
x +

√
αk(1− ᾱk−1)

1− ᾱk
zk ,

βk(1− ᾱk−1)

1− ᾱk

)
▶ So ⟨log p(zk−1|zk)⟩q(zk−1,zk |x) can be computed by sampling from zk and using (closed

form) conditional for q(zk−1|zk , x).
▶ Reparametrisation (as in the VAE) makes it possible to also optimise βk .

▶ Considerable recent work: noise-target NNs; conditional models; score-based diffusions
. . . .



Diffusion models

F = ⟨log p(x|z1)⟩q(z1|x) +
K∑

k=2

⟨log p(zk−1|zk)⟩q(zk ,zk−1|x) + ⟨log p(zK )⟩q(zK |x) −
K∑

k=1

H[·]

q(zk |x) = N
(√
ᾱk x, (1− ᾱk)I

)
Now,

q(zk−1|x) = N
(√

ᾱk−1x, (1− ᾱk−1)I
)

q(zk |zk−1) ∝ N
(

zk−1;
1√

1− βk
zK ,

βk

1− βk
I
)

⇒ q(zk−1|zk , x) = N
(√

ᾱk−1βk

1− ᾱk
x +

√
αk(1− ᾱk−1)

1− ᾱk
zk ,

βk(1− ᾱk−1)

1− ᾱk

)
▶ So ⟨log p(zk−1|zk)⟩q(zk−1,zk |x) can be computed by sampling from zk and using (closed

form) conditional for q(zk−1|zk , x).
▶ Reparametrisation (as in the VAE) makes it possible to also optimise βk .
▶ Considerable recent work: noise-target NNs; conditional models; score-based diffusions

. . . .



DDC Helmholtz machine

A (loosely) neurally inspired idea. Define q as an unnormalisable exponential family with a
large set of sufficient statistics

q(z) ∝ e
∑

i ηiψi (z)

and parametrise by mean parameters µ = ⟨ψ(z)⟩: Distributed distributional code (DDC).

Train recognition model using sleep samples:

µ = ⟨ψ(z)⟩q = f (x;ϕ)

∆ϕ ∝
∑

s

(ψ(zs)− f (xs;ϕ))∇ϕf (xs;ϕ)

Also learn linear approximation∇ log p(x, z|θ) ≈ Aψ(z)

A =
(∑

s

∇ log p(xs, zs|θ)ψ(zs)
)T(∑

s

ψ(zs)ψ(zs)
T
)−1

Then

⟨∇ log p(x, z)⟩q ≈ A⟨ψ(z)⟩q ≈ Af (x, ϕ)

Approach can be generalised to an infinite dimensional ψ using the kernel trick.



Amortised Learning

If we aren’t actually interested in inference, we can short-circuit general recognition and
compute expectations for learning directly.

∇θℓ(θ) = ∂θF(q∗, θ) = ∂θ⟨log p(X ,Z|θ)⟩q∗ = ⟨∂θ log p(X ,Z|θ)⟩p(Z|X ,θ)

Suggests a wake-sleep approach:
▶ Sample {xs, zs} ∼ p(X ,Z|θk).
▶ Train regressor Ĵθk : xs 7→ ∇θ log p(xs, zs|θ)|θk

(or, for specific regressors, 7→ log p(xs, zs|θk) and differentiate prediction)
▶ Set θk+1 = θk + α

∑
i Ĵθk (xi)

(or = θk + α
∑

i ∇θ Ĵθ(xi)|θk ).

Derivative form works for (kernel/GP) regression for which regressor is linear in targets.

For conditional exponential family models

log p(X ,Z|θ) = η(z, θ)TT(x)− Φ(z, θ) + log p(z|θ)

⇒ ⟨log p(X ,Z|θ)⟩q∗ = ⟨η(z, θ)⟩Tq∗T(x)− ⟨Φ(z, θ) + log p(z|θ)⟩q∗

and regressors can be trained to functions of z alone, with T (x) then evaluated on
(wake-phase) data.



Amortised Learning

If we aren’t actually interested in inference, we can short-circuit general recognition and
compute expectations for learning directly.

∇θℓ(θ) = ∂θF(q∗, θ) = ∂θ⟨log p(X ,Z|θ)⟩q∗ = ⟨∂θ log p(X ,Z|θ)⟩p(Z|X ,θ)

Suggests a wake-sleep approach:
▶ Sample {xs, zs} ∼ p(X ,Z|θk).
▶ Train regressor Ĵθk : xs 7→ ∇θ log p(xs, zs|θ)|θk

(or, for specific regressors, 7→ log p(xs, zs|θk) and differentiate prediction)
▶ Set θk+1 = θk + α

∑
i Ĵθk (xi)

(or = θk + α
∑

i ∇θ Ĵθ(xi)|θk ).

Derivative form works for (kernel/GP) regression for which regressor is linear in targets.

For conditional exponential family models

log p(X ,Z|θ) = η(z, θ)TT(x)− Φ(z, θ) + log p(z|θ)

⇒ ⟨log p(X ,Z|θ)⟩q∗ = ⟨η(z, θ)⟩Tq∗T(x)− ⟨Φ(z, θ) + log p(z|θ)⟩q∗

and regressors can be trained to functions of z alone, with T (x) then evaluated on
(wake-phase) data.



Amortised Learning

If we aren’t actually interested in inference, we can short-circuit general recognition and
compute expectations for learning directly.

∇θℓ(θ) = ∂θF(q∗, θ) = ∂θ⟨log p(X ,Z|θ)⟩q∗ = ⟨∂θ log p(X ,Z|θ)⟩p(Z|X ,θ)

Suggests a wake-sleep approach:
▶ Sample {xs, zs} ∼ p(X ,Z|θk).
▶ Train regressor Ĵθk : xs 7→ ∇θ log p(xs, zs|θ)|θk

(or, for specific regressors, 7→ log p(xs, zs|θk) and differentiate prediction)
▶ Set θk+1 = θk + α

∑
i Ĵθk (xi)

(or = θk + α
∑

i ∇θ Ĵθ(xi)|θk ).

Derivative form works for (kernel/GP) regression for which regressor is linear in targets.

For conditional exponential family models

log p(X ,Z|θ) = η(z, θ)TT(x)− Φ(z, θ) + log p(z|θ)

⇒ ⟨log p(X ,Z|θ)⟩q∗ = ⟨η(z, θ)⟩Tq∗T(x)− ⟨Φ(z, θ) + log p(z|θ)⟩q∗

and regressors can be trained to functions of z alone, with T (x) then evaluated on
(wake-phase) data.



Generative models

In practice, much of the VAE and related work has used a common generative model:

z ∼ N (0, I)

x ∼ N (g(z;θ), ψI)

where g is a neural network.

▶ Overcomplicated: if dim(z) is large enough the optimal solution has ψ → 0,
q(z; x)→ δ(z− f (x, ϕ)). In effect, the generative model learns a flow to transform a
normal density to the target.

▶ Oversimplified: if dim(z) is small, this is just non-linear PCA!

Interesting latent representations are likely to require more structured generative models.
Recent work has approached such models in both VAE and DDC frameworks.



Structured VAEs
Consider a model where p(Z|θ) has tractable joint exponential-family potentials and

p(X|Z, Γ) =
∏

i

p(xi |zi , γi)

are intractable (say neural net + normal) cond ind observations. γi might be the same for all i .

Consider factored variational inference q(Z) =
∏

i qi(zi). With no further constraint,

log q∗
i (zi) =

+C
⟨log p(Z,X )⟩q¬i

=
+C
⟨log p(zi |Z¬i) + log p(xi |zi)⟩q¬i

=
+C
⟨η¬i⟩

T
q¬i
ψi(zi) + log p(xi |zi)

where we have exploited the exponential-family form of p(Z). ψi are effective suff stats –
including log normalisers of children in a DAG; η¬i is a function of Z¬i .

Now, choose the parametric form qi(zi) = eη̃
T
i ψi (zi )−Φi (η̃i ). Constrained optimum has form

log q∗
i (zi) =

+C
⟨η¬i⟩

T
q¬i
ψi(zi) + ρ(xi)

Tψi(zi)

for some xi -dependent natural parameter. Introduce recognition models:

ρ(xi) = fi(xi , ϕi)

Recognition function fi might be same for all i if all likelihoods are the same (e.g. HMM).



Structured VAEs
Consider a model where p(Z|θ) has tractable joint exponential-family potentials and

p(X|Z, Γ) =
∏

i

p(xi |zi , γi)

are intractable (say neural net + normal) cond ind observations. γi might be the same for all i .

Consider factored variational inference q(Z) =
∏

i qi(zi). With no further constraint,

log q∗
i (zi) =

+C
⟨log p(Z,X )⟩q¬i

=
+C
⟨log p(zi |Z¬i) + log p(xi |zi)⟩q¬i

=
+C
⟨η¬i⟩

T
q¬i
ψi(zi) + log p(xi |zi)

where we have exploited the exponential-family form of p(Z). ψi are effective suff stats –
including log normalisers of children in a DAG; η¬i is a function of Z¬i .

Now, choose the parametric form qi(zi) = eη̃
T
i ψi (zi )−Φi (η̃i ). Constrained optimum has form

log q∗
i (zi) =

+C
⟨η¬i⟩

T
q¬i
ψi(zi) + ρ(xi)

Tψi(zi)

for some xi -dependent natural parameter. Introduce recognition models:

ρ(xi) = fi(xi , ϕi)

Recognition function fi might be same for all i if all likelihoods are the same (e.g. HMM).



Structured VAEs
Consider a model where p(Z|θ) has tractable joint exponential-family potentials and

p(X|Z, Γ) =
∏

i

p(xi |zi , γi)

are intractable (say neural net + normal) cond ind observations. γi might be the same for all i .

Consider factored variational inference q(Z) =
∏

i qi(zi). With no further constraint,

log q∗
i (zi) =

+C
⟨log p(Z,X )⟩q¬i

=
+C
⟨log p(zi |Z¬i) + log p(xi |zi)⟩q¬i

=
+C
⟨η¬i⟩

T
q¬i
ψi(zi) + log p(xi |zi)

where we have exploited the exponential-family form of p(Z). ψi are effective suff stats –
including log normalisers of children in a DAG; η¬i is a function of Z¬i .

Now, choose the parametric form qi(zi) = eη̃
T
i ψi (zi )−Φi (η̃i ). Constrained optimum has form

log q∗
i (zi) =

+C
⟨η¬i⟩

T
q¬i
ψi(zi) + ρ(xi)

Tψi(zi)

for some xi -dependent natural parameter. Introduce recognition models:

ρ(xi) = fi(xi , ϕi)

Recognition function fi might be same for all i if all likelihoods are the same (e.g. HMM).



Structured VAE learning

Now, the free-energy can be written as a function of parameters and recognition parameters:

F(θ, Γ, {ϕi}) =

〈∑
i

log p(xi |zi , γi) + log p(Z|θ)

〉
q(Z;θ,{ϕi})

+
∑

i

H[qi ]

=
∑

i

⟨log p(xi |zi , γi)⟩qi (zi ;θ,ϕi )
+ H[qi ]︸ ︷︷ ︸

Fi

+⟨log p(Z|θ)⟩q(Z;θ,{ϕi})

Updates on θ are just as for tractable model.

To update each ϕi and γi , find ⟨η¬i⟩q¬i
to give the “prior”. Generate reparametrised samples

zs
i ∼ qi . Then

∂

∂γi
Fi =

∑
s

∇γi log p(xi , z
s
i ; γi)

∂

∂ϕi
Fi =

∑
s

∂

∂zs
i
(log p(xi , z

s
i ; γi)− log q(zs

i ; f(xi)))
dzs

i

dϕ
+

∂

∂f(xi)
log q(zs

i ; f(xi))
df(xi)

dϕ

as for the standard VAE.



Structured VAE learning

Now, the free-energy can be written as a function of parameters and recognition parameters:

F(θ, Γ, {ϕi}) =

〈∑
i

log p(xi |zi , γi) + log p(Z|θ)

〉
q(Z;θ,{ϕi})

+
∑

i

H[qi ]

=
∑

i

⟨log p(xi |zi , γi)⟩qi (zi ;θ,ϕi )
+ H[qi ]︸ ︷︷ ︸

Fi

+⟨log p(Z|θ)⟩q(Z;θ,{ϕi})

Updates on θ are just as for tractable model.

To update each ϕi and γi , find ⟨η¬i⟩q¬i
to give the “prior”. Generate reparametrised samples

zs
i ∼ qi . Then

∂

∂γi
Fi =

∑
s

∇γi log p(xi , z
s
i ; γi)

∂

∂ϕi
Fi =

∑
s

∂

∂zs
i
(log p(xi , z

s
i ; γi)− log q(zs

i ; f(xi)))
dzs

i

dϕ
+

∂

∂f(xi)
log q(zs

i ; f(xi))
df(xi)

dϕ

as for the standard VAE.



Structured VAE learning

Now, the free-energy can be written as a function of parameters and recognition parameters:

F(θ, Γ, {ϕi}) =

〈∑
i

log p(xi |zi , γi) + log p(Z|θ)

〉
q(Z;θ,{ϕi})

+
∑

i

H[qi ]

=
∑

i

⟨log p(xi |zi , γi)⟩qi (zi ;θ,ϕi )
+ H[qi ]︸ ︷︷ ︸

Fi

+⟨log p(Z|θ)⟩q(Z;θ,{ϕi})

Updates on θ are just as for tractable model.

To update each ϕi and γi , find ⟨η¬i⟩q¬i
to give the “prior”. Generate reparametrised samples

zs
i ∼ qi . Then

∂

∂γi
Fi =

∑
s

∇γi log p(xi , z
s
i ; γi)

∂

∂ϕi
Fi =

∑
s

∂

∂zs
i
(log p(xi , z

s
i ; γi)− log q(zs

i ; f(xi)))
dzs

i

dϕ
+

∂

∂f(xi)
log q(zs

i ; f(xi))
df(xi)

dϕ

as for the standard VAE.



Structured VAE learning

Now, the free-energy can be written as a function of parameters and recognition parameters:

F(θ, Γ, {ϕi}) =

〈∑
i

log p(xi |zi , γi) + log p(Z|θ)

〉
q(Z;θ,{ϕi})

+
∑

i

H[qi ]

=
∑

i

⟨log p(xi |zi , γi)⟩qi (zi ;θ,ϕi )
+ H[qi ]︸ ︷︷ ︸

Fi

+⟨log p(Z|θ)⟩q(Z;θ,{ϕi})

Updates on θ are just as for tractable model.

To update each ϕi and γi , find ⟨η¬i⟩q¬i
to give the “prior”. Generate reparametrised samples

zs
i ∼ qi . Then

∂

∂γi
Fi =

∑
s

∇γi log p(xi , z
s
i ; γi)

∂

∂ϕi
Fi =

∑
s

∂

∂zs
i
(log p(xi , z

s
i ; γi)− log q(zs

i ; f(xi)))
dzs

i

dϕ
+

∂

∂f(xi)
log q(zs

i ; f(xi))
df(xi)

dϕ

as for the standard VAE.



Likelihoods

An explicit generative likelihood (or energy) seems essential to match model to data

(e.g. objects, illumination, pose)

(e.g. object parts, surfaces)

(e.g. edges)

(retinal image, i.e. pixels)

. . . but introduces challenges

▶ tractability: difficulty inverting non-linear generation creates bias
▶ relevance: irrelevant features must be modelled
▶ distributional choices: noise models may be inaccurate



Likelihoods

An explicit generative likelihood (or energy) seems essential to match model to data

(e.g. objects, illumination, pose)

(e.g. object parts, surfaces)

(e.g. edges)

(retinal image, i.e. pixels)

. . . but introduces challenges

▶ tractability: difficulty inverting non-linear generation creates bias
▶ relevance: irrelevant features must be modelled
▶ distributional choices: noise models may be inaccurate



Likelihoods

An explicit generative likelihood (or energy) seems essential to match model to data

(e.g. objects, illumination, pose)

(e.g. object parts, surfaces)

(e.g. edges)

(retinal image, i.e. pixels)

. . . but introduces challenges

▶ tractability: difficulty inverting non-linear generation creates bias

▶ relevance: irrelevant features must be modelled
▶ distributional choices: noise models may be inaccurate



Likelihoods

An explicit generative likelihood (or energy) seems essential to match model to data

(e.g. objects, illumination, pose)

(e.g. object parts, surfaces)

(e.g. edges)

(retinal image, i.e. pixels)

. . . but introduces challenges

▶ tractability: difficulty inverting non-linear generation creates bias
▶ relevance: irrelevant features must be modelled

▶ distributional choices: noise models may be inaccurate



Likelihoods

An explicit generative likelihood (or energy) seems essential to match model to data

(e.g. objects, illumination, pose)

(e.g. object parts, surfaces)

(e.g. edges)

(retinal image, i.e. pixels)

. . . but introduces challenges

▶ tractability: difficulty inverting non-linear generation creates bias
▶ relevance: irrelevant features must be modelled
▶ distributional choices: noise models may be inaccurate



Recognition parametrisation

x1 x2 x3

Z

p(X ,Z) = p(Z)
∏

j p(xj |Z)

▶ Start with a conventional generative model:

▶ Recognition-parametrised model (RPM):

▶ p0(xj) set to a non-parametric marginal, e.g. 1
N

∑
δ(xj − x(n)j )

(no learnt parameters)
▶ fθj(Z|xj) a parametrised recognition factor, non-linear and conjugate to p(Z)

▶ Fθj(Z) =

∫
dxj po(xj)fθj(Z|xj) =

1

N

∑
fθj(Z|x(n)j )

(fully determined by fθj parameters and p0(xj))

▶ Properly normalised, but data-dependent (semi-parametric) model
▶ Likelihood optimised by variational (EM) methods



Recognition parametrisation

x1 x2 x3

Zp(Z)p(Z)

p(x1)p(x1) p(x2)p(x2) p(x3)p(x3)

p(X ,Z) = p(Z)
∏

j p(xj)
p(Z|xj )

p(Z)

▶ Start with a conventional generative model:
▶ recognition can be defined by Bayes rule

▶ Recognition-parametrised model (RPM):

▶ p0(xj) set to a non-parametric marginal, e.g. 1
N

∑
δ(xj − x(n)j )

(no learnt parameters)
▶ fθj(Z|xj) a parametrised recognition factor, non-linear and conjugate to p(Z)

▶ Fθj(Z) =

∫
dxj po(xj)fθj(Z|xj) =

1

N

∑
fθj(Z|x(n)j )

(fully determined by fθj parameters and p0(xj))

▶ Properly normalised, but data-dependent (semi-parametric) model
▶ Likelihood optimised by variational (EM) methods



Recognition parametrisation

x1 x2 x3

Zp(Z)p(Z)

p0(x1)p0(x1) p0(x2)p0(x2) p0(x3)p0(x3)

Pθ,X(N)(X ,Z) = p(Z)
∏

j p0(xj)
fθj (Z|xj )

Fθj (Z)

▶ Recognition-parametrised model (RPM):

▶ p0(xj) set to a non-parametric marginal, e.g. 1
N

∑
δ(xj − x(n)j )

(no learnt parameters)

▶ fθj(Z|xj) a parametrised recognition factor, non-linear and conjugate to p(Z)

▶ Fθj(Z) =

∫
dxj po(xj)fθj(Z|xj) =

1

N

∑
fθj(Z|x(n)j )

(fully determined by fθj parameters and p0(xj))
▶ Properly normalised, but data-dependent (semi-parametric) model
▶ Likelihood optimised by variational (EM) methods



Recognition parametrisation

x1 x2 x3

Zp(Z)p(Z)

p0(x1)p0(x1) p0(x2)p0(x2) p0(x3)p0(x3)

Pθ,X(N)(X ,Z) = p(Z)
∏

j p0(xj)
fθj (Z|xj )

Fθj (Z)

▶ Recognition-parametrised model (RPM):

▶ p0(xj) set to a non-parametric marginal, e.g. 1
N

∑
δ(xj − x(n)j )

(no learnt parameters)
▶ fθj(Z|xj) a parametrised recognition factor, non-linear and conjugate to p(Z)

▶ Fθj(Z) =

∫
dxj po(xj)fθj(Z|xj) =

1

N

∑
fθj(Z|x(n)j )

(fully determined by fθj parameters and p0(xj))
▶ Properly normalised, but data-dependent (semi-parametric) model
▶ Likelihood optimised by variational (EM) methods



Recognition parametrisation

x1 x2 x3

Zp(Z)p(Z)

p0(x1)p0(x1) p0(x2)p0(x2) p0(x3)p0(x3)

Pθ,X(N)(X ,Z) = p(Z)
∏

j p0(xj)
fθj (Z|xj )

Fθj (Z)

▶ Recognition-parametrised model (RPM):

▶ p0(xj) set to a non-parametric marginal, e.g. 1
N

∑
δ(xj − x(n)j )

(no learnt parameters)
▶ fθj(Z|xj) a parametrised recognition factor, non-linear and conjugate to p(Z)

▶ Fθj(Z) =

∫
dxj po(xj)fθj(Z|xj) =

1

N

∑
fθj(Z|x(n)j )

(fully determined by fθj parameters and p0(xj))

▶ Properly normalised, but data-dependent (semi-parametric) model
▶ Likelihood optimised by variational (EM) methods



Recognition parametrisation

x1 x2 x3

Zp(Z)p(Z)

p0(x1)p0(x1) p0(x2)p0(x2) p0(x3)p0(x3)

Pθ,X(N)(X ,Z) = p(Z)
∏

j p0(xj)
fθj (Z|xj )

Fθj (Z)

▶ Recognition-parametrised model (RPM):

▶ p0(xj) set to a non-parametric marginal, e.g. 1
N

∑
δ(xj − x(n)j )

(no learnt parameters)
▶ fθj(Z|xj) a parametrised recognition factor, non-linear and conjugate to p(Z)

▶ Fθj(Z) =

∫
dxj po(xj)fθj(Z|xj) =

1

N

∑
fθj(Z|x(n)j )

(fully determined by fθj parameters and p0(xj))
▶ Properly normalised, but data-dependent (semi-parametric) model
▶ Likelihood optimised by variational (EM) methods



Recognition parametrised models

x1 x2 x3

Zp(Z)p(Z)

p0(x1)p0(x1) p0(x2)p0(x2) p0(x3)p0(x3)

Pθ,X(N)(X ,Z) = p(Z)
∏

j p0(xj)
fθj (Z|xj )

Fθj (Z)

▶ no parametrised model of individual observed variables
▶ joint model focuses on capturing statistical dependence
▶ no explicit generation; likelihood found from recognition model alone
▶ consistent even with arbitrary nonlinearities!



Recognition parametrised models

x1 x2 x3

Zp(Z)p(Z)

p0(x1)p0(x1) p0(x2)p0(x2) p0(x3)p0(x3)

Pθ,X(N)(X ,Z) = p(Z)
∏

j p0(xj)
fθj (Z|xj )

Fθj (Z)

▶ no parametrised model of individual observed variables
▶ joint model focuses on capturing statistical dependence
▶ no explicit generation; likelihood found from recognition model alone
▶ consistent even with arbitrary nonlinearities!



Recognition parametrised models

x1 x2 x3

Zp(Z)p(Z)

p0(x1)p0(x1) p0(x2)p0(x2) p0(x3)p0(x3)

Pθ,X(N)(X ,Z) = p(Z)
∏

j p0(xj)
fθj (Z|xj )

Fθj (Z)

▶ no parametrised model of individual observed variables
▶ joint model focuses on capturing statistical dependence
▶ no explicit generation; likelihood found from recognition model alone
▶ consistent even with arbitrary nonlinearities!



. . . just a brief survey of a subset of current ideas.



A few things we hope you’ve learned in this course . . .

▶ Exponential families are your friends.

▶ Latent variable models and conditional independence to uncover structured
representations.

▶ Free-energies, maximum likelihood, variational approximation theory and variational
Bayes.

▶ Message passing exploits conditional independence.

▶ A rich toolkit of approximations, that you can compose in novel and useful ways.

▶ A theory of many approximations that helps ensure you understand their use and
limitations (and may help derive new approaches).



A few things we hope you’ve learned in this course . . .

▶ Exponential families are your friends.

▶ Latent variable models and conditional independence to uncover structured
representations.

▶ Free-energies, maximum likelihood, variational approximation theory and variational
Bayes.

▶ Message passing exploits conditional independence.

▶ A rich toolkit of approximations, that you can compose in novel and useful ways.

▶ A theory of many approximations that helps ensure you understand their use and
limitations (and may help derive new approaches).



A few things we hope you’ve learned in this course . . .

▶ Exponential families are your friends.

▶ Latent variable models and conditional independence to uncover structured
representations.

▶ Free-energies, maximum likelihood, variational approximation theory and variational
Bayes.

▶ Message passing exploits conditional independence.

▶ A rich toolkit of approximations, that you can compose in novel and useful ways.

▶ A theory of many approximations that helps ensure you understand their use and
limitations (and may help derive new approaches).



A few things we hope you’ve learned in this course . . .

▶ Exponential families are your friends.

▶ Latent variable models and conditional independence to uncover structured
representations.

▶ Free-energies, maximum likelihood, variational approximation theory and variational
Bayes.

▶ Message passing exploits conditional independence.

▶ A rich toolkit of approximations, that you can compose in novel and useful ways.

▶ A theory of many approximations that helps ensure you understand their use and
limitations (and may help derive new approaches).



A few things we hope you’ve learned in this course . . .

▶ Exponential families are your friends.

▶ Latent variable models and conditional independence to uncover structured
representations.

▶ Free-energies, maximum likelihood, variational approximation theory and variational
Bayes.

▶ Message passing exploits conditional independence.

▶ A rich toolkit of approximations, that you can compose in novel and useful ways.

▶ A theory of many approximations that helps ensure you understand their use and
limitations (and may help derive new approaches).



A few things we hope you’ve learned in this course . . .

▶ Exponential families are your friends.

▶ Latent variable models and conditional independence to uncover structured
representations.

▶ Free-energies, maximum likelihood, variational approximation theory and variational
Bayes.

▶ Message passing exploits conditional independence.

▶ A rich toolkit of approximations, that you can compose in novel and useful ways.

▶ A theory of many approximations that helps ensure you understand their use and
limitations (and may help derive new approaches).



A few things we hope you’ve learned in this course . . .

▶ Exponential families are your friends.

▶ Latent variable models and conditional independence to uncover structured
representations.

▶ Free-energies, maximum likelihood, variational approximation theory and variational
Bayes.

▶ Message passing exploits conditional independence.

▶ A rich toolkit of approximations, that you can compose in novel and useful ways.

▶ A theory of many approximations that helps ensure you understand their use and
limitations (and may help derive new approaches).


	Probabilistic & Unsupervised Learning Approximate Inference [4ex] Parametric Variational Methods and Recognition Models
	Variational methods
	Optimising the variational parameters
	Score-based gradient estimate
	Factorisation
	Sampling
	Recognition Models
	The Helmholtz Machine
	The Helmholtz Machine

