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Variational methods

▶ Our treatment of variational methods has (except EP) emphasised ‘natural’ choices of
variational family – often factorised using the same functional (ExpFam) form as joint.
▶ mostly restricted to joint exponential families – facilitates hierarchical and

distributed models, but not non-linear/non-conjugate.

▶ Consider parametric variational approximations using a constrained family q(Z; ρ).

The constrained (approximate) variational E-step becomes:

q(Z) := argmax
q∈{q(Z;ρ)}

F
(
q(Z), θ(k−1)) ⇒ ρ(k) := argmax

ρ
F
(
q(Z; ρ), θ(k−1))

and so we can replace constrained optimisation of F(q, θ) with unconstrained
optimisation of a constrained F(ρ, θ) :

F(ρ, θ) =
〈
log P(X ,Z|θ(k−1))

〉
q(Z;ρ)

+ H[ρ]

It might still be valuable to use coordinate ascent in ρ and θ, although this is no longer
necessary.
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Optimising the variational parameters

F(ρ, θ) =
〈
log P(X ,Z|θ(k−1))

〉
q(Z;ρ)

+ H[ρ]

▶ In some special cases, the expectations of the log-joint under q(Z; ρ) can be expressed
in closed form, but these are rare.

▶ Otherwise we might seek to follow∇ρF .

▶ Naively, this requires evaluting a high-dimensional expectation wrt q(Z, ρ) as a function
of ρ – not simple.

▶ At least three solutions:

▶ “Score-based” gradient estimate, and Monte-Carlo (Ranganath et al. 2014).

▶ Recognition network trained in separate phase – not strictly variational (Dayan et
al. 1995).

▶ Recognition network trained simultaneously with generative model using “frozen”
samples (Kingma and Welling 2014; Rezende et al. 2014).
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Score-based gradient estimate

We have:

∇ρF(ρ, θ) = ∇ρ
∫

dZ q(Z; ρ)(log P(X ,Z|θ)− log q(Z; ρ))

=

∫
dZ

(
[∇ρq(Z; ρ)](log P(X ,Z|θ)− log q(Z; ρ))

+ q(Z; ρ)∇ρ[ log P(X ,Z|θ)− log q(Z; ρ)]
)

Now,

∇ρ log P(X ,Z|θ) = 0 (no direct dependence)∫
dZ q(Z; ρ)∇ρ log q(Z; ρ) =

∫
dZ ∇ρq(Z; ρ) = 0 (always normalised)

∇ρq(Z; ρ) = q(Z; ρ)∇ρ log q(Z; ρ) ← “score trick”

So,

∇ρF(ρ, θ) =
〈
[∇ρ log q(Z; ρ)](log P(X ,Z|θ)− log q(Z; ρ))

〉
q(Z;ρ)

Reduced gradient of expectation to expectation of gradient – easier to compute. Also called
the REINFORCE trick.
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Factorisation

∇ρF(ρ, θ) =
〈
[∇ρ log q(Z; ρ)](log P(X ,Z|θ)− log q(Z; ρ))

〉
q(Z;ρ)

▶ Still requires a high-dimensional expectation, but can now be evaluated by Monte-Carlo.
▶ Dimensionality reduced by factorisation (particularly where P(X ,Z) is factorised).

Let q(Z) =
∏

i q(Zi |ρi) factor over disjoint cliques; let Z̄i be the minimal Markov
blanket of Zi in the joint; PZ̄i

be the product of joint factors that include any element of
Zi (so the union of their arguments is Z̄i ); and P¬Z̄i

the remaining factors. Then,

∇ρiF({ρj}, θ) =
〈
[∇ρi

∑
j log q(Zj ; ρj)](log P(X ,Z|θ)−

∑
j log q(Zj ; ρj))

〉
q(Z)

=
〈
[∇ρi log q(Zi ; ρi)](log PZ̄i

(X , Z̄i)− log q(Zi ; ρi)
〉

q(Z̄i )

+
〈
[∇ρi log q(Zi ; ρi)] (log P¬Z̄i

(X ,Z¬i )−
∑
j ̸=i

log q(Zj ; ρj)︸ ︷︷ ︸
constant wrt Zi

〉
q(Z)

So the second term is proportional to ⟨∇ρi log q(Zi ; ρi)⟩q(Zi )
, this = 0 as before.

So expectations are only needed wrt q(Z̄i)→ variational message passing!



Sampling

So the “black-box” variational approach is as follows:

▶ Choose a parametric (factored) variational family q(Z) =
∏

i q(Zi ; ρi).
▶ Initialise factors.
▶ Repeat to convergence:

▶ Stochastic VE-step. For each i :
▶ Sample from q(Z̄i) and estimate expected gradient∇ρiF .
▶ Update ρi along gradient.

▶ Stochastic M-step. For each i :
▶ Sample from each q(Z̄i).
▶ Update corresponding parameters.

▶ Stochastic gradient steps may employ a Robbins-Munro step-size sequence to promote
convergence.

▶ Variance of the gradient estimators can also be controlled by clever Monte-Carlo
techniques (orginal authors used a “control variate” method that we have not studied).



Recognition Models

We have not generally distinguished between multivariate models and iid data instances,
grouping all variables together in Z .

However, even for large models (such as HMMs), we often work with multiple data draws (e.g.
multiple strings) and each instance requires a separate variational optimisation.

Suppose that we have fixed length vectors {(xi , zi)} (z is still latent).

▶ Optimal variational distribution q∗(zi) depends on xi .
▶ Learn this mapping (in parametric form): q

(
zi ; ρ = f (xi ;ϕ)

)
.

▶ Now ρ is the output of a general function approximator f (a GP, neural network or similar)
parametrised by ϕ, trained to map xi to the variational parameters of q(zi).

▶ The mapping function f is called a recognition model.
▶ This is approach is now often called amortised inference.

How to learn f?



The Helmholtz Machine
Dayan et al. (1995) originally studied binary sigmoid belief net, with parallel recognition
model:

• • •

• • •

• • •

• • •

• • •

• • •

Two phase learning:
▶ Wake phase: given current f , estimate mean-field representation from data (mean

sufficient stats for Bernoulli are just probabilities):

q(zi) = Bernoulli[ẑi ] ẑi = f (xi ;ϕ)

Update generative parameters θ according to∇θF({ẑi}, θ).
▶ Sleep phase: sample {zs, xs}S

s=1 from current generative model. Update recognition
parameters ϕ to direct f (xs) towards zs (simple gradient learning).

∆ϕ ∝
∑

s

(zs − f (xs;ϕ))∇ϕf (xs;ϕ)



The Helmholtz Machine

▶ Can sample z from recognition model rather than just evaluate means.

▶ Expectations in free-energy can be computed directly rather than by mean
substitution.

▶ In hierarchical models, output of higher recognition layers then depends on
samples at previous stages, which introduces correlations between samples at
different layers.

▶ Recognition model structure need not exactly echo generative model.

▶ More general approach is to train f to yield mean parameters of ExpFam q(z) (later).

▶ Sleep phase learning minimises KL[pθ(z|x)∥q(z; f (x, ϕ))]. Opposite to variational
objective, but may not matter if divergence is small enough.



Variational Autoencoders

x1 x2 xD• • •

• • •

z1 zK• • •

x1 x2 xD• • •

• • •

z1 zK• • •

x1 x2 xD• • •

• • •

x1 x2 xD• • •

x̂1 x̂2 x̂D• • •

• • •

z1 zK• • •

x1 x2 xD• • •

• • •

▶ Fuse wake and sleep phases, optimising F wrt generative
and recognition parameters using reparametrisation.

▶ Canonical generative conditional is Gaussian with NN
(usually MLP) mean (variance may also be parametrised by
another NN):

P(z) = N (0, I)

P(x|z) = N
(
gNN(z;θ), σ

2I
)

▶ NN recognition model estimates parameters of posterior:
q(z|x; f(x, ϕ)).

▶ Free energy:

F(θ, ϕ) =
∑
data

⟨log P(x|z)⟩q(z|x) − KL[q(z|x)∥P(z)]

= −
∑
data

〈∥x− g(z)∥2

2σ2

〉
q
+ KL[q(z|x)∥P(z)]
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2σ2
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“reconstruction cost”

+ KL[q(z|x)∥P(z)]︸ ︷︷ ︸
“regulariser”



Variational Autoencoders

x1 x2 xD• • •

x̂1 x̂2 x̂D• • •
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ϵ

▶ The expectation of a non-linear (NN) function is intractable.
▶ Generate S samples from q(z|x) using deterministic

transformation of standard random variates
(reparametrisation trick).

▶ E.g. if f gives marginal µi and σi for latents zi and
ϵs

i ∼ N (0, 1), then zs
i = µi + σiϵ

s
i .

▶ Now generative and recognition parameters can be trained
together by gradient descent (backprop), holding ϵs fixed.

Fi(θ, ϕ) =
1
S

∑
s

log P(xi , z
s
i ; θ)− log q(zs

i ; f(xi , ϕ))

∂

∂θ
Fi =

1
S

∑
s

∇θ log P(xi , z
s
i ; θ)

∂

∂ϕ
Fi =

1
S

∑
s

∂

∂zs
i
(log P(xi , z

s
i ; θ)− log q(zs

i ; f(xi)))
dzs

i

dϕ

+
∂

∂f(xi)
log q(zs

i ; f(xi))
df(xi)

dϕ
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Variational Autoencoders

▶ Frozen samples ϵs can be redrawn to avoid overfitting.

▶ May be possible to evaluate entropy and ⟨log P(z)⟩ without sampling, reducing variance.

▶ Differentiable reparametrisations are available for a number of different distributions.
▶ requires approximation for discrete-valued variables (Gumbel or “concrete”

distributions)

▶ Conditional P(x|z, θ) may be more complex: RNNs, transformers, . . . .
▶ May include internal stochastic nodes: requires recognition network to estimate all

distributions (see “ladder VAE”).
▶ In practice, hierarchical models appear difficult to learn.



More recent work

▶ Changing the variational cost function (tightening the bound):
▶ Importance-Weighted autoencoder (IWAE)
▶ Filtering variational objective (FIVO)
▶ Thermodynamic variational objective (TVO)

▶ Flexible variational distributions (and avoiding inference)
▶ Normalising flows
▶ DDC-Helmholtz machine
▶ Amortised learning
▶ Diffusion models

▶ Structured generative models
▶ “standard” VAE generative model both too powerful and too simple for learning
▶ local conjugate inference – structured VAEs

▶ Recognition-parametrised models
▶ RPMs model (latent-induced) joint dependence, but not marginals of observations

Far from exhaustive . . . these are all areas of active research. We’ll survey a few ideas.



Importance-weighted free energy

Another interpretation of F : Jensen bound on importance sampled estimate.

ℓ(θ) = log

⇔ marginalising z from joint

Ez∼p(z|x)[p(x)]

= logEz∼q

[
p(x)p(z|x)

q(z)

]
≥ Ez∼q

[
log

p(x, z)
q(z)

]
So

F(q, θ) =
〈
log

p(x, z)
q(z)

〉
q

= Ez∼q

[
log p(x) p(z|x)

q(z)

]
-

Suggests more accurate importance sampling:

ℓ(θ) = logE
z1...zK

iid∼ q

[
1
K

∑
k

p(x, zk)

q(zk)

]
≥ E

z1...zK
iid∼ q

[
log

1
K

∑
k

p(x, zk)

q(zk)

]

Tighter bound, and reparametrisation friendly, but as K →∞ the signal for learning
amortised q grows weaker so VAE learning doesn’t always improve.
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Normalising flows

F(q, θ) = ⟨log p(x, z|θ)⟩q − ⟨log q(z)⟩q

To evaluate F (or its gradients) we need to be able to find expectations wrt q (e.g. by Monte
Carlo) and evaluate the log-density – usually restricts us to tractable inferential families.

Consider defining a recognition model q(z) implicitly by:

z0 ∼ q0(·; x) ← fixed, tractable, e.g. N (x, I)

z = fK (fK−1(. . . f1(z0))) ← fk smooth, invertible, parametrised by ϕ

Then we can both compute expectations under q and evaluate its log density:

⟨F(z)⟩q = ⟨F(fK (fK−1(. . . f1(z0))))⟩q0

log q(z) = log q0(f
−1
1 (f−1

2 (. . . f−1
K (z))))−

∑
k

log|∇fk |

where the second result applies from repeated transformations of variables

zk = fk(zk−1) ⇒ q(zk) = q(f−1
k (zk))

∣∣∣∣∂zk−1

∂zk

∣∣∣∣ = q(f−1
k (zk))|∇fk(zk−1)|−1
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Normalising flows

So, given a sample zs
0

iid∼ q0(·; x):

F(ϕ, θ) ≈ 1
S

∑
s

log p(x, fK (. . . f1(z
s
0))))+H[q0]+

1
S

∑
s

∑
k

log
∣∣∇fk(fk−1(. . . f1(z

s
0)))

∣∣
and we can compute gradients of this expression wrt θ and ϕ.

Useful fs (from Rezende & Mohammed 2015):

f (z) = z + uh(wTz + b) ⇒ |∇f | =
∣∣∣1 + uTψ(z)

∣∣∣ ψ(z) = h′(wTz + b)w

f (z) = z +
β

α+ |z− z0|
⇒ |∇f | = [1 + βh]d−1[1 + βh + βh′r ]

r = |z− z0|, h =
1

α+ r

Both can be cascaded to give a flexible variational family.



Diffusion probabilistic models

Multi-stage flexible generative process (like normalising flow) with fixed recognition model.

In our notation:

▶ Define observations x and latents z1 . . . zK .
▶ Fix “diffusion” recognition model (the “forward” model)

q(z1|x) = N
(√

1–β1x, β1I
)

q(zk |zk−1) = N
(√

1–βk zk−1, βk I
)

▶ Parametrise generative model (the “backward” model)

p(zK ) = N (0, I)

p(zk−1|zk ; θ) = N (µθ(zk , k),Σθ(zk , k))

p(x|z1; θ) = N
(
µθ(z1, 1),Σθ(z1, 1)︸ ︷︷ ︸

usually NNs

)
x

z1

z2

zK
•

•
•

Diffusion recognition sends q(zK )
K→∞→ N (0, I).

In the limit βk → 0 the reciprocal normal generation is correct.
But as β → 0 and K →∞ the link between observation and zK becomes uninformative.
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Diffusion models
Free energy

F =

〈
log p(x|z1) +

K∑
k=2

log p(zk−1|zK ) + log p(zk)

〉
q(z1:K |x)

− H[q(z1:K |x)]

= ⟨log p(x|z1)⟩q(z1|x) +
K∑

k=2

⟨log p(zk−1|zk)⟩q(zk ,zk−1|x) + ⟨log p(zK )⟩q(zK |x) −
K∑

k=1

H[·]

So learning requires expectations (usually based on samples) under q(zk) and q(zk−1|zk).
The diffusion assumption makes these marginals easy to compute.

q(z1|x) = N
(√

1–β1x, β1I
)

q(z2|x) = N
(√

1–β2

√
1–β1x,

√
1–β2(β1I)

√
1–β2 + β2I

)
= N

(√
1–β2

√
1–β1x, (1− (1–β2)(1–β1))I

)

Let αk = 1− βk and ᾱk =
∏k

i=1 αi and suppose

q(zk |x) = N
(√
ᾱk x, (1− ᾱk)I

)
⇒ q(zk+1|x) = N

(√
αk+1
√
ᾱk x, αk+1(1− ᾱk)I + βk1 I

)
= N

(√
ᾱk+1x, αk+1(1− ᾱk)I + βk1 I

)

demonstrating the premise by recursion.



Diffusion models
Free energy

F =

〈
log p(x|z1) +

K∑
k=2

log p(zk−1|zK ) + log p(zk)

〉
q(z1:K |x)

− H[q(z1:K |x)]

= ⟨log p(x|z1)⟩q(z1|x) +
K∑

k=2

⟨log p(zk−1|zk)⟩q(zk ,zk−1|x) + ⟨log p(zK )⟩q(zK |x) −
K∑

k=1

H[·]

So learning requires expectations (usually based on samples) under q(zk) and q(zk−1|zk).

The diffusion assumption makes these marginals easy to compute.

q(z1|x) = N
(√

1–β1x, β1I
)

q(z2|x) = N
(√

1–β2

√
1–β1x,

√
1–β2(β1I)

√
1–β2 + β2I

)
= N

(√
1–β2

√
1–β1x, (1− (1–β2)(1–β1))I

)

Let αk = 1− βk and ᾱk =
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)

demonstrating the premise by recursion.



Diffusion models
Free energy

F =

〈
log p(x|z1) +

K∑
k=2

log p(zk−1|zK ) + log p(zk)

〉
q(z1:K |x)

− H[q(z1:K |x)]

= ⟨log p(x|z1)⟩q(z1|x) +
K∑

k=2

⟨log p(zk−1|zk)⟩q(zk ,zk−1|x) + ⟨log p(zK )⟩q(zK |x) −
K∑

k=1

H[·]

So learning requires expectations (usually based on samples) under q(zk) and q(zk−1|zk).
The diffusion assumption makes these marginals easy to compute.

q(z1|x) = N
(√

1–β1x, β1I
)

q(z2|x) = N
(√

1–β2

√
1–β1x,

√
1–β2(β1I)

√
1–β2 + β2I

)
= N

(√
1–β2

√
1–β1x, (1− (1–β2)(1–β1))I

)
Let αk = 1− βk and ᾱk =
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)
demonstrating the premise by recursion.



Diffusion models

F = ⟨log p(x|z1)⟩q(z1|x) +
K∑

k=2

⟨log p(zk−1|zk)⟩q(zk ,zk−1|x) + ⟨log p(zK )⟩q(zK |x) −
K∑

k=1

H[·]

q(zk |x) = N
(√
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▶ So ⟨log p(zk−1|zk)⟩q(zk−1,zk |x) can be computed by sampling from zk and using (closed

form) conditional for q(zk−1|zk , x).
▶ Reparametrisation (as in the VAE) makes it possible to also optimise βk .
▶ Considerable recent work: noise-target NNs; conditional models; score-based diffusions

. . . .
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ᾱk−1βk

1− ᾱk
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DDC Helmholtz machine

A (loosely) neurally inspired idea. Define q as an unnormalisable exponential family with a
large set of sufficient statistics

q(z) ∝ e
∑

i ηiψi (z)

and parametrise by mean parameters µ = ⟨ψ(z)⟩: Distributed distributional code (DDC).

Train recognition model using sleep samples:

µ = ⟨ψ(z)⟩q = f (x;ϕ)

∆ϕ ∝
∑

s

(ψ(zs)− f (xs;ϕ))∇ϕf (xs;ϕ)

Also learn linear approximation∇ log p(x, z|θ) ≈ Aψ(z)

A =
(∑

s

∇ log p(xs, zs|θ)ψ(zs)
)T(∑

s

ψ(zs)ψ(zs)
T
)−1

Then

⟨∇ log p(x, z)⟩q ≈ A⟨ψ(z)⟩q ≈ Af (x, ϕ)

Approach can be generalised to an infinite dimensional ψ using the kernel trick.



Amortised Learning

If we aren’t actually interested in inference, we can short-circuit general recognition and
compute expectations for learning directly.

∇θℓ(θ) = ∂θF(q∗, θ) = ∂θ⟨log p(X ,Z|θ)⟩q∗ = ⟨∂θ log p(X ,Z|θ)⟩p(Z|X ,θ)

Suggests a wake-sleep approach:
▶ Sample {xs, zs} ∼ p(X ,Z|θk).
▶ Train regressor Ĵθk : xs 7→ ∇θ log p(xs, zs|θ)|θk

(or, for specific regressors, 7→ log p(xs, zs|θk) and differentiate prediction)
▶ Set θk+1 = θk + α

∑
i Ĵθk (xi)

(or = θk + α
∑

i ∇θ Ĵθ(xi)|θk ).

Derivative form works for (kernel/GP) regression for which regressor is linear in targets.

For conditional exponential family models

log p(X ,Z|θ) = η(z, θ)TT(x)− Φ(z, θ) + log p(z|θ)

⇒ ⟨log p(X ,Z|θ)⟩q∗ = ⟨η(z, θ)⟩Tq∗T(x)− ⟨Φ(z, θ) + log p(z|θ)⟩q∗

and regressors can be trained to functions of z alone, with T (x) then evaluated on
(wake-phase) data.
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For conditional exponential family models

log p(X ,Z|θ) = η(z, θ)TT(x)− Φ(z, θ) + log p(z|θ)

⇒ ⟨log p(X ,Z|θ)⟩q∗ = ⟨η(z, θ)⟩Tq∗T(x)− ⟨Φ(z, θ) + log p(z|θ)⟩q∗

and regressors can be trained to functions of z alone, with T (x) then evaluated on
(wake-phase) data.



Generative models

In practice, much of the VAE and related work has used a common generative model:

z ∼ N (0, I)

x ∼ N (g(z;θ), ψI)

where g is a neural network.

▶ Overcomplicated: if dim(z) is large enough the optimal solution has ψ → 0,
q(z; x)→ δ(z− f (x, ϕ)). In effect, the generative model learns a flow to transform a
normal density to the target.

▶ Oversimplified: if dim(z) is small, this is just non-linear PCA!

Interesting latent representations are likely to require more structured generative models.
Recent work has approached such models in both VAE and DDC frameworks.



Structured VAEs
Consider a model where p(Z|θ) has tractable joint exponential-family potentials and

p(X|Z, Γ) =
∏

i

p(xi |zi , γi)

are intractable (say neural net + normal) cond ind observations. γi might be the same for all i .

Consider factored variational inference q(Z) =
∏

i qi(zi). With no further constraint,

log q∗
i (zi) =

+C
⟨log p(Z,X )⟩q¬i

=
+C
⟨log p(zi |Z¬i) + log p(xi |zi)⟩q¬i

=
+C
⟨η¬i⟩

T
q¬i
ψi(zi) + log p(xi |zi)

where we have exploited the exponential-family form of p(Z). ψi are effective suff stats –
including log normalisers of children in a DAG; η¬i is a function of Z¬i .

Now, choose the parametric form qi(zi) = eη̃
T
i ψi (zi )−Φi (η̃i ). Constrained optimum has form

log q∗
i (zi) =

+C
⟨η¬i⟩

T
q¬i
ψi(zi) + ρ(xi)

Tψi(zi)

for some xi -dependent natural parameter. Introduce recognition models:

ρ(xi) = fi(xi , ϕi)

Recognition function fi might be same for all i if all likelihoods are the same (e.g. HMM).
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Structured VAE learning

Now, the free-energy can be written as a function of parameters and recognition parameters:

F(θ, Γ, {ϕi}) =

〈∑
i

log p(xi |zi , γi) + log p(Z|θ)

〉
q(Z;θ,{ϕi})

+
∑

i

H[qi ]

=
∑

i

⟨log p(xi |zi , γi)⟩qi (zi ;θ,ϕi )
+ H[qi ]︸ ︷︷ ︸

Fi

+⟨log p(Z|θ)⟩q(Z;θ,{ϕi})

Updates on θ are just as for tractable model.

To update each ϕi and γi , find ⟨η¬i⟩q¬i
to give the “prior”. Generate reparametrised samples

zs
i ∼ qi . Then

∂

∂γi
Fi =

∑
s

∇γi log p(xi , z
s
i ; γi)

∂

∂ϕi
Fi =

∑
s

∂

∂zs
i
(log p(xi , z

s
i ; γi)− log q(zs

i ; f(xi)))
dzs

i

dϕ
+

∂

∂f(xi)
log q(zs

i ; f(xi))
df(xi)

dϕ

as for the standard VAE.
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Likelihoods

An explicit generative likelihood (or energy) seems essential to match model to data

(e.g. objects, illumination, pose)

(e.g. object parts, surfaces)

(e.g. edges)

(retinal image, i.e. pixels)

. . . but introduces challenges

▶ tractability: difficulty inverting non-linear generation creates bias
▶ relevance: irrelevant features must be modelled
▶ distributional choices: noise models may be inaccurate
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Recognition parametrisation

x1 x2 x3

Z

p(X ,Z) = p(Z)
∏

j p(xj |Z)

▶ Start with a conventional generative model:

▶ Recognition-parametrised model (RPM):

▶ p0(xj) set to a non-parametric marginal, e.g. 1
N

∑
δ(xj − x(n)j )

(no learnt parameters)
▶ fθj(Z|xj) a parametrised recognition factor, non-linear and conjugate to p(Z)

▶ Fθj(Z) =

∫
dxj po(xj)fθj(Z|xj) =

1

N

∑
fθj(Z|x(n)j )

(fully determined by fθj parameters and p0(xj))

▶ Properly normalised, but data-dependent (semi-parametric) model
▶ Likelihood optimised by variational (EM) methods
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▶ no parametrised model of individual observed variables
▶ joint model focuses on capturing statistical dependence
▶ no explicit generation; likelihood found from recognition model alone
▶ consistent even with arbitrary nonlinearities!
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. . . just a brief survey of a subset of current ideas.



A few things we hope you’ve learned in this course . . .

▶ Exponential families are your friends.

▶ Latent variable models and conditional independence to uncover structured
representations.

▶ Free-energies, maximum likelihood, variational approximation theory and variational
Bayes.

▶ Message passing exploits conditional independence.

▶ A rich toolkit of approximations, that you can compose in novel and useful ways.

▶ A theory of many approximations that helps ensure you understand their use and
limitations (and may help derive new approaches).
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