
Probabilistic & Unsupervised Learning
Approximate Inference

Beyond linear-Gaussian models and Mixtures

Maneesh Sahani
maneesh@gatsby.ucl.ac.uk

Gatsby Computational Neuroscience Unit, and
MSc ML/CSML, Dept Computer Science

University College London

Term 1, Autumn 2023

Tractable Models

I Factor analysis, principle components analysis, probabilistic PCA.
I Linear regression, Gaussian processes.
I Mixture of Gaussians, mixture of experts.
I Hidden Markov models, linear-Gaussian state space models.

Models consisting of various combinations of:
I Linear Gaussian,
I Discrete variables,
I Chains and trees (or junction trees),

Tractable Models

I Factor analysis, principle components analysis, probabilistic PCA.

I Linear regression, Gaussian processes.
I Mixture of Gaussians, mixture of experts.
I Hidden Markov models, linear-Gaussian state space models.

Models consisting of various combinations of:
I Linear Gaussian,
I Discrete variables,
I Chains and trees (or junction trees),

Tractable Models

I Factor analysis, principle components analysis, probabilistic PCA.
I Linear regression, Gaussian processes.

I Mixture of Gaussians, mixture of experts.
I Hidden Markov models, linear-Gaussian state space models.

Models consisting of various combinations of:
I Linear Gaussian,
I Discrete variables,
I Chains and trees (or junction trees),

Tractable Models

I Factor analysis, principle components analysis, probabilistic PCA.
I Linear regression, Gaussian processes.
I Mixture of Gaussians, mixture of experts.

I Hidden Markov models, linear-Gaussian state space models.

Models consisting of various combinations of:
I Linear Gaussian,
I Discrete variables,
I Chains and trees (or junction trees),

Tractable Models

I Factor analysis, principle components analysis, probabilistic PCA.
I Linear regression, Gaussian processes.
I Mixture of Gaussians, mixture of experts.
I Hidden Markov models, linear-Gaussian state space models.

Models consisting of various combinations of:
I Linear Gaussian,
I Discrete variables,
I Chains and trees (or junction trees),

Tractable Models

I Factor analysis, principle components analysis, probabilistic PCA.
I Linear regression, Gaussian processes.
I Mixture of Gaussians, mixture of experts.
I Hidden Markov models, linear-Gaussian state space models.

Models consisting of various combinations of:
I Linear Gaussian,
I Discrete variables,
I Chains and trees (or junction trees),

A Generative Model for Generative Models

Gaussian

Mixture of
Gaussians

(VQ)

Factor Analysis
(PCA)

Hidden Markov
Models

Linear Dynam-
ical Systems

Mixture of
Factor

Analysers

Mixture
of HMM

Mixture of LDS

Independent
Components

Analysis

Nonlinear
Dynamical
Systems

Cooperative
Vector Quan-

tisation

Factorial HMM

Sigmoid
Belief Nets

Nonlinear
Gaussian

Belief Nets

Discrete Latent (mixture)

Linear-Gaussian Latent
Latent Dynamics

Nonlinear link functions
Distributed Latent
Hierarchy

Adapted from Roweis & Ghahramani (1999). A Unifying Review of Linear Gaussian Models. Neural
Comput. 11(2).

A Generative Model for Generative Models

Gaussian

Mixture of
Gaussians

(VQ)

Factor Analysis
(PCA)

Hidden Markov
Models

Linear Dynam-
ical Systems

Mixture of
Factor

Analysers

Mixture
of HMM

Mixture of LDS

Independent
Components

Analysis

Nonlinear
Dynamical
Systems

Cooperative
Vector Quan-

tisation

Factorial HMM

Sigmoid
Belief Nets

Nonlinear
Gaussian

Belief Nets

Discrete Latent (mixture)

Linear-Gaussian Latent

Latent Dynamics

Nonlinear link functions
Distributed Latent
Hierarchy

Adapted from Roweis & Ghahramani (1999). A Unifying Review of Linear Gaussian Models. Neural
Comput. 11(2).

A Generative Model for Generative Models

Gaussian

Mixture of
Gaussians

(VQ)

Factor Analysis
(PCA)

Hidden Markov
Models

Linear Dynam-
ical Systems

Mixture of
Factor

Analysers

Mixture
of HMM

Mixture of LDS

Independent
Components

Analysis

Nonlinear
Dynamical
Systems

Cooperative
Vector Quan-

tisation

Factorial HMM

Sigmoid
Belief Nets

Nonlinear
Gaussian

Belief Nets

Discrete Latent (mixture)

Linear-Gaussian Latent
Latent Dynamics

Nonlinear link functions
Distributed Latent
Hierarchy

Adapted from Roweis & Ghahramani (1999). A Unifying Review of Linear Gaussian Models. Neural
Comput. 11(2).

A Generative Model for Generative Models

Gaussian

Mixture of
Gaussians

(VQ)

Factor Analysis
(PCA)

Hidden Markov
Models

Linear Dynam-
ical Systems

Mixture of
Factor

Analysers

Mixture
of HMM

Mixture of LDS

Independent
Components

Analysis

Nonlinear
Dynamical
Systems

Cooperative
Vector Quan-

tisation

Factorial HMM

Sigmoid
Belief Nets

Nonlinear
Gaussian

Belief Nets

Discrete Latent (mixture)

Linear-Gaussian Latent
Latent Dynamics

Nonlinear link functions
Distributed Latent
Hierarchy

Adapted from Roweis & Ghahramani (1999). A Unifying Review of Linear Gaussian Models. Neural
Comput. 11(2).

Expanding Our Horizons

Although these models can be powerful, they are undoubtedly still restrictive. There is a need
to go beyond the confines of these structures

In this half of the course (and today) we will study:

I hierarchical models,
I distributed models,
I nonlinear models,
I non-Gaussian models.

and various combinations of these.

Whilst sometimes tractable (particularly in corner cases), these models will most often require
approximate inference.

Expanding Our Horizons

Although these models can be powerful, they are undoubtedly still restrictive. There is a need
to go beyond the confines of these structures

In this half of the course (and today) we will study:
I hierarchical models,

I distributed models,
I nonlinear models,
I non-Gaussian models.

and various combinations of these.

Whilst sometimes tractable (particularly in corner cases), these models will most often require
approximate inference.

Expanding Our Horizons

Although these models can be powerful, they are undoubtedly still restrictive. There is a need
to go beyond the confines of these structures

In this half of the course (and today) we will study:
I hierarchical models,
I distributed models,

I nonlinear models,
I non-Gaussian models.

and various combinations of these.

Whilst sometimes tractable (particularly in corner cases), these models will most often require
approximate inference.

Expanding Our Horizons

Although these models can be powerful, they are undoubtedly still restrictive. There is a need
to go beyond the confines of these structures

In this half of the course (and today) we will study:
I hierarchical models,
I distributed models,
I nonlinear models,

I non-Gaussian models.

and various combinations of these.

Whilst sometimes tractable (particularly in corner cases), these models will most often require
approximate inference.

Expanding Our Horizons

Although these models can be powerful, they are undoubtedly still restrictive. There is a need
to go beyond the confines of these structures

In this half of the course (and today) we will study:
I hierarchical models,
I distributed models,
I nonlinear models,
I non-Gaussian models.

and various combinations of these.

Whilst sometimes tractable (particularly in corner cases), these models will most often require
approximate inference.

Expanding Our Horizons

Although these models can be powerful, they are undoubtedly still restrictive. There is a need
to go beyond the confines of these structures

In this half of the course (and today) we will study:
I hierarchical models,
I distributed models,
I nonlinear models,
I non-Gaussian models.

and various combinations of these.

Whilst sometimes tractable (particularly in corner cases), these models will most often require
approximate inference.

Expanding Our Horizons

Although these models can be powerful, they are undoubtedly still restrictive. There is a need
to go beyond the confines of these structures

In this half of the course (and today) we will study:
I hierarchical models,
I distributed models,
I nonlinear models,
I non-Gaussian models.

and various combinations of these.

Whilst sometimes tractable (particularly in corner cases), these models will most often require
approximate inference.

Why We Need . . . Nonlinear/Non-Gaussian Models

Much of the world is neither linear nor Gaussian

500 0 500
10 -4

10 -2

100

Filter Response

P
ro

ba
bi

lit
y

Response histogram
Gaussian density

. . . and most interesting structure we would like to learn about is not either.

Why We Need . . . Hierarchical (Deep) Models
Many generative processes can be naturally described at different levels of detail.

(e.g. objects, illumination, pose)

(e.g. object parts, surfaces)

(e.g. edges)

(retinal image, i.e. pixels)

Biology seems to have developed hierarchical representations.

Why We Need . . . Distributed Models

y1

x1

vs.

x1

y1 y2 yK• • •

In a distributed representation each observation is characterised by a vector of (discrete or
continous) attibutes. Some of these attributes might be latent.
I Unitary representation: categorise voters into small groups who (may) vote similarly e.g.:

London-based university professors of Asian descent.
I Distributed respresentation: consider separate contributions from a group of attributes,

e.g.:
(Single, Black, Female, 34 yrs, Urban, Liberal, £35k p.a.).

I Attributes resemble factors, but may be discrete or non-Gaussian, and may outnumber
observations.

Distributed representations can be exponentially efficient: K binary factors⇒ K bits of info.
(K parallel binary state variables in an HMM can replace one variable with 2K states.)

A Generative Model for Generative Models

Gaussian

Mixture of
Gaussians

(VQ)

Factor Analysis
(PCA)

Hidden Markov
Models

Linear Dynam-
ical Systems

Mixture of
Factor

Analysers

Mixture
of HMM

Mixture of LDS

Independent
Components

Analysis

Nonlinear
Dynamical
Systems

Cooperative
Vector Quan-

tisation

Factorial HMM

Sigmoid
Belief Nets

Nonlinear
Gaussian

Belief Nets

Discrete Latent (mixture)

Linear-Gaussian Latent
Latent Dynamics

Nonlinear link functions
Distributed Latent
Hierarchy

Adapted from Roweis & Ghahramani (1999). A Unifying Review of Linear Gaussian Models. Neural
Comput. 11(2).

A Generative Model for Generative Models

Gaussian

Mixture of
Gaussians

(VQ)

Factor Analysis
(PCA)

Hidden Markov
Models

Linear Dynam-
ical Systems

Mixture of
Factor

Analysers

Mixture
of HMM

Mixture of LDS

Independent
Components

Analysis

Nonlinear
Dynamical
Systems

Cooperative
Vector Quan-

tisation

Factorial HMM

Sigmoid
Belief Nets

Nonlinear
Gaussian

Belief Nets

Discrete Latent (mixture)

Linear-Gaussian Latent
Latent Dynamics

Nonlinear link functions

Distributed Latent
Hierarchy

Adapted from Roweis & Ghahramani (1999). A Unifying Review of Linear Gaussian Models. Neural
Comput. 11(2).

A Generative Model for Generative Models

Gaussian

Mixture of
Gaussians

(VQ)

Factor Analysis
(PCA)

Hidden Markov
Models

Linear Dynam-
ical Systems

Mixture of
Factor

Analysers

Mixture
of HMM

Mixture of LDS

Independent
Components

Analysis

Nonlinear
Dynamical
Systems

Cooperative
Vector Quan-

tisation

Factorial HMM

Sigmoid
Belief Nets

Nonlinear
Gaussian

Belief Nets

Discrete Latent (mixture)

Linear-Gaussian Latent
Latent Dynamics

Nonlinear link functions
Distributed Latent

Hierarchy

Adapted from Roweis & Ghahramani (1999). A Unifying Review of Linear Gaussian Models. Neural
Comput. 11(2).

A Generative Model for Generative Models

Gaussian

Mixture of
Gaussians

(VQ)

Factor Analysis
(PCA)

Hidden Markov
Models

Linear Dynam-
ical Systems

Mixture of
Factor

Analysers

Mixture
of HMM

Mixture of LDS

Independent
Components

Analysis

Nonlinear
Dynamical
Systems

Cooperative
Vector Quan-

tisation

Factorial HMM

Sigmoid
Belief Nets

Nonlinear
Gaussian

Belief Nets

Discrete Latent (mixture)

Linear-Gaussian Latent
Latent Dynamics

Nonlinear link functions
Distributed Latent
Hierarchy

Adapted from Roweis & Ghahramani (1999). A Unifying Review of Linear Gaussian Models. Neural
Comput. 11(2).

Independent Components Analysis

Independent Components Analysis

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

5
Mixture of Heavy Tailed Sources

−3 −2 −1 0 1 2
−3

−2

−1

0

1

2

3
Mixture of Light Tailed Sources

These distributions are gen-
erated by linearly combining
(or mixing) two non-Gaussian
sources.

I The ICA graphical model is identical to factor analysis:

xd =
K∑

k=1

Λdk zk + εd

but with zk
iid∼ Pz non-Gaussian. x1 x2 xD

z1 z2 zK• • •

• • •

I Well-posed even with K ≥ D (e.g. K = D = 2 above).
I Tractable for 0 noise (“PCA-like” case).
I Intractable in general: posterior non-Gaussian, MAP inference non-linear.
I Exact inference and learning difficult⇒ “noise” components or variational approx.

Independent Components Analysis

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

5
Mixture of Heavy Tailed Sources

−3 −2 −1 0 1 2
−3

−2

−1

0

1

2

3
Mixture of Light Tailed Sources

These distributions are gen-
erated by linearly combining
(or mixing) two non-Gaussian
sources.

I The ICA graphical model is identical to factor analysis:

xd =
K∑

k=1

Λdk zk + εd

but with zk
iid∼ Pz non-Gaussian. x1 x2 xD

z1 z2 zK• • •

• • •

I Well-posed even with K ≥ D (e.g. K = D = 2 above).

I Tractable for 0 noise (“PCA-like” case).
I Intractable in general: posterior non-Gaussian, MAP inference non-linear.
I Exact inference and learning difficult⇒ “noise” components or variational approx.

Independent Components Analysis

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

5
Mixture of Heavy Tailed Sources

−3 −2 −1 0 1 2
−3

−2

−1

0

1

2

3
Mixture of Light Tailed Sources

These distributions are gen-
erated by linearly combining
(or mixing) two non-Gaussian
sources.

I The ICA graphical model is identical to factor analysis:

xd =
K∑

k=1

Λdk zk + εd

but with zk
iid∼ Pz non-Gaussian. x1 x2 xD

z1 z2 zK• • •

• • •

I Well-posed even with K ≥ D (e.g. K = D = 2 above).
I Tractable for 0 noise (“PCA-like” case).

I Intractable in general: posterior non-Gaussian, MAP inference non-linear.
I Exact inference and learning difficult⇒ “noise” components or variational approx.

Independent Components Analysis

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

5
Mixture of Heavy Tailed Sources

−3 −2 −1 0 1 2
−3

−2

−1

0

1

2

3
Mixture of Light Tailed Sources

These distributions are gen-
erated by linearly combining
(or mixing) two non-Gaussian
sources.

I The ICA graphical model is identical to factor analysis:

xd =
K∑

k=1

Λdk zk + εd

but with zk
iid∼ Pz non-Gaussian. x1 x2 xD

z1 z2 zK• • •

• • •

I Well-posed even with K ≥ D (e.g. K = D = 2 above).
I Tractable for 0 noise (“PCA-like” case).
I Intractable in general: posterior non-Gaussian, MAP inference non-linear.

I Exact inference and learning difficult⇒ “noise” components or variational approx.

Independent Components Analysis

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

5
Mixture of Heavy Tailed Sources

−3 −2 −1 0 1 2
−3

−2

−1

0

1

2

3
Mixture of Light Tailed Sources

These distributions are gen-
erated by linearly combining
(or mixing) two non-Gaussian
sources.

I The ICA graphical model is identical to factor analysis:

xd =
K∑

k=1

Λdk zk + εd

but with zk
iid∼ Pz non-Gaussian. x1 x2 xD

z1 z2 zK• • •

• • •

I Well-posed even with K ≥ D (e.g. K = D = 2 above).
I Tractable for 0 noise (“PCA-like” case).
I Intractable in general: posterior non-Gaussian, MAP inference non-linear.
I Exact inference and learning difficult⇒ “noise” components or variational approx.

Square, Noiseless ICA

I The special case of K = D, and zero observation noise has been studied extensively
(also called infomax ICA, c.f. information view of PCA):

x = Λz ⇒ z = Wx with W = Λ−1

z are called independent components; W is the unmixing matrix.

I The likelihood can be obtained by transforming the density of z to that of x. If F : z 7→ x
is a differentiable bijection, and if dz is a small neighbourhood around z, then

Px (x)dx = Pz(z)dz = Pz(F−1(x))

∣∣∣∣ dz
dx

∣∣∣∣ dx = Pz(F−1(x))
∣∣∇F−1∣∣ dx

I This gives (for parameter W):

P(x|W) = |W |
∏

k

Pz([Wx]k︸ ︷︷ ︸
zk

)

I (A similar idea underlies the more general method of normalising flows, discussed later)

Square, Noiseless ICA

I The special case of K = D, and zero observation noise has been studied extensively
(also called infomax ICA, c.f. information view of PCA):

x = Λz ⇒ z = Wx with W = Λ−1

z are called independent components; W is the unmixing matrix.

I The likelihood can be obtained by transforming the density of z to that of x. If F : z 7→ x
is a differentiable bijection, and if dz is a small neighbourhood around z, then

Px (x)dx = Pz(z)dz = Pz(F−1(x))

∣∣∣∣ dz
dx

∣∣∣∣ dx = Pz(F−1(x))
∣∣∇F−1∣∣ dx

I This gives (for parameter W):

P(x|W) = |W |
∏

k

Pz([Wx]k︸ ︷︷ ︸
zk

)

I (A similar idea underlies the more general method of normalising flows, discussed later)

Square, Noiseless ICA

I The special case of K = D, and zero observation noise has been studied extensively
(also called infomax ICA, c.f. information view of PCA):

x = Λz ⇒ z = Wx with W = Λ−1

z are called independent components; W is the unmixing matrix.

I The likelihood can be obtained by transforming the density of z to that of x. If F : z 7→ x
is a differentiable bijection, and if dz is a small neighbourhood around z, then

Px (x)dx = Pz(z)dz = Pz(F−1(x))

∣∣∣∣ dz
dx

∣∣∣∣ dx = Pz(F−1(x))
∣∣∇F−1∣∣ dx

I This gives (for parameter W):

P(x|W) = |W |
∏

k

Pz([Wx]k︸ ︷︷ ︸
zk

)

I (A similar idea underlies the more general method of normalising flows, discussed later)

Square, Noiseless ICA

I The special case of K = D, and zero observation noise has been studied extensively
(also called infomax ICA, c.f. information view of PCA):

x = Λz ⇒ z = Wx with W = Λ−1

z are called independent components; W is the unmixing matrix.

I The likelihood can be obtained by transforming the density of z to that of x. If F : z 7→ x
is a differentiable bijection, and if dz is a small neighbourhood around z, then

Px (x)dx = Pz(z)dz = Pz(F−1(x))

∣∣∣∣ dz
dx

∣∣∣∣ dx = Pz(F−1(x))
∣∣∇F−1∣∣ dx

I This gives (for parameter W):

P(x|W) = |W |
∏

k

Pz([Wx]k︸ ︷︷ ︸
zk

)

I (A similar idea underlies the more general method of normalising flows, discussed later)

Learning in ICA

I Log likelihood of data:

log P(x) = log |W |+
∑

i

log Pz(Wi x)

I Learning by gradient ascent:

∆W ∝ ∇W log P(x) = W−T + g(z)xT g(z) =
∂ log Pz(z)

∂z

I Better approach: “natural” or covariant gradient

∆W ∝ ∇W log P(x) · (W TW)︸ ︷︷ ︸
≈ 〈−∇∇ log P〉−1

= W + g(z)zTW

(see MacKay 1996).
I Note: we can’t use EM in the square noiseless causal ICA model. Why?

Learning in ICA

I Log likelihood of data:

log P(x) = log |W |+
∑

i

log Pz(Wi x)

I Learning by gradient ascent:

∆W ∝ ∇W log P(x) = W−T + g(z)xT g(z) =
∂ log Pz(z)

∂z

I Better approach: “natural” or covariant gradient

∆W ∝ ∇W log P(x) · (W TW)︸ ︷︷ ︸
≈ 〈−∇∇ log P〉−1

= W + g(z)zTW

(see MacKay 1996).
I Note: we can’t use EM in the square noiseless causal ICA model. Why?

Learning in ICA

I Log likelihood of data:

log P(x) = log |W |+
∑

i

log Pz(Wi x)

I Learning by gradient ascent:

∆W ∝ ∇W log P(x) = W−T + g(z)xT g(z) =
∂ log Pz(z)

∂z

I Better approach: “natural” or covariant gradient

∆W ∝ ∇W log P(x) · (W TW)︸ ︷︷ ︸
≈ 〈−∇∇ log P〉−1

= W + g(z)zTW

(see MacKay 1996).

I Note: we can’t use EM in the square noiseless causal ICA model. Why?

Learning in ICA

I Log likelihood of data:

log P(x) = log |W |+
∑

i

log Pz(Wi x)

I Learning by gradient ascent:

∆W ∝ ∇W log P(x) = W−T + g(z)xT g(z) =
∂ log Pz(z)

∂z

I Better approach: “natural” or covariant gradient

∆W ∝ ∇W log P(x) · (W TW)︸ ︷︷ ︸
≈ 〈−∇∇ log P〉−1

= W + g(z)zTW

(see MacKay 1996).
I Note: we can’t use EM in the square noiseless causal ICA model. Why?

Infomax ICA
I Consider a feedforward model:

zi = Wi x; ξi = fi (zi)

with a monotonic squashing function fi (−∞) = 0, fi (+∞) = 1.

I Infomax finds filtering weights W maximizing the information carried by ξ about x:

argmax
W

I(x; ξ) = argmax
W

H(ξ)− H(ξ|x) = argmax
W

H(ξ)

Thus we just have to maximize entropy of ξ: make it as uniform as possible on [0, 1]
(note squashing function).

I But if data were generated from a square noiseless causal ICA then best we can do is if

ξi = fi (zi) = cdfi (zi) and W = Λ−1

Infomax ICA⇔ square noiseless causal ICA.
I Another view: redundancy reduction in the representation ξ of the data x.

argmax
W

H(ξ) = argmax
W

∑
i

H(ξi)− I(ξ1, . . . , ξD)

See: MacKay (1996), Pearlmutter and Parra (1996), Cardoso (1997) for equivalence, Teh et
al (2003) for an energy-based view.

Infomax ICA
I Consider a feedforward model:

zi = Wi x; ξi = fi (zi)

with a monotonic squashing function fi (−∞) = 0, fi (+∞) = 1.
I Infomax finds filtering weights W maximizing the information carried by ξ about x:

argmax
W

I(x; ξ) = argmax
W

H(ξ)− H(ξ|x) = argmax
W

H(ξ)

Thus we just have to maximize entropy of ξ: make it as uniform as possible on [0, 1]
(note squashing function).

I But if data were generated from a square noiseless causal ICA then best we can do is if

ξi = fi (zi) = cdfi (zi) and W = Λ−1

Infomax ICA⇔ square noiseless causal ICA.
I Another view: redundancy reduction in the representation ξ of the data x.

argmax
W

H(ξ) = argmax
W

∑
i

H(ξi)− I(ξ1, . . . , ξD)

See: MacKay (1996), Pearlmutter and Parra (1996), Cardoso (1997) for equivalence, Teh et
al (2003) for an energy-based view.

Infomax ICA
I Consider a feedforward model:

zi = Wi x; ξi = fi (zi)

with a monotonic squashing function fi (−∞) = 0, fi (+∞) = 1.
I Infomax finds filtering weights W maximizing the information carried by ξ about x:

argmax
W

I(x; ξ) = argmax
W

H(ξ)− H(ξ|x) = argmax
W

H(ξ)

Thus we just have to maximize entropy of ξ: make it as uniform as possible on [0, 1]
(note squashing function).

I But if data were generated from a square noiseless causal ICA then best we can do is if

ξi = fi (zi) = cdfi (zi) and W = Λ−1

Infomax ICA⇔ square noiseless causal ICA.

I Another view: redundancy reduction in the representation ξ of the data x.

argmax
W

H(ξ) = argmax
W

∑
i

H(ξi)− I(ξ1, . . . , ξD)

See: MacKay (1996), Pearlmutter and Parra (1996), Cardoso (1997) for equivalence, Teh et
al (2003) for an energy-based view.

Infomax ICA
I Consider a feedforward model:

zi = Wi x; ξi = fi (zi)

with a monotonic squashing function fi (−∞) = 0, fi (+∞) = 1.
I Infomax finds filtering weights W maximizing the information carried by ξ about x:

argmax
W

I(x; ξ) = argmax
W

H(ξ)− H(ξ|x) = argmax
W

H(ξ)

Thus we just have to maximize entropy of ξ: make it as uniform as possible on [0, 1]
(note squashing function).

I But if data were generated from a square noiseless causal ICA then best we can do is if

ξi = fi (zi) = cdfi (zi) and W = Λ−1

Infomax ICA⇔ square noiseless causal ICA.
I Another view: redundancy reduction in the representation ξ of the data x.

argmax
W

H(ξ) = argmax
W

∑
i

H(ξi)− I(ξ1, . . . , ξD)

See: MacKay (1996), Pearlmutter and Parra (1996), Cardoso (1997) for equivalence, Teh et
al (2003) for an energy-based view.

Kurtosis
The kurtosis (or excess kurtosis) measures how “peaky” or “heavy-tailed” a distribution is:

K =
E((x − µ)4)

E((x − µ)2)2
− 3, where µ = E(x) is the mean of x .

Gaussian distributions have zero kurtosis.

Heavy tailed: positive kurtosis (leptokurtic). Light tailed: negative kurtosis (platykurtic).

Linear mixtures of independent non-Gaussian sources tend to be “more” Gaussian
⇒ K → 0.

Some ICA algorithms are essentially kurtosis pursuit approaches. Possibly fewer
assumptions about generating distributions.

ICA and BSS

Applications:
I Separating auditory sources
I Analysis of EEG data
I Analysis of functional MRI data
I Natural scene analysis
I . . .

Extensions:
I Non-zero output noise – approximate posteriors and learning.
I Undercomplete (K < D) or overcomplete (K > D).
I Learning prior distributions (on z).
I Dynamical hidden models (on z).
I Learning number of sources.
I Time-varying mixing matrix.
I Nonparametric, kernel ICA.
I . . .

Blind Source Separation

?

I ICA solution to blind source separation assumes no dependence across time; still works
fine much of the time.

I Many other algorithms: DCA, SOBI, JADE, . . .

Images

Φ

W

a

a

filters

basis functions
causes

image patch, I
image
ensemble

Natural Scenes

Olshausen & Field (1996)

Nonlinear state-space models

The LGSSM: Kalman Filtering

z1 z2 z3 zT

x1 x2 x3 xT

• • • z1 ∼ N (µ0,Q0)

zt |zt−1 ∼ N (Azt−1,Q)

xt |zt ∼ N (Czt ,R)

For the SSM, the sums become integrals.

Let ẑ0
1 = µ0 and V̂ 0

1 = Q0; then (cf. FA)

P(z1|x1) = N
(
ẑ0

1 + K1(x1 − Cẑ0
i), V̂ 0

1 − K1CV̂ 0
1

)
K1 = V̂ 0

1 CT(CV̂ 0
1 CT + R)−1

In general, we define ẑτt ≡ E[zt |x1, . . . , xτ] and V̂ τt ≡ V [zt |x1, . . . , xτ]. Then,

P(zt |x1:t−1) =

∫
dzt−1P(zt |zt−1)P(zt−1|x1:t−1) = N (Aẑt−1

t−1︸ ︷︷ ︸
ẑt−1

t

, AV̂ t−1
t−1 AT + Q︸ ︷︷ ︸

V̂ t−1
t

)

P(zt |x1:t) = N (ẑt−1
t + Kt (xt − Cẑt−1

t)︸ ︷︷ ︸
ẑt

t

, V̂ t−1
t − Kt CV̂ t−1

t︸ ︷︷ ︸
V̂ t

t

)

Kt = V̂ t−1
t CT(CV̂ t−1

t CT + R)−1︸ ︷︷ ︸
Kalman gain

FA: β = (I + ΛTΨ−1Λ)−1ΛTΨ−1 mat. inv. lem.
= ΛT(ΛΛT + Ψ)−1; µ = βxn; Σ = I − βΛ.

The LGSSM: Kalman Filtering

z1 z2 z3 zT

x1 x2 x3 xT

• • • z1 ∼ N (µ0,Q0)

zt |zt−1 ∼ N (Azt−1,Q)

xt |zt ∼ N (Czt ,R)

For the SSM, the sums become integrals. Let ẑ0
1 = µ0 and V̂ 0

1 = Q0; then (cf. FA)

P(z1|x1) = N
(
ẑ0

1 + K1(x1 − Cẑ0
i), V̂ 0

1 − K1CV̂ 0
1

)

K1 = V̂ 0
1 CT(CV̂ 0

1 CT + R)−1

In general, we define ẑτt ≡ E[zt |x1, . . . , xτ] and V̂ τt ≡ V [zt |x1, . . . , xτ]. Then,

P(zt |x1:t−1) =

∫
dzt−1P(zt |zt−1)P(zt−1|x1:t−1) = N (Aẑt−1

t−1︸ ︷︷ ︸
ẑt−1

t

, AV̂ t−1
t−1 AT + Q︸ ︷︷ ︸

V̂ t−1
t

)

P(zt |x1:t) = N (ẑt−1
t + Kt (xt − Cẑt−1

t)︸ ︷︷ ︸
ẑt

t

, V̂ t−1
t − Kt CV̂ t−1

t︸ ︷︷ ︸
V̂ t

t

)

Kt = V̂ t−1
t CT(CV̂ t−1

t CT + R)−1︸ ︷︷ ︸
Kalman gain

FA: β = (I + ΛTΨ−1Λ)−1ΛTΨ−1 mat. inv. lem.
= ΛT(ΛΛT + Ψ)−1; µ = βxn; Σ = I − βΛ.

The LGSSM: Kalman Filtering

z1 z2 z3 zT

x1 x2 x3 xT

• • • z1 ∼ N (µ0,Q0)

zt |zt−1 ∼ N (Azt−1,Q)

xt |zt ∼ N (Czt ,R)

For the SSM, the sums become integrals. Let ẑ0
1 = µ0 and V̂ 0

1 = Q0; then (cf. FA)

P(z1|x1) = N
(
ẑ0

1 + K1(x1 − Cẑ0
i), V̂ 0

1 − K1CV̂ 0
1

)
K1 = V̂ 0

1 CT(CV̂ 0
1 CT + R)−1

In general, we define ẑτt ≡ E[zt |x1, . . . , xτ] and V̂ τt ≡ V [zt |x1, . . . , xτ]. Then,

P(zt |x1:t−1) =

∫
dzt−1P(zt |zt−1)P(zt−1|x1:t−1) = N (Aẑt−1

t−1︸ ︷︷ ︸
ẑt−1

t

, AV̂ t−1
t−1 AT + Q︸ ︷︷ ︸

V̂ t−1
t

)

P(zt |x1:t) = N (ẑt−1
t + Kt (xt − Cẑt−1

t)︸ ︷︷ ︸
ẑt

t

, V̂ t−1
t − Kt CV̂ t−1

t︸ ︷︷ ︸
V̂ t

t

)

Kt = V̂ t−1
t CT(CV̂ t−1

t CT + R)−1︸ ︷︷ ︸
Kalman gain

FA: β = (I + ΛTΨ−1Λ)−1ΛTΨ−1 mat. inv. lem.
= ΛT(ΛΛT + Ψ)−1; µ = βxn; Σ = I − βΛ.

The LGSSM: Kalman Filtering

z1 z2 z3 zT

x1 x2 x3 xT

• • • z1 ∼ N (µ0,Q0)

zt |zt−1 ∼ N (Azt−1,Q)

xt |zt ∼ N (Czt ,R)

For the SSM, the sums become integrals. Let ẑ0
1 = µ0 and V̂ 0

1 = Q0; then (cf. FA)

P(z1|x1) = N
(
ẑ0

1 + K1(x1 − Cẑ0
i)︸ ︷︷ ︸

ẑ1
1

, V̂ 0
1 − K1CV̂ 0

1︸ ︷︷ ︸
V̂ 1

1

)
K1 = V̂ 0

1 CT(CV̂ 0
1 CT + R)−1

In general, we define ẑτt ≡ E[zt |x1, . . . , xτ] and V̂ τt ≡ V [zt |x1, . . . , xτ]. Then,

P(zt |x1:t−1) =

∫
dzt−1P(zt |zt−1)P(zt−1|x1:t−1) = N (Aẑt−1

t−1︸ ︷︷ ︸
ẑt−1

t

, AV̂ t−1
t−1 AT + Q︸ ︷︷ ︸

V̂ t−1
t

)

P(zt |x1:t) = N (ẑt−1
t + Kt (xt − Cẑt−1

t)︸ ︷︷ ︸
ẑt

t

, V̂ t−1
t − Kt CV̂ t−1

t︸ ︷︷ ︸
V̂ t

t

)

Kt = V̂ t−1
t CT(CV̂ t−1

t CT + R)−1︸ ︷︷ ︸
Kalman gain

FA: β = (I + ΛTΨ−1Λ)−1ΛTΨ−1 mat. inv. lem.
= ΛT(ΛΛT + Ψ)−1; µ = βxn; Σ = I − βΛ.

The LGSSM: Kalman Filtering

z1 z2 z3 zT

x1 x2 x3 xT

• • • z1 ∼ N (µ0,Q0)

zt |zt−1 ∼ N (Azt−1,Q)

xt |zt ∼ N (Czt ,R)

For the SSM, the sums become integrals. Let ẑ0
1 = µ0 and V̂ 0

1 = Q0; then (cf. FA)

P(z1|x1) = N
(
ẑ0

1 + K1(x1 − Cẑ0
i)︸ ︷︷ ︸

ẑ1
1

, V̂ 0
1 − K1CV̂ 0

1︸ ︷︷ ︸
V̂ 1

1

)
K1 = V̂ 0

1 CT(CV̂ 0
1 CT + R)−1

In general, we define ẑτt ≡ E[zt |x1, . . . , xτ] and V̂ τt ≡ V [zt |x1, . . . , xτ].

Then,

P(zt |x1:t−1) =

∫
dzt−1P(zt |zt−1)P(zt−1|x1:t−1) = N (Aẑt−1

t−1︸ ︷︷ ︸
ẑt−1

t

, AV̂ t−1
t−1 AT + Q︸ ︷︷ ︸

V̂ t−1
t

)

P(zt |x1:t) = N (ẑt−1
t + Kt (xt − Cẑt−1

t)︸ ︷︷ ︸
ẑt

t

, V̂ t−1
t − Kt CV̂ t−1

t︸ ︷︷ ︸
V̂ t

t

)

Kt = V̂ t−1
t CT(CV̂ t−1

t CT + R)−1︸ ︷︷ ︸
Kalman gain

FA: β = (I + ΛTΨ−1Λ)−1ΛTΨ−1 mat. inv. lem.
= ΛT(ΛΛT + Ψ)−1; µ = βxn; Σ = I − βΛ.

The LGSSM: Kalman Filtering

z1 z2 z3 zT

x1 x2 x3 xT

• • • z1 ∼ N (µ0,Q0)

zt |zt−1 ∼ N (Azt−1,Q)

xt |zt ∼ N (Czt ,R)

For the SSM, the sums become integrals. Let ẑ0
1 = µ0 and V̂ 0

1 = Q0; then (cf. FA)

P(z1|x1) = N
(
ẑ0

1 + K1(x1 − Cẑ0
i)︸ ︷︷ ︸

ẑ1
1

, V̂ 0
1 − K1CV̂ 0

1︸ ︷︷ ︸
V̂ 1

1

)
K1 = V̂ 0

1 CT(CV̂ 0
1 CT + R)−1

In general, we define ẑτt ≡ E[zt |x1, . . . , xτ] and V̂ τt ≡ V [zt |x1, . . . , xτ]. Then,

P(zt |x1:t−1) =

∫
dzt−1P(zt |zt−1)P(zt−1|x1:t−1)

= N (Aẑt−1
t−1︸ ︷︷ ︸

ẑt−1
t

, AV̂ t−1
t−1 AT + Q︸ ︷︷ ︸

V̂ t−1
t

)

P(zt |x1:t) = N (ẑt−1
t + Kt (xt − Cẑt−1

t)︸ ︷︷ ︸
ẑt

t

, V̂ t−1
t − Kt CV̂ t−1

t︸ ︷︷ ︸
V̂ t

t

)

Kt = V̂ t−1
t CT(CV̂ t−1

t CT + R)−1︸ ︷︷ ︸
Kalman gain

FA: β = (I + ΛTΨ−1Λ)−1ΛTΨ−1 mat. inv. lem.
= ΛT(ΛΛT + Ψ)−1; µ = βxn; Σ = I − βΛ.

The LGSSM: Kalman Filtering

z1 z2 z3 zT

x1 x2 x3 xT

• • • z1 ∼ N (µ0,Q0)

zt |zt−1 ∼ N (Azt−1,Q)

xt |zt ∼ N (Czt ,R)

For the SSM, the sums become integrals. Let ẑ0
1 = µ0 and V̂ 0

1 = Q0; then (cf. FA)

P(z1|x1) = N
(
ẑ0

1 + K1(x1 − Cẑ0
i)︸ ︷︷ ︸

ẑ1
1

, V̂ 0
1 − K1CV̂ 0

1︸ ︷︷ ︸
V̂ 1

1

)
K1 = V̂ 0

1 CT(CV̂ 0
1 CT + R)−1

In general, we define ẑτt ≡ E[zt |x1, . . . , xτ] and V̂ τt ≡ V [zt |x1, . . . , xτ]. Then,

P(zt |x1:t−1) =

∫
dzt−1P(zt |zt−1)P(zt−1|x1:t−1) = N (Aẑt−1

t−1︸ ︷︷ ︸
ẑt−1

t

, AV̂ t−1
t−1 AT + Q︸ ︷︷ ︸

V̂ t−1
t

)

P(zt |x1:t) = N (ẑt−1
t + Kt (xt − Cẑt−1

t)︸ ︷︷ ︸
ẑt

t

, V̂ t−1
t − Kt CV̂ t−1

t︸ ︷︷ ︸
V̂ t

t

)

Kt = V̂ t−1
t CT(CV̂ t−1

t CT + R)−1︸ ︷︷ ︸
Kalman gain

FA: β = (I + ΛTΨ−1Λ)−1ΛTΨ−1 mat. inv. lem.
= ΛT(ΛΛT + Ψ)−1; µ = βxn; Σ = I − βΛ.

The LGSSM: Kalman Filtering

z1 z2 z3 zT

x1 x2 x3 xT

• • • z1 ∼ N (µ0,Q0)

zt |zt−1 ∼ N (Azt−1,Q)

xt |zt ∼ N (Czt ,R)

For the SSM, the sums become integrals. Let ẑ0
1 = µ0 and V̂ 0

1 = Q0; then (cf. FA)

P(z1|x1) = N
(
ẑ0

1 + K1(x1 − Cẑ0
i)︸ ︷︷ ︸

ẑ1
1

, V̂ 0
1 − K1CV̂ 0

1︸ ︷︷ ︸
V̂ 1

1

)
K1 = V̂ 0

1 CT(CV̂ 0
1 CT + R)−1

In general, we define ẑτt ≡ E[zt |x1, . . . , xτ] and V̂ τt ≡ V [zt |x1, . . . , xτ]. Then,

P(zt |x1:t−1) =

∫
dzt−1P(zt |zt−1)P(zt−1|x1:t−1) = N (Aẑt−1

t−1︸ ︷︷ ︸
ẑt−1

t

, AV̂ t−1
t−1 AT + Q︸ ︷︷ ︸

V̂ t−1
t

)

P(zt |x1:t) = N (ẑt−1
t + Kt (xt − Cẑt−1

t)︸ ︷︷ ︸
ẑt

t

, V̂ t−1
t − Kt CV̂ t−1

t︸ ︷︷ ︸
V̂ t

t

)

Kt = V̂ t−1
t CT(CV̂ t−1

t CT + R)−1︸ ︷︷ ︸
Kalman gain

FA: β = (I + ΛTΨ−1Λ)−1ΛTΨ−1 mat. inv. lem.
= ΛT(ΛΛT + Ψ)−1; µ = βxn; Σ = I − βΛ.

The LGSSM: Kalman Filtering

z1 z2 z3 zT

x1 x2 x3 xT

• • • z1 ∼ N (µ0,Q0)

zt |zt−1 ∼ N (Azt−1,Q)

xt |zt ∼ N (Czt ,R)

For the SSM, the sums become integrals. Let ẑ0
1 = µ0 and V̂ 0

1 = Q0; then (cf. FA)

P(z1|x1) = N
(
ẑ0

1 + K1(x1 − Cẑ0
i)︸ ︷︷ ︸

ẑ1
1

, V̂ 0
1 − K1CV̂ 0

1︸ ︷︷ ︸
V̂ 1

1

)
K1 = V̂ 0

1 CT(CV̂ 0
1 CT + R)−1

In general, we define ẑτt ≡ E[zt |x1, . . . , xτ] and V̂ τt ≡ V [zt |x1, . . . , xτ]. Then,

P(zt |x1:t−1) =

∫
dzt−1P(zt |zt−1)P(zt−1|x1:t−1) = N (Aẑt−1

t−1︸ ︷︷ ︸
ẑt−1

t

, AV̂ t−1
t−1 AT + Q︸ ︷︷ ︸

V̂ t−1
t

)

P(zt |x1:t) = N (ẑt−1
t + Kt (xt − Cẑt−1

t)︸ ︷︷ ︸
ẑt

t

, V̂ t−1
t − Kt CV̂ t−1

t︸ ︷︷ ︸
V̂ t

t

)

Kt =

〈zxT〉︷ ︸︸ ︷
V̂ t−1

t CT(

〈xxT〉︷ ︸︸ ︷
CV̂ t−1

t CT + R)−1︸ ︷︷ ︸
Kalman gain

FA: β = (I + ΛTΨ−1Λ)−1ΛTΨ−1 mat. inv. lem.
= ΛT(ΛΛT + Ψ)−1; µ = βxn; Σ = I − βΛ.

The LGSSM: Kalman Filtering

z1 z2 z3 zT

x1 x2 x3 xT

• • • z1 ∼ N (µ0,Q0)

zt |zt−1 ∼ N (Azt−1,Q)

xt |zt ∼ N (Czt ,R)

For the SSM, the sums become integrals. Let ẑ0
1 = µ0 and V̂ 0

1 = Q0; then (cf. FA)

P(z1|x1) = N
(
ẑ0

1 + K1(x1 − Cẑ0
i)︸ ︷︷ ︸

ẑ1
1

, V̂ 0
1 − K1CV̂ 0

1︸ ︷︷ ︸
V̂ 1

1

)
K1 = V̂ 0

1 CT(CV̂ 0
1 CT + R)−1

In general, we define ẑτt ≡ E[zt |x1, . . . , xτ] and V̂ τt ≡ V [zt |x1, . . . , xτ]. Then,

P(zt |x1:t−1) =

∫
dzt−1P(zt |zt−1)P(zt−1|x1:t−1) = N (Aẑt−1

t−1︸ ︷︷ ︸
ẑt−1

t

, AV̂ t−1
t−1 AT + Q︸ ︷︷ ︸

V̂ t−1
t

)

P(zt |x1:t) = N (ẑt−1
t + Kt (xt − Cẑt−1

t)︸ ︷︷ ︸
ẑt

t

, V̂ t−1
t − Kt CV̂ t−1

t︸ ︷︷ ︸
V̂ t

t

)

Kt =

〈zxT〉︷ ︸︸ ︷
V̂ t−1

t CT(

〈xxT〉︷ ︸︸ ︷
CV̂ t−1

t CT + R)−1︸ ︷︷ ︸
Kalman gain

FA: β = (I + ΛTΨ−1Λ)−1ΛTΨ−1 mat. inv. lem.
= ΛT(ΛΛT + Ψ)−1; µ = βxn; Σ = I − βΛ.

The LGSSM: Kalman smoothing

z1 z2 z3 zT

x1 x2 x3 xT

• • •

We use a slightly different decomposition:

P(zt |x1:T) =

∫
P(zt , zt+1|x1:T) dzt+1

=

∫
P(zt |zt+1, x1:T)P(zt+1|x1:T) dzt+1

=
Markov property

∫
P(zt |zt+1, x1:t)P(zt+1|x1:T) dzt+1

This gives the additional backward recursion:

Jt = V̂ t
t AT(V̂ t

t+1)−1

ẑT
t = ẑt

t + Jt (ẑT
t+1 − Aẑt

t)

V̂ T
t = V̂ t

t + Jt (V̂ T
t+1 − V̂ t

t+1)Jt
T

Nonlinear state-space model (NLSSM)

z1 z2 z3 zT

x1 x2 x3 xT

u1 u2 u3 uT

• • •f f f f

g g g g

D̃t D̃t D̃t D̃t

zt+1 = f (zt , ut) + wt

xt = g(zt , ut) + vt

wt , vt usually still Gaussian.

Extended Kalman Filter (EKF): linearise nonlinear functions about current estimate, ẑt
t :

zt+1 ≈ f (ẑt
t , ut) +

∂f
∂zt

∣∣∣∣
ẑt

t

(zt − ẑt
t) + wt

xt ≈ g(ẑt−1
t , ut) +

∂g
∂zt

∣∣∣∣
ẑt−1

t

(zt − ẑt−1
t) + vt

zt

f (zt)

ẑt
t

Run the Kalman filter (smoother) on non-stationary linearised system (Ãt , B̃t , C̃t , D̃t):

I Adaptively approximates non-Gaussian messages by Gaussians.
I Local linearisation depends on central point of distribution⇒ approximation degrades

with increased state uncertainty.

May work acceptably for close-to-linear systems.

Can base EM-like algorithm on EKF/EKS (or alternatives).

Nonlinear state-space model (NLSSM)

z1 z2 z3 zT

x1 x2 x3 xT

u1 u2 u3 uT

• • •f f f f

g g g g

D̃t D̃t D̃t D̃t

zt+1 = f (zt , ut) + wt

xt = g(zt , ut) + vt

wt , vt usually still Gaussian.

Extended Kalman Filter (EKF): linearise nonlinear functions about current estimate, ẑt
t :

zt+1 ≈ f (ẑt
t , ut) +

∂f
∂zt

∣∣∣∣
ẑt

t

(zt − ẑt
t) + wt

xt ≈ g(ẑt−1
t , ut) +

∂g
∂zt

∣∣∣∣
ẑt−1

t

(zt − ẑt−1
t) + vt

zt

f (zt)

ẑt
t

Run the Kalman filter (smoother) on non-stationary linearised system (Ãt , B̃t , C̃t , D̃t):

I Adaptively approximates non-Gaussian messages by Gaussians.
I Local linearisation depends on central point of distribution⇒ approximation degrades

with increased state uncertainty.

May work acceptably for close-to-linear systems.

Can base EM-like algorithm on EKF/EKS (or alternatives).

Nonlinear state-space model (NLSSM)

y1 y2 y3 yT

x1 x2 x3 xT

u1 u2 u3 uT

• • •
Ãt Ãt Ãt Ãt

C̃t C̃t C̃t C̃t

B̃t B̃t B̃t B̃t

D̃t D̃t D̃t D̃t

zt+1 = f (zt , ut) + wt

xt = g(zt , ut) + vt

wt , vt usually still Gaussian.

Extended Kalman Filter (EKF): linearise nonlinear functions about current estimate, ẑt
t :

zt+1 ≈ f (ẑt
t , ut)︸ ︷︷ ︸

B̃t ut

+
∂f
∂zt

∣∣∣∣
ẑt

t︸ ︷︷ ︸
Ãt

(zt − ẑt
t) + wt

xt ≈ g(ẑt−1
t , ut)︸ ︷︷ ︸
D̃t ut

+
∂g
∂zt

∣∣∣∣
ẑt−1

t︸ ︷︷ ︸
C̃t

(zt − ẑt−1
t) + vt

zt

f (zt)

ẑt
t

Run the Kalman filter (smoother) on non-stationary linearised system (Ãt , B̃t , C̃t , D̃t):

I Adaptively approximates non-Gaussian messages by Gaussians.
I Local linearisation depends on central point of distribution⇒ approximation degrades

with increased state uncertainty.

May work acceptably for close-to-linear systems.

Can base EM-like algorithm on EKF/EKS (or alternatives).

Nonlinear state-space model (NLSSM)

y1 y2 y3 yT

x1 x2 x3 xT

u1 u2 u3 uT

• • •
Ãt Ãt Ãt Ãt

C̃t C̃t C̃t C̃t

B̃t B̃t B̃t B̃t

D̃t D̃t D̃t D̃t

zt+1 = f (zt , ut) + wt

xt = g(zt , ut) + vt

wt , vt usually still Gaussian.

Extended Kalman Filter (EKF): linearise nonlinear functions about current estimate, ẑt
t :

zt+1 ≈ f (ẑt
t , ut)︸ ︷︷ ︸

B̃t ut

+
∂f
∂zt

∣∣∣∣
ẑt

t︸ ︷︷ ︸
Ãt

(zt − ẑt
t) + wt

xt ≈ g(ẑt−1
t , ut)︸ ︷︷ ︸
D̃t ut

+
∂g
∂zt

∣∣∣∣
ẑt−1

t︸ ︷︷ ︸
C̃t

(zt − ẑt−1
t) + vt

zt

f (zt)

ẑt
t

Run the Kalman filter (smoother) on non-stationary linearised system (Ãt , B̃t , C̃t , D̃t):
I Adaptively approximates non-Gaussian messages by Gaussians.

I Local linearisation depends on central point of distribution⇒ approximation degrades
with increased state uncertainty.

May work acceptably for close-to-linear systems.

Can base EM-like algorithm on EKF/EKS (or alternatives).

Nonlinear state-space model (NLSSM)

y1 y2 y3 yT

x1 x2 x3 xT

u1 u2 u3 uT

• • •
Ãt Ãt Ãt Ãt

C̃t C̃t C̃t C̃t

B̃t B̃t B̃t B̃t

D̃t D̃t D̃t D̃t

zt+1 = f (zt , ut) + wt

xt = g(zt , ut) + vt

wt , vt usually still Gaussian.

Extended Kalman Filter (EKF): linearise nonlinear functions about current estimate, ẑt
t :

zt+1 ≈ f (ẑt
t , ut)︸ ︷︷ ︸

B̃t ut

+
∂f
∂zt

∣∣∣∣
ẑt

t︸ ︷︷ ︸
Ãt

(zt − ẑt
t) + wt

xt ≈ g(ẑt−1
t , ut)︸ ︷︷ ︸
D̃t ut

+
∂g
∂zt

∣∣∣∣
ẑt−1

t︸ ︷︷ ︸
C̃t

(zt − ẑt−1
t) + vt

zt

f (zt)

ẑt
t

Run the Kalman filter (smoother) on non-stationary linearised system (Ãt , B̃t , C̃t , D̃t):
I Adaptively approximates non-Gaussian messages by Gaussians.
I Local linearisation depends on central point of distribution⇒ approximation degrades

with increased state uncertainty.

May work acceptably for close-to-linear systems.
Can base EM-like algorithm on EKF/EKS (or alternatives).

Nonlinear state-space model (NLSSM)

y1 y2 y3 yT

x1 x2 x3 xT

u1 u2 u3 uT

• • •
Ãt Ãt Ãt Ãt

C̃t C̃t C̃t C̃t

B̃t B̃t B̃t B̃t

D̃t D̃t D̃t D̃t

zt+1 = f (zt , ut) + wt

xt = g(zt , ut) + vt

wt , vt usually still Gaussian.

Extended Kalman Filter (EKF): linearise nonlinear functions about current estimate, ẑt
t :

zt+1 ≈ f (ẑt
t , ut)︸ ︷︷ ︸

B̃t ut

+
∂f
∂zt

∣∣∣∣
ẑt

t︸ ︷︷ ︸
Ãt

(zt − ẑt
t) + wt

xt ≈ g(ẑt−1
t , ut)︸ ︷︷ ︸
D̃t ut

+
∂g
∂zt

∣∣∣∣
ẑt−1

t︸ ︷︷ ︸
C̃t

(zt − ẑt−1
t) + vt

zt

f (zt)

ẑt
t

Run the Kalman filter (smoother) on non-stationary linearised system (Ãt , B̃t , C̃t , D̃t):
I Adaptively approximates non-Gaussian messages by Gaussians.
I Local linearisation depends on central point of distribution⇒ approximation degrades

with increased state uncertainty. May work acceptably for close-to-linear systems.

Can base EM-like algorithm on EKF/EKS (or alternatives).

Nonlinear state-space model (NLSSM)

y1 y2 y3 yT

x1 x2 x3 xT

u1 u2 u3 uT

• • •
Ãt Ãt Ãt Ãt

C̃t C̃t C̃t C̃t

B̃t B̃t B̃t B̃t

D̃t D̃t D̃t D̃t

zt+1 = f (zt , ut) + wt

xt = g(zt , ut) + vt

wt , vt usually still Gaussian.

Extended Kalman Filter (EKF): linearise nonlinear functions about current estimate, ẑt
t :

zt+1 ≈ f (ẑt
t , ut)︸ ︷︷ ︸

B̃t ut

+
∂f
∂zt

∣∣∣∣
ẑt

t︸ ︷︷ ︸
Ãt

(zt − ẑt
t) + wt

xt ≈ g(ẑt−1
t , ut)︸ ︷︷ ︸
D̃t ut

+
∂g
∂zt

∣∣∣∣
ẑt−1

t︸ ︷︷ ︸
C̃t

(zt − ẑt−1
t) + vt

zt

f (zt)

ẑt
t

Run the Kalman filter (smoother) on non-stationary linearised system (Ãt , B̃t , C̃t , D̃t):
I Adaptively approximates non-Gaussian messages by Gaussians.
I Local linearisation depends on central point of distribution⇒ approximation degrades

with increased state uncertainty. May work acceptably for close-to-linear systems.
Can base EM-like algorithm on EKF/EKS (or alternatives).

Learning (online EKF)
Nonlinear message passing can also be used to implement online parameter learning in
(non)linear latent state-space systems:

Eg: for linear model, augment state vector to include the model parameters :
=
zt =

zt

A
C

,

and introduce nonlinear transition
=

f and output map
=
g:

=
zt+1 =

=

f (
=
zt) +

=
wt

=

f

zt

A
C

 =

Azt

A
C

 ;
=
wt =

wt

0
0

xt =

=
g(

=
zt) + vt

=
g

zt

A
C

 = Czt

(where A and C need to be vectorised and de-vectorised as appropriate).
Use EKF to compute online estimates of E[

=
zt |x1, . . . , xt] and Cov[

=
zt |x1, . . . , xt]. These now

include mean and posterior variance of parameter estimates.

I Pseudo-Bayesian approach: gives Gaussian distributions over parameters.
I Can model nonstationarity by assuming non-zero innovations noise in A,C.
I Not simple to implement for Q and R (e.g. covariance constraints?).
I May be faster than EM/gradient approaches.

Sometimes called the joint-EKF approach.

Learning (online EKF)
Nonlinear message passing can also be used to implement online parameter learning in
(non)linear latent state-space systems:

Eg: for linear model, augment state vector to include the model parameters :
=
zt =

zt

A
C

,

and introduce nonlinear transition
=

f and output map
=
g:

=
zt+1 =

=

f (
=
zt) +

=
wt

=

f

zt

A
C

 =

Azt

A
C

 ;
=
wt =

wt

0
0

xt =

=
g(

=
zt) + vt

=
g

zt

A
C

 = Czt

(where A and C need to be vectorised and de-vectorised as appropriate).

Use EKF to compute online estimates of E[
=
zt |x1, . . . , xt] and Cov[

=
zt |x1, . . . , xt]. These now

include mean and posterior variance of parameter estimates.

I Pseudo-Bayesian approach: gives Gaussian distributions over parameters.
I Can model nonstationarity by assuming non-zero innovations noise in A,C.
I Not simple to implement for Q and R (e.g. covariance constraints?).
I May be faster than EM/gradient approaches.

Sometimes called the joint-EKF approach.

Learning (online EKF)
Nonlinear message passing can also be used to implement online parameter learning in
(non)linear latent state-space systems:

Eg: for linear model, augment state vector to include the model parameters :
=
zt =

zt

A
C

,

and introduce nonlinear transition
=

f and output map
=
g:

=
zt+1 =

=

f (
=
zt) +

=
wt

=

f

zt

A
C

 =

Azt

A
C

 ;
=
wt =

wt

0
0

xt =

=
g(

=
zt) + vt

=
g

zt

A
C

 = Czt

(where A and C need to be vectorised and de-vectorised as appropriate).
Use EKF to compute online estimates of E[

=
zt |x1, . . . , xt] and Cov[

=
zt |x1, . . . , xt]. These now

include mean and posterior variance of parameter estimates.

I Pseudo-Bayesian approach: gives Gaussian distributions over parameters.
I Can model nonstationarity by assuming non-zero innovations noise in A,C.
I Not simple to implement for Q and R (e.g. covariance constraints?).
I May be faster than EM/gradient approaches.

Sometimes called the joint-EKF approach.

Learning (online EKF)
Nonlinear message passing can also be used to implement online parameter learning in
(non)linear latent state-space systems:

Eg: for linear model, augment state vector to include the model parameters :
=
zt =

zt

A
C

,

and introduce nonlinear transition
=

f and output map
=
g:

=
zt+1 =

=

f (
=
zt) +

=
wt

=

f

zt

A
C

 =

Azt

A
C

 ;
=
wt =

wt

0
0

xt =

=
g(

=
zt) + vt

=
g

zt

A
C

 = Czt

(where A and C need to be vectorised and de-vectorised as appropriate).
Use EKF to compute online estimates of E[

=
zt |x1, . . . , xt] and Cov[

=
zt |x1, . . . , xt]. These now

include mean and posterior variance of parameter estimates.

I Pseudo-Bayesian approach: gives Gaussian distributions over parameters.

I Can model nonstationarity by assuming non-zero innovations noise in A,C.
I Not simple to implement for Q and R (e.g. covariance constraints?).
I May be faster than EM/gradient approaches.

Sometimes called the joint-EKF approach.

Learning (online EKF)
Nonlinear message passing can also be used to implement online parameter learning in
(non)linear latent state-space systems:

Eg: for linear model, augment state vector to include the model parameters :
=
zt =

zt

A
C

,

and introduce nonlinear transition
=

f and output map
=
g:

=
zt+1 =

=

f (
=
zt) +

=
wt

=

f

zt

A
C

 =

Azt

A
C

 ;
=
wt =

wt

0
0

xt =

=
g(

=
zt) + vt

=
g

zt

A
C

 = Czt

(where A and C need to be vectorised and de-vectorised as appropriate).
Use EKF to compute online estimates of E[

=
zt |x1, . . . , xt] and Cov[

=
zt |x1, . . . , xt]. These now

include mean and posterior variance of parameter estimates.

I Pseudo-Bayesian approach: gives Gaussian distributions over parameters.
I Can model nonstationarity by assuming non-zero innovations noise in A,C.

I Not simple to implement for Q and R (e.g. covariance constraints?).
I May be faster than EM/gradient approaches.

Sometimes called the joint-EKF approach.

Learning (online EKF)
Nonlinear message passing can also be used to implement online parameter learning in
(non)linear latent state-space systems:

Eg: for linear model, augment state vector to include the model parameters :
=
zt =

zt

A
C

,

and introduce nonlinear transition
=

f and output map
=
g:

=
zt+1 =

=

f (
=
zt) +

=
wt

=

f

zt

A
C

 =

Azt

A
C

 ;
=
wt =

wt

0
0

xt =

=
g(

=
zt) + vt

=
g

zt

A
C

 = Czt

(where A and C need to be vectorised and de-vectorised as appropriate).
Use EKF to compute online estimates of E[

=
zt |x1, . . . , xt] and Cov[

=
zt |x1, . . . , xt]. These now

include mean and posterior variance of parameter estimates.

I Pseudo-Bayesian approach: gives Gaussian distributions over parameters.
I Can model nonstationarity by assuming non-zero innovations noise in A,C.
I Not simple to implement for Q and R (e.g. covariance constraints?).

I May be faster than EM/gradient approaches.

Sometimes called the joint-EKF approach.

Learning (online EKF)
Nonlinear message passing can also be used to implement online parameter learning in
(non)linear latent state-space systems:

Eg: for linear model, augment state vector to include the model parameters :
=
zt =

zt

A
C

,

and introduce nonlinear transition
=

f and output map
=
g:

=
zt+1 =

=

f (
=
zt) +

=
wt

=

f

zt

A
C

 =

Azt

A
C

 ;
=
wt =

wt

0
0

xt =

=
g(

=
zt) + vt

=
g

zt

A
C

 = Czt

(where A and C need to be vectorised and de-vectorised as appropriate).
Use EKF to compute online estimates of E[

=
zt |x1, . . . , xt] and Cov[

=
zt |x1, . . . , xt]. These now

include mean and posterior variance of parameter estimates.

I Pseudo-Bayesian approach: gives Gaussian distributions over parameters.
I Can model nonstationarity by assuming non-zero innovations noise in A,C.
I Not simple to implement for Q and R (e.g. covariance constraints?).
I May be faster than EM/gradient approaches.

Sometimes called the joint-EKF approach.

Learning (online EKF)
Nonlinear message passing can also be used to implement online parameter learning in
(non)linear latent state-space systems:

Eg: for linear model, augment state vector to include the model parameters :
=
zt =

zt

A
C

,

and introduce nonlinear transition
=

f and output map
=
g:

=
zt+1 =

=

f (
=
zt) +

=
wt

=

f

zt

A
C

 =

Azt

A
C

 ;
=
wt =

wt

0
0

xt =

=
g(

=
zt) + vt

=
g

zt

A
C

 = Czt

(where A and C need to be vectorised and de-vectorised as appropriate).
Use EKF to compute online estimates of E[

=
zt |x1, . . . , xt] and Cov[

=
zt |x1, . . . , xt]. These now

include mean and posterior variance of parameter estimates.

I Pseudo-Bayesian approach: gives Gaussian distributions over parameters.
I Can model nonstationarity by assuming non-zero innovations noise in A,C.
I Not simple to implement for Q and R (e.g. covariance constraints?).
I May be faster than EM/gradient approaches.

Sometimes called the joint-EKF approach.

Binary models: Boltzmann Machines and Sigmoid Belief Nets

Boltzmann Machines

Undirected graphical model (i.e. a Markov network) over a
vector of binary variables si ∈ {0, 1}. Some variables may
be hidden, some may be visible (observed).

P(s|W , b) =
1
Z

exp

{∑
ij

Wij si sj −
∑

i

bi si

}

where Z is the normalization constant (partition function).

A jointly exponential-family model, with intractable normaliser.

I Inference requires expectations of hidden nodes sH :〈
sH
〉

P(sH |sV ,W ,b)

〈
sHsH T

〉
P(sH |sV ,W ,b)

I Usually requires approximate methods: sampling or loopy BP.
I Intractable normaliser also complicates M-step⇒ doubly intractable.

Boltzmann Machines

Undirected graphical model (i.e. a Markov network) over a
vector of binary variables si ∈ {0, 1}. Some variables may
be hidden, some may be visible (observed).

P(s|W , b) =
1
Z

exp

{∑
ij

Wij si sj −
∑

i

bi si

}

where Z is the normalization constant (partition function).

A jointly exponential-family model, with intractable normaliser.

I Inference requires expectations of hidden nodes sH :〈
sH
〉

P(sH |sV ,W ,b)

〈
sHsH T

〉
P(sH |sV ,W ,b)

I Usually requires approximate methods: sampling or loopy BP.
I Intractable normaliser also complicates M-step⇒ doubly intractable.

Learning in Boltzmann Machines

log P(sV sH |W , b) =
∑

ij

Wij si sj −
∑

i

bi si − log Z

with Z =
∑

s e
∑

ij Wij si sj−
∑

i bi si

Generalised (gradient M-step) EM requires parameter step

∆Wij ∝
∂

∂Wij

〈
log P(sV sH |W , b)

〉
P(sH |sV)

Write 〈〉c (clamped) for expectations under P(s|sV
obs) (with P(sV |sV

obs) =
∏
δsv

i ,s
V
i,obs

). Then

[∇W log P(sV , sH)]ij =

∂

∂Wij

[∑
ij Wij〈si sj〉c −

∑
i bi〈si〉c − log Z

]
= 〈si sj〉c −

∂

∂Wij
log Z

= 〈si sj〉c −
1
Z

∂

∂Wij

∑
s

e
∑

ij Wij si sj−
∑

i bi si

= 〈si sj〉c −
∑

s

1
Z

e
∑

ij Wij si sj−
∑

i bi si si sj

= 〈si sj〉c −
∑

s

P(s|W , b)si sj = 〈si sj〉c − 〈si sj〉u

with 〈〉u (unclamped) expectation under the current joint. ⇒ ExpFam moment matching, but
requires simulation and gradient ascent.

Learning in Boltzmann Machines

log P(sV sH |W , b) =
∑

ij

Wij si sj −
∑

i

bi si − log Z

with Z =
∑

s e
∑

ij Wij si sj−
∑

i bi si

Generalised (gradient M-step) EM requires parameter step

∆Wij ∝
∂

∂Wij

〈
log P(sV sH |W , b)

〉
P(sH |sV)

Write 〈〉c (clamped) for expectations under P(s|sV
obs) (with P(sV |sV

obs) =
∏
δsv

i ,s
V
i,obs

). Then

[∇W log P(sV , sH)]ij =
∂

∂Wij

[∑
ij Wij〈si sj〉c −

∑
i bi〈si〉c − log Z

]

= 〈si sj〉c −
∂

∂Wij
log Z

= 〈si sj〉c −
1
Z

∂

∂Wij

∑
s

e
∑

ij Wij si sj−
∑

i bi si

= 〈si sj〉c −
∑

s

1
Z

e
∑

ij Wij si sj−
∑

i bi si si sj

= 〈si sj〉c −
∑

s

P(s|W , b)si sj = 〈si sj〉c − 〈si sj〉u

with 〈〉u (unclamped) expectation under the current joint. ⇒ ExpFam moment matching, but
requires simulation and gradient ascent.

Learning in Boltzmann Machines

log P(sV sH |W , b) =
∑

ij

Wij si sj −
∑

i

bi si − log Z

with Z =
∑

s e
∑

ij Wij si sj−
∑

i bi si

Generalised (gradient M-step) EM requires parameter step

∆Wij ∝
∂

∂Wij

〈
log P(sV sH |W , b)

〉
P(sH |sV)

Write 〈〉c (clamped) for expectations under P(s|sV
obs) (with P(sV |sV

obs) =
∏
δsv

i ,s
V
i,obs

). Then

[∇W log P(sV , sH)]ij =
∂

∂Wij

[∑
ij Wij〈si sj〉c −

∑
i bi〈si〉c − log Z

]
= 〈si sj〉c −

∂

∂Wij
log Z

= 〈si sj〉c −
1
Z

∂

∂Wij

∑
s

e
∑

ij Wij si sj−
∑

i bi si

= 〈si sj〉c −
∑

s

1
Z

e
∑

ij Wij si sj−
∑

i bi si si sj

= 〈si sj〉c −
∑

s

P(s|W , b)si sj = 〈si sj〉c − 〈si sj〉u

with 〈〉u (unclamped) expectation under the current joint. ⇒ ExpFam moment matching, but
requires simulation and gradient ascent.

Learning in Boltzmann Machines

log P(sV sH |W , b) =
∑

ij

Wij si sj −
∑

i

bi si − log Z

with Z =
∑

s e
∑

ij Wij si sj−
∑

i bi si

Generalised (gradient M-step) EM requires parameter step

∆Wij ∝
∂

∂Wij

〈
log P(sV sH |W , b)

〉
P(sH |sV)

Write 〈〉c (clamped) for expectations under P(s|sV
obs) (with P(sV |sV

obs) =
∏
δsv

i ,s
V
i,obs

). Then

[∇W log P(sV , sH)]ij =
∂

∂Wij

[∑
ij Wij〈si sj〉c −

∑
i bi〈si〉c − log Z

]
= 〈si sj〉c −

∂

∂Wij
log Z

= 〈si sj〉c −
1
Z

∂

∂Wij

∑
s

e
∑

ij Wij si sj−
∑

i bi si

= 〈si sj〉c −
∑

s

1
Z

e
∑

ij Wij si sj−
∑

i bi si si sj

= 〈si sj〉c −
∑

s

P(s|W , b)si sj = 〈si sj〉c − 〈si sj〉u

with 〈〉u (unclamped) expectation under the current joint. ⇒ ExpFam moment matching, but
requires simulation and gradient ascent.

Learning in Boltzmann Machines

log P(sV sH |W , b) =
∑

ij

Wij si sj −
∑

i

bi si − log Z

with Z =
∑

s e
∑

ij Wij si sj−
∑

i bi si

Generalised (gradient M-step) EM requires parameter step

∆Wij ∝
∂

∂Wij

〈
log P(sV sH |W , b)

〉
P(sH |sV)

Write 〈〉c (clamped) for expectations under P(s|sV
obs) (with P(sV |sV

obs) =
∏
δsv

i ,s
V
i,obs

). Then

[∇W log P(sV , sH)]ij =
∂

∂Wij

[∑
ij Wij〈si sj〉c −

∑
i bi〈si〉c − log Z

]
= 〈si sj〉c −

∂

∂Wij
log Z

= 〈si sj〉c −
1
Z

∂

∂Wij

∑
s

e
∑

ij Wij si sj−
∑

i bi si

= 〈si sj〉c −
∑

s

1
Z

e
∑

ij Wij si sj−
∑

i bi si si sj

= 〈si sj〉c −
∑

s

P(s|W , b)si sj = 〈si sj〉c − 〈si sj〉u

with 〈〉u (unclamped) expectation under the current joint. ⇒ ExpFam moment matching, but
requires simulation and gradient ascent.

Learning in Boltzmann Machines

log P(sV sH |W , b) =
∑

ij

Wij si sj −
∑

i

bi si − log Z

with Z =
∑

s e
∑

ij Wij si sj−
∑

i bi si

Generalised (gradient M-step) EM requires parameter step

∆Wij ∝
∂

∂Wij

〈
log P(sV sH |W , b)

〉
P(sH |sV)

Write 〈〉c (clamped) for expectations under P(s|sV
obs) (with P(sV |sV

obs) =
∏
δsv

i ,s
V
i,obs

). Then

[∇W log P(sV , sH)]ij =
∂

∂Wij

[∑
ij Wij〈si sj〉c −

∑
i bi〈si〉c − log Z

]
= 〈si sj〉c −

∂

∂Wij
log Z

= 〈si sj〉c −
1
Z

∂

∂Wij

∑
s

e
∑

ij Wij si sj−
∑

i bi si

= 〈si sj〉c −
∑

s

1
Z

e
∑

ij Wij si sj−
∑

i bi si si sj

= 〈si sj〉c −
∑

s

P(s|W , b)si sj

= 〈si sj〉c − 〈si sj〉u

with 〈〉u (unclamped) expectation under the current joint. ⇒ ExpFam moment matching, but
requires simulation and gradient ascent.

Learning in Boltzmann Machines

log P(sV sH |W , b) =
∑

ij

Wij si sj −
∑

i

bi si − log Z

with Z =
∑

s e
∑

ij Wij si sj−
∑

i bi si

Generalised (gradient M-step) EM requires parameter step

∆Wij ∝
∂

∂Wij

〈
log P(sV sH |W , b)

〉
P(sH |sV)

Write 〈〉c (clamped) for expectations under P(s|sV
obs) (with P(sV |sV

obs) =
∏
δsv

i ,s
V
i,obs

). Then

[∇W log P(sV , sH)]ij =
∂

∂Wij

[∑
ij Wij〈si sj〉c −

∑
i bi〈si〉c − log Z

]
= 〈si sj〉c −

∂

∂Wij
log Z

= 〈si sj〉c −
1
Z

∂

∂Wij

∑
s

e
∑

ij Wij si sj−
∑

i bi si

= 〈si sj〉c −
∑

s

1
Z

e
∑

ij Wij si sj−
∑

i bi si si sj

= 〈si sj〉c −
∑

s

P(s|W , b)si sj = 〈si sj〉c − 〈si sj〉u

with 〈〉u (unclamped) expectation under the current joint.

⇒ ExpFam moment matching, but
requires simulation and gradient ascent.

Learning in Boltzmann Machines

log P(sV sH |W , b) =
∑

ij

Wij si sj −
∑

i

bi si − log Z

with Z =
∑

s e
∑

ij Wij si sj−
∑

i bi si

Generalised (gradient M-step) EM requires parameter step

∆Wij ∝
∂

∂Wij

〈
log P(sV sH |W , b)

〉
P(sH |sV)

Write 〈〉c (clamped) for expectations under P(s|sV
obs) (with P(sV |sV

obs) =
∏
δsv

i ,s
V
i,obs

). Then

[∇W log P(sV , sH)]ij =
∂

∂Wij

[∑
ij Wij〈si sj〉c −

∑
i bi〈si〉c − log Z

]
= 〈si sj〉c −

∂

∂Wij
log Z

= 〈si sj〉c −
1
Z

∂

∂Wij

∑
s

e
∑

ij Wij si sj−
∑

i bi si

= 〈si sj〉c −
∑

s

1
Z

e
∑

ij Wij si sj−
∑

i bi si si sj

= 〈si sj〉c −
∑

s

P(s|W , b)si sj = 〈si sj〉c − 〈si sj〉u

with 〈〉u (unclamped) expectation under the current joint. ⇒ ExpFam moment matching, but
requires simulation and gradient ascent.

Sigmoid Belief Networks

• • •

• • •

• • •

Directed graphical model (i.e. Bayesian network) over a vec-
tor of binary variables si ∈ {0, 1}.

P(s|W , b) =
∏

i

P(si |{sj}j<i ,W , b)

si |{sj}j<i ,W , b ∼ Bernoulli(σ(
∑
j<i

Wij sj − bi))

P(si = 1|{sj}j<i ,W , b) =
1

1 + exp{−
∑

j<i Wij sj − bi}

I parents most often grouped into layers
I logistic function σ of linear combination of parents
I “generative multilayer perceptron” (“neural network”)

Learning algorithm: a gradient version of EM
I E step involves computing averages w.r.t. P(sH |sV ,W , b). This could be done either

exactly or approximately using Gibbs sampling or mean field approximations. Or using a
parallel ‘recognition network’ (the Helmholtz machine).

I Unlike Boltzmann machines, there is no separate partition function, so no need for an
unclamped phase in the M step.

Restricted Boltzmann Machines

Special case Boltzmann Machine: Wij = 0 for any two visible or any two hidden nodes
(bipartite graph).

P(sV |sH) =
1
Z

e
∑

i∈V

∑
j∈H Wij si sj−

∑
i∈V bi si−

∑
j∈H bj sj

=
1
Z ′
∏

i

esi
∑

j∈H Wij sj−bi si

=
∏

i

Bernoulli(σ(
∑
j∈H

Wij sj − bi))

similarly

P(sH |sV) =
∏

j

Bernoulli(σ(
∑
i∈V

Wij si − bj))

I So inference is tractable . . .
I . . . but learning still intractable because of normaliser.
I Unclamped samples can be generated efficiently by block Gibbs sampling.
I Often combined with a futher approximation called contrastive divergence learning.

Distributed state models

Factorial Hidden Markov Models

s(1)
1 s(1)

2 s(1)
3 s(1)

T
• • •

s(2)
1 s(2)

2 s(2)
3 s(2)

T
• • •

s(3)
1 s(3)

2 s(3)
3 s(3)

T
• • •

x1 x2 x3 xT

I Hidden Markov models with many state variables (i.e. distributed state representation).
I Each state variable evolves independently.
I The state can capture many bits of information about the sequence (linear in the number

of state variables).
I E step is typically intractable (due to explaining away in latent states).
I Example case for variational approximation

Dynamic Bayesian Networks

At

Dt

Ct

Bt

At+1

Dt+1

Ct+1

Bt+1

...

At+2

Dt+2

Ct+2

Bt+2

I Distributed HMM with structured dependencies amongst latent states.

Latent Dirichlet Allocation

Topic Modelling

Topic modelling: given a corpus of documents, find the “topics” they discuss.

Example: consider abstracts of papers PNAS.
Global climate change and mammalian species diversity in U.S. national parks
National parks and bioreserves are key conservation tools used to protect species and their
habitats within the confines of fixed political boundaries. This inflexibility may be their ”Achilles’
heel” as conservation tools in the face of emerging global-scale environmental problems such
as climate change. Global climate change, brought about by rising levels of greenhouse gases,
threatens to alter the geographic distribution of many habitats and their component species....

The influence of large-scale wind power on global climate
Large-scale use of wind power can alter local and global climate by extracting kinetic energy
and altering turbulent transport in the atmospheric boundary layer. We report climate-model
simulations that address the possible climatic impacts of wind power at regional to global scales
by using two general circulation models and several parameterizations of the interaction of wind
turbines with the boundary layer....

Twentieth century climate change: Evidence from small glaciers
The relation between changes in modern glaciers, not including the ice sheets of Greenland
and Antarctica, and their climatic environment is investigated to shed light on paleoglacier
evidence of past climate change and for projecting the effects of future climate warming on
cold regions of the world. Loss of glacier volume has been more or less continuous since the
19th century, but it is not a simple adjustment to the end of an ”anomalous” Little Ice Age....

Topic Modelling

Topic modelling: given a corpus of documents, find the “topics” they discuss.

Example: consider abstracts of papers PNAS.
Global climate change and mammalian species diversity in U.S. national parks
National parks and bioreserves are key conservation tools used to protect species and their
habitats within the confines of fixed political boundaries. This inflexibility may be their ”Achilles’
heel” as conservation tools in the face of emerging global-scale environmental problems such
as climate change. Global climate change, brought about by rising levels of greenhouse gases,
threatens to alter the geographic distribution of many habitats and their component species....

The influence of large-scale wind power on global climate
Large-scale use of wind power can alter local and global climate by extracting kinetic energy
and altering turbulent transport in the atmospheric boundary layer. We report climate-model
simulations that address the possible climatic impacts of wind power at regional to global scales
by using two general circulation models and several parameterizations of the interaction of wind
turbines with the boundary layer....

Twentieth century climate change: Evidence from small glaciers
The relation between changes in modern glaciers, not including the ice sheets of Greenland
and Antarctica, and their climatic environment is investigated to shed light on paleoglacier
evidence of past climate change and for projecting the effects of future climate warming on
cold regions of the world. Loss of glacier volume has been more or less continuous since the
19th century, but it is not a simple adjustment to the end of an ”anomalous” Little Ice Age....

Topic Modelling

Example topics discovered from PNAS abstracts (each topic represented in terms of the top 5
most common words in that topic).

Recap: Beta Distributions
Recall the Bayesian coin toss example.

P(H|q) = q P(T |q) = 1− q

The probability of a sequence of coin tosses is:

P(HHTT · · ·HT |q) = q#heads(1− q)#tails

A conjugate prior for q is the Beta distribution:

P(q) =
Γ(a + b)

Γ(a)Γ(b)
qa−1(1− q)b−1 a, b ≥ 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

q

P
(q

)

Dirichlet Distributions

Imagine a Bayesian dice throwing example.

P(1|q) = q1 P(2|q) = q2 P(3|q) = q3 P(4|q) = q4 P(5|q) = q5 P(6|q) = q6

with qi ≥ 0,
∑

i qi = 1.

The probability of a sequence of dice throws is:

P(34156 · · · 12|q) =
6∏

i=1

q# face i
i

A conjugate prior for q is the Dirichlet distribution:

P(q) =
Γ(
∑

i ai)∏
i Γ(ai)

∏
i

qai−1
i qi ≥ 0,

∑
i qi = 1 ai ≥ 0

Dirichlet [1,1,1]

 q
1

 q
2

Dirichlet [2,2,2]

 q
1

 q
2

Dirichlet [2,10,2]

 q
1

 q
2

Dirichlet [0.9,0.9,0.9]

 q
1

 q
2

Dirichlet Distributions

Imagine a Bayesian dice throwing example.

P(1|q) = q1 P(2|q) = q2 P(3|q) = q3 P(4|q) = q4 P(5|q) = q5 P(6|q) = q6

with qi ≥ 0,
∑

i qi = 1. The probability of a sequence of dice throws is:

P(34156 · · · 12|q) =
6∏

i=1

q# face i
i

A conjugate prior for q is the Dirichlet distribution:

P(q) =
Γ(
∑

i ai)∏
i Γ(ai)

∏
i

qai−1
i qi ≥ 0,

∑
i qi = 1 ai ≥ 0

Dirichlet [1,1,1]

 q
1

 q
2

Dirichlet [2,2,2]

 q
1

 q
2

Dirichlet [2,10,2]

 q
1

 q
2

Dirichlet [0.9,0.9,0.9]

 q
1

 q
2

Dirichlet Distributions

Imagine a Bayesian dice throwing example.

P(1|q) = q1 P(2|q) = q2 P(3|q) = q3 P(4|q) = q4 P(5|q) = q5 P(6|q) = q6

with qi ≥ 0,
∑

i qi = 1. The probability of a sequence of dice throws is:

P(34156 · · · 12|q) =
6∏

i=1

q# face i
i

A conjugate prior for q is the Dirichlet distribution:

P(q) =
Γ(
∑

i ai)∏
i Γ(ai)

∏
i

qai−1
i qi ≥ 0,

∑
i qi = 1 ai ≥ 0

Dirichlet [1,1,1]

 q
1

 q
2

Dirichlet [2,2,2]

 q
1

 q
2

Dirichlet [2,10,2]

 q
1

 q
2

Dirichlet [0.9,0.9,0.9]

 q
1

 q
2

Latent Dirichlet Allocation

Each document is a sequence of words, we model it using a mixture model by ignoring the
sequential nature—“bag-of-words” assumption.

xid

zid

word i=1...Nd

θd

α

document d=1...D

φk

topic k=1...K

β

I Draw topic distributions from a prior

φk ∼ Dir(β, . . . , β)

I For each document:

I draw a distribution over topics

θd ∼ Dir(α, . . . , α)

I generate words iid:

I draw topic from a document-specific dist:

zid ∼ Discrete(θd)

I draw word from a topic-specific dist:

xid ∼ Discrete(φzid)

Multiple mixtures of discrete distributions, sharing the same set of components (topics).

Latent Dirichlet Allocation

Each document is a sequence of words, we model it using a mixture model by ignoring the
sequential nature—“bag-of-words” assumption.

xid

zid

word i=1...Nd

θd

α

document d=1...D

φk

topic k=1...K

β

I Draw topic distributions from a prior

φk ∼ Dir(β, . . . , β)

I For each document:

I draw a distribution over topics

θd ∼ Dir(α, . . . , α)

I generate words iid:

I draw topic from a document-specific dist:

zid ∼ Discrete(θd)

I draw word from a topic-specific dist:

xid ∼ Discrete(φzid)

Multiple mixtures of discrete distributions, sharing the same set of components (topics).

Latent Dirichlet Allocation

Each document is a sequence of words, we model it using a mixture model by ignoring the
sequential nature—“bag-of-words” assumption.

xid

zid

word i=1...Nd

θd

α

document d=1...D

φk

topic k=1...K

β

I Draw topic distributions from a prior

φk ∼ Dir(β, . . . , β)

I For each document:

I draw a distribution over topics

θd ∼ Dir(α, . . . , α)

I generate words iid:

I draw topic from a document-specific dist:

zid ∼ Discrete(θd)

I draw word from a topic-specific dist:

xid ∼ Discrete(φzid)

Multiple mixtures of discrete distributions, sharing the same set of components (topics).

Latent Dirichlet Allocation

Each document is a sequence of words, we model it using a mixture model by ignoring the
sequential nature—“bag-of-words” assumption.

xid

zid

word i=1...Nd

θd

α

document d=1...D

φk

topic k=1...K

β

I Draw topic distributions from a prior

φk ∼ Dir(β, . . . , β)

I For each document:

I draw a distribution over topics

θd ∼ Dir(α, . . . , α)

I generate words iid:

I draw topic from a document-specific dist:

zid ∼ Discrete(θd)

I draw word from a topic-specific dist:

xid ∼ Discrete(φzid)

Multiple mixtures of discrete distributions, sharing the same set of components (topics).

Latent Dirichlet Allocation

Each document is a sequence of words, we model it using a mixture model by ignoring the
sequential nature—“bag-of-words” assumption.

xid

zid

word i=1...Nd

θd

α

document d=1...D

φk

topic k=1...K

β

I Draw topic distributions from a prior

φk ∼ Dir(β, . . . , β)

I For each document:

I draw a distribution over topics

θd ∼ Dir(α, . . . , α)

I generate words iid:
I draw topic from a document-specific dist:

zid ∼ Discrete(θd)

I draw word from a topic-specific dist:

xid ∼ Discrete(φzid)

Multiple mixtures of discrete distributions, sharing the same set of components (topics).

Latent Dirichlet Allocation

Each document is a sequence of words, we model it using a mixture model by ignoring the
sequential nature—“bag-of-words” assumption.

xid

zid

word i=1...Nd

θd

α

document d=1...D

φk

topic k=1...K

β

I Draw topic distributions from a prior

φk ∼ Dir(β, . . . , β)

I For each document:
I draw a distribution over topics

θd ∼ Dir(α, . . . , α)

I generate words iid:
I draw topic from a document-specific dist:

zid ∼ Discrete(θd)

I draw word from a topic-specific dist:

xid ∼ Discrete(φzid)

Multiple mixtures of discrete distributions, sharing the same set of components (topics).

Latent Dirichlet Allocation

Each document is a sequence of words, we model it using a mixture model by ignoring the
sequential nature—“bag-of-words” assumption.

xid

zid

word i=1...Nd

θd

α

document d=1...D

φk

topic k=1...K

β

I Draw topic distributions from a prior

φk ∼ Dir(β, . . . , β)

I For each document:
I draw a distribution over topics

θd ∼ Dir(α, . . . , α)

I generate words iid:
I draw topic from a document-specific dist:

zid ∼ Discrete(θd)

I draw word from a topic-specific dist:

xid ∼ Discrete(φzid)

Multiple mixtures of discrete distributions, sharing the same set of components (topics).

Latent Dirichlet Allocation

Each document is a sequence of words, we model it using a mixture model by ignoring the
sequential nature—“bag-of-words” assumption.

xid

zid

word i=1...Nd

θd

α

document d=1...D

φk

topic k=1...K

β

I Draw topic distributions from a prior

φk ∼ Dir(β, . . . , β)

I For each document:
I draw a distribution over topics

θd ∼ Dir(α, . . . , α)

I generate words iid:
I draw topic from a document-specific dist:

zid ∼ Discrete(θd)

I draw word from a topic-specific dist:

xid ∼ Discrete(φzid)

Multiple mixtures of discrete distributions, sharing the same set of components (topics).

Latent Dirichlet Allocation as Matrix Decomposition

Let Ndw be the number of times word w appears in document d , and Pdw is the probability of
word w appearing in document d .

p(N|P) =
∏
dw

PNdw
dw likelihood term

Pdw =
∑

k

p(pick topic k)p(pick word w |k) =
K∑

k=1

θdkφkw

Pdw = θdk · φkw

This decomposition is similar to PCA and factor analysis, but not Gaussian. Related to
non-negative matrix factorisation (NMF).

Latent Dirichlet Allocation

I Exact inference in latent Dirichlet allocation is intractable, and typically either variational
or Markov chain Monte Carlo approximations are deployed.

I Latent Dirichlet allocation is an example of a mixed membership model from statistics.
I Latent Dirichlet allocation has also been applied to computer vision, social network

modelling, natural language processing. . .
I Generalizations:

I Relax the bag-of-words assumption (e.g. a Markov model).
I Model changes in topics through time.
I Model correlations among occurrences of topics.
I Model authors, recipients, multiple corpora.
I Cross modal interactions (images and tags).
I Nonparametric generalisations.

Nonlinear Dimensionality Reduction / Manifold Recovery

Nonlinear Dimensionality Reduction

We can see matrix factorisation methods as performing linear dimensionality reduction.

There are many ways to generalise PCA and FA to deal with data which lie on a nonlinear
manifold:
I Nonlinear autoencoders
I Generative topographic mappings (GTM) and Kohonen self-organising maps (SOM)
I Multi-dimensional scaling (MDS)
I Kernel PCA (based on MDS representation)
I Isomap
I Locally linear embedding (LLE)
I Stochastic Neighbour Embedding
I Gaussian Process Latent Variable Models (GPLVM)

Another view of PCA: matching inner products

We have viewed PCA as providing a decomposition of the covariance or scatter matrix S. We
obtain similar results if we approximate the Gram matrix:

minimise E =
∑

ij

(Gij − zi · zj)
2

for z ∈ Rk .

That is, look for a k -dimensional embedding in which dot products (which depend on lengths,
and angles) are preserved as well as possible.

We will see that this is also equivalent to preserving distances between points.

Another view of PCA: matching inner products

Consider the eigendecomposition of G:

G = UΛUT arranged so λ1 ≥ · · · ≥ λm ≥ 0

The best rank-k approximation G ≈ Z TZ is given by:

Z T = [U]1:m,1:k [Λ1/2]1:k,1:k ;

= [UΛ1/2]1:m,1:k

Z = [Λ1/2UT]1:k,1:m

√
λ1 uT

1√
λ2 uT

2

...

√
λk uT

k

...

√
λm uT

m

The same operations can be performed on the kernel Gram matrix⇒ Kernel PCA.

Another view of PCA: matching inner products

Consider the eigendecomposition of G:

G = UΛUT arranged so λ1 ≥ · · · ≥ λm ≥ 0

The best rank-k approximation G ≈ Z TZ is given by:

Z T = [U]1:m,1:k [Λ1/2]1:k,1:k ;

= [UΛ1/2]1:m,1:k

Z = [Λ1/2UT]1:k,1:m

√
λ1 uT

1√
λ2 uT

2

...

√
λk uT

k

...

√
λm uT

m

z1 z2 · · · zm

The same operations can be performed on the kernel Gram matrix⇒ Kernel PCA.

Another view of PCA: matching inner products

Consider the eigendecomposition of G:

G = UΛUT arranged so λ1 ≥ · · · ≥ λm ≥ 0

The best rank-k approximation G ≈ Z TZ is given by:

Z T = [U]1:m,1:k [Λ1/2]1:k,1:k ;

= [UΛ1/2]1:m,1:k

Z = [Λ1/2UT]1:k,1:m

√
λ1 uT

1√
λ2 uT

2

...

√
λk uT

k

...

√
λm uT

m

z1 z2 · · · zm

The same operations can be performed on the kernel Gram matrix⇒ Kernel PCA.

Multidimensional Scaling

Suppose all we were given were distances or symmetric “dissimilarities” ∆ij .

∆ =

0 ∆12 ∆13 ∆14

∆12 0 ∆23 ∆24

∆13 ∆23 0 ∆34

∆14 ∆24 ∆34 0

Goal: Find vectors zi such that ‖zi − zj‖ ≈ ∆ij .

This is called Multidimensional Scaling (MDS).

Metric MDS

Assume the dissimilarities represent Euclidean distances between points in some high-D
space.

∆ij = ‖xi − xj‖ with
∑

i

xi = 0.

We have:

∆2
ij = ‖xi‖2 + ‖xj‖2 − 2xi · xj∑

k

∆2
ik = m‖xi‖2 +

∑
k

‖xk‖2 − 0∑
k

∆2
kj =

∑
k

‖xk‖2 + m‖xj‖2 − 0∑
kl

∆2
kl = 2m

∑
k

‖xk‖2

⇒ Gij = xi · xj = 1
2

(
1
m

∑
k

(∆2
ik + ∆2

kj)−
1

m2

∑
kl

∆2
kl −∆2

ij

)

Metric MDS and eigenvalues

We will actually minimize the error in the dot products:

E =
∑

ij

(Gij − zi · zj)
2

As in PCA, this is given by the top slice of the eigenvector matrix.

√
λ1 uT

1√
λ2 uT

2

...

√
λk uT

k

...

√
λm uT

m

z1 z2 · · · zm

Interpreting MDS

G = 1
2

(
1
m

(∆21 + 1∆2)−∆2 − 1
m2

1T∆21
)

G = UΛUT; Y = [Λ1/2UT]1:k,1:m

(1 is a matrix of ones.)

I Eigenvectors. Ordered, scaled and truncated to yield low-dimensional embedded
points zi .

I Eigenvalues. Measure how much each dimension contributes to dot products.
I Estimated dimensionality. Number of significant (nonnegative – negative possible if

∆ij are not metric) eigenvalues.

MDS and PCA

Dual matrices:

S =
1
m

XX T scatter matrix (n × n)

G = X TX Gram matrix (m ×m)

I Same eigenvalues up to a constant factor.
I Equivalent on metric data, but MDS can run on non-metric dissimilarities.
I Computational cost is different.

I PCA: O((m + k)n2)
I MDS: O((n + k)m2)

Non-metric MDS

MDS can be generalised to permit a monotonic mapping:

∆ij → g(∆ij),

even if this violates metric rules (like the triangle inequality).

This can introduce a non-linear warping of the manifold.

But

Rank ordering of Euclidean distances is

NOT preserved in “manifold learning”.

B

A

C

ABC

d(A,C) < d(A,B) d(A,C) > d(A,B)

Isomap

Idea: try to trace distance along the manifold. Use geodesic instead of (transformed)
Euclidean distances in MDS.

I preserves local structure
I estimates “global” structure
I preserves information (MDS)

Stages of Isomap

1. Identify neighbourhoods around each point (local points, assumed to be local on the
manifold). Euclidean distances are preserved within a neighbourhood.

2. For points outside the neighbourhood, estimate distances by hopping between points
within neighbourhoods.

3. Embed using MDS.

Step 1: Adjacency graph

First we construct a graph linking each point to its neighbours.
I vertices represent input points
I undirected edges connect neighbours (weight = Euclidean distance)

Forms a discretised approximation to the submanifold, assuming:
I Graph is singly-connected.
I Graph neighborhoods reflect manifold neighborhoods. No “short cuts”.

Defining the neighbourhood is critical: k -nearest neighbours, inputs within a ball of radius r ,
prior knowledge.

Step 2: Geodesics

Estimate distances by shortest path in graph.

∆ij = min
path(xi ,xj)

{ ∑
ei∈path(xi ,xj)

δi

}

I Standard graph problem. Solved by Dijkstra’s algorithm (and others).
I Better estimates for denser sampling.
I Short cuts very dangerous (“average” path distance?) .

Step 3: Embed

Embed using metric MDS (path distances obey the triangle inequality)
I Eigenvectors of Gram matrix yield low-dimensional embedding.
I Number of significant eigenvalues estimates dimensionality.

Isomap example 1

Isomap example 2

Locally Linear Embedding (LLE)

MDS and isomap preserve local and global (estimated, for isomap) distances. PCA
preserves local and global structure.
Idea: estimate local (linear) structure of manifold. Preserve this as well as possible.

I preserves local structure (not just distance)
I not explicitly global
I preserves only local information

Stages of LLE

Step 1: Neighbourhoods

Just as in isomap, we first define neighbouring points for each input. Equivalent to the isomap
graph, but we won’t need the graph structure.

Forms a discretised approximation to the submanifold, assuming:
I Graph is singly-connected — although will “work” if not.
I Neighborhoods reflect manifold neighborhoods. No “short cuts”.

Defining the neighbourhood is critical: k -nearest neighbours, inputs within a ball of radius r ,
prior knowledge.

Step 2: Local weights

Estimate local weights to minimize error

Φ(W) =
∑

i

∥∥∥∥∥xi −
∑

j∈Ne(i)

Wij xj

∥∥∥∥∥
2

∑
j∈Ne(i)

Wij = 1

I Linear regression – under- or over-constrained depending on |Ne(i)|.
I Local structure – optimal weights are invariant to rotation, translation and scaling.
I Short cuts less dangerous (one in many).

Step 3: Embed

Minimise reconstruction errors in z-space under the same weights:

ψ(Z) =
∑

i

∥∥∥∥∥zi −
∑

j∈Ne(i)

Wij zj

∥∥∥∥∥
2

subject to:∑
i

zi = 0;
∑

i

zi z
T
i = mI

We can re-write the cost function in quadratic form:

ψ(Z) =
∑

ij

Ψij [Z
TZ]ij with Ψ = (I −W)T(I −W)

Minimise by setting Z to equal the bottom 2 . . . k + 1 eigenvectors of Ψ. (Bottom eigenvector
always 1 – discard due to centering constraint)

LLE example 1

Surfaces

N=1000
inputs

k=8
nearest
neighbors

D=3
d=2

dimensions

LLE example 2

LLE example 3

LLE and Isomap

Many similarities
I Graph-based, spectral methods
I No local optima

Essential differences
I LLE does not estimate dimensionality
I Isomap can be shown to be consistent; no theoretical guarantees for LLE.
I LLE diagonalises a sparse matrix – more efficient than isomap.
I Local weights vs. local & global distances.

Maximum Variance Unfolding

Unfold neighbourhood graph preserving local structure.

Maximum Variance Unfolding

Unfold neighbourhood graph preserving local structure.

1. Build the neighbourhood graph.

2. Find {zi} ⊂ Rn (points in high-D space) with maximum variance, preserving local
distances. Let Kij = zT

i zj . Then:

Maximise Tr[K] subject to:∑
ij Kij = 0 (centered)

K � 0 (positive definite)

Kii − 2Kij + Kjj︸ ︷︷ ︸
‖zi−zj‖2

= ‖xi − xj‖2 for j ∈ Ne(i) (locally metric)

This is a semi-definite program: convex optimisation with unique solution.

3. Embed zi in Rk using linear methods (PCA/MDS).

Stochastic Neighbour Embedding

Softer “probabilistic” notions of neighbourhood and consistency.

High-D “transition” probabilities:

pj|i =
e
− 1

2 ‖xi−xj‖2/σ2

∑
k 6=i e

− 1
2 ‖xi−xk‖2/σ2

for j 6= i, pi|i = 0

Find {zi} ⊂ Rk to:

minimise
∑

ij

pj|i log
pj|i

qj|i
with qj|i =

e
− 1

2 ‖zi−zj‖2

∑
k 6=i e

− 1
2 ‖zi−zk‖2

.

Nonconvex optimisation is initialisation dependent.

Scale σ plays a similar role to neighbourhood definition:
I Fixed σ: resembles a fixed-radius ball.
I Choose σi to maintain consistent entropy in pj|i of log2 k : similar to k -nearest

neighbours.

SNE variants

I Symmetrise probabilities (pij = pji)

pij =
e
− 1

2 ‖xi−xj‖2/σ2

∑
k 6=l e

− 1
2 ‖xl−xk‖2/σ2

for j 6= i

I Gaussian Process Latent Variable Models. Lawrence. Advances in Neural Information
Processing Systems, 2004.
Define qij analagously, optimise joint KL.

I Heavy-tailed embedding distributions allow embedding to lower dimensions than true
manifold:

qij =
(1 + ‖zi − zj‖2)−1∑
k 6=l (1 + ‖zk − zl‖2)−1

Student-t distribution defines “t-SNE”.

Focus is on visualisation, rather than manifold discovery.

Gaussian Process Latent Variable Models
Recap: probabilistic PCA

xi |zi ,Λ ∼ N (Λzi , β
−1I)

zi ∼ N (0, I)

Usually: compute posterior over Z = [z1, . . . , zN]>, maximizing likelihood over Λ.

Suppose we know the values of the latent Z , then we can integrate out Λ (c.f. linear
regression), giving a conditional probability of X = [x1 . . . xN]>:

Λ ∼ N (0, α−1I)

p(X |Z) ∼ |2πK |−
D
2 exp

(
−1

2
Tr[K−1XX>]

)
K = αZZ> + βI

This is just D independent Gaussian processes, one for each dimension of X ! Each Gaussian
process describes a mapping from latent space z to one dimension of x.

Replacing the linear kernel with nonlinear kernels gives nonlinear mappings—nonlinear
dimensionality reduction.

But now dependence on Z is complicated—instead of computing a posterior over Z we must
find point values that maximise the likelihood (jointly with the hyperparameters), or use a
variational approximation (cf also the Locally-Linear Latent Variable Model).

Gaussian Process Latent Variable Models
Recap: probabilistic PCA

xi |zi ,Λ ∼ N (Λzi , β
−1I)

zi ∼ N (0, I)

Usually: compute posterior over Z = [z1, . . . , zN]>, maximizing likelihood over Λ.

Suppose we know the values of the latent Z , then we can integrate out Λ (c.f. linear
regression), giving a conditional probability of X = [x1 . . . xN]>:

Λ ∼ N (0, α−1I)

p(X |Z) ∼ |2πK |−
D
2 exp

(
−1

2
Tr[K−1XX>]

)
K = αZZ> + βI

This is just D independent Gaussian processes, one for each dimension of X ! Each Gaussian
process describes a mapping from latent space z to one dimension of x.

Replacing the linear kernel with nonlinear kernels gives nonlinear mappings—nonlinear
dimensionality reduction.

But now dependence on Z is complicated—instead of computing a posterior over Z we must
find point values that maximise the likelihood (jointly with the hyperparameters), or use a
variational approximation (cf also the Locally-Linear Latent Variable Model).

Gaussian Process Latent Variable Models
Recap: probabilistic PCA

xi |zi ,Λ ∼ N (Λzi , β
−1I)

zi ∼ N (0, I)

Usually: compute posterior over Z = [z1, . . . , zN]>, maximizing likelihood over Λ.

Suppose we know the values of the latent Z , then we can integrate out Λ (c.f. linear
regression), giving a conditional probability of X = [x1 . . . xN]>:

Λ ∼ N (0, α−1I)

p(X |Z) ∼ |2πK |−
D
2 exp

(
−1

2
Tr[K−1XX>]

)
K = αZZ> + βI

This is just D independent Gaussian processes, one for each dimension of X ! Each Gaussian
process describes a mapping from latent space z to one dimension of x.

Replacing the linear kernel with nonlinear kernels gives nonlinear mappings—nonlinear
dimensionality reduction.

But now dependence on Z is complicated—instead of computing a posterior over Z we must
find point values that maximise the likelihood (jointly with the hyperparameters), or use a
variational approximation (cf also the Locally-Linear Latent Variable Model).

Gaussian Process Latent Variable Models
Recap: probabilistic PCA

xi |zi ,Λ ∼ N (Λzi , β
−1I)

zi ∼ N (0, I)

Usually: compute posterior over Z = [z1, . . . , zN]>, maximizing likelihood over Λ.

Suppose we know the values of the latent Z , then we can integrate out Λ (c.f. linear
regression), giving a conditional probability of X = [x1 . . . xN]>:

Λ ∼ N (0, α−1I)

p(X |Z) ∼ |2πK |−
D
2 exp

(
−1

2
Tr[K−1XX>]

)
K = αZZ> + βI

This is just D independent Gaussian processes, one for each dimension of X ! Each Gaussian
process describes a mapping from latent space z to one dimension of x.

Replacing the linear kernel with nonlinear kernels gives nonlinear mappings—nonlinear
dimensionality reduction.

But now dependence on Z is complicated—instead of computing a posterior over Z we must
find point values that maximise the likelihood (jointly with the hyperparameters), or use a
variational approximation (cf also the Locally-Linear Latent Variable Model).

Gaussian Process Latent Variable Models
Recap: probabilistic PCA

xi |zi ,Λ ∼ N (Λzi , β
−1I)

zi ∼ N (0, I)

Usually: compute posterior over Z = [z1, . . . , zN]>, maximizing likelihood over Λ.

Suppose we know the values of the latent Z , then we can integrate out Λ (c.f. linear
regression), giving a conditional probability of X = [x1 . . . xN]>:

Λ ∼ N (0, α−1I)

p(X |Z) ∼ |2πK |−
D
2 exp

(
−1

2
Tr[K−1XX>]

)
K = αZZ> + βI

This is just D independent Gaussian processes, one for each dimension of X ! Each Gaussian
process describes a mapping from latent space z to one dimension of x.

Replacing the linear kernel with nonlinear kernels gives nonlinear mappings—nonlinear
dimensionality reduction.

But now dependence on Z is complicated—instead of computing a posterior over Z we must
find point values that maximise the likelihood (jointly with the hyperparameters), or use a
variational approximation (cf also the Locally-Linear Latent Variable Model).

Gaussian Process Latent Variable Models
Recap: probabilistic PCA

xi |zi ,Λ ∼ N (Λzi , β
−1I)

zi ∼ N (0, I)

Usually: compute posterior over Z = [z1, . . . , zN]>, maximizing likelihood over Λ.

Suppose we know the values of the latent Z , then we can integrate out Λ (c.f. linear
regression), giving a conditional probability of X = [x1 . . . xN]>:

Λ ∼ N (0, α−1I)

p(X |Z) ∼ |2πK |−
D
2 exp

(
−1

2
Tr[K−1XX>]

)
K = αZZ> + βI

This is just D independent Gaussian processes, one for each dimension of X ! Each Gaussian
process describes a mapping from latent space z to one dimension of x.

Replacing the linear kernel with nonlinear kernels gives nonlinear mappings—nonlinear
dimensionality reduction.

But now dependence on Z is complicated—instead of computing a posterior over Z we must
find point values that maximise the likelihood (jointly with the hyperparameters), or use a
variational approximation (cf also the Locally-Linear Latent Variable Model).

Gaussian Process Latent Variable Models

Intractability

For many probabilistic models of interest, exact inference is not computationally feasible.

There are three (main) reasons:
I Distributions may have complicated forms (e.g. non-linearities in generative model).
I “Explaining away”: observing the value of a child induces dependencies amongst its

parents.

x1

y1 y2 yK• • •

I Even with simple models, Bayesian computation of the full posterior over both latent
variables and parameters is made complicated by the strong coupling between latent
variables and parameters.

We can still work with such models by using approximate inference techniques to estimate
the latent variables.

Approximate Inference

I Linearisation: Approximate nonlinearities by Taylor series expansion about a point (e.g.
the approximate mean or mode of the hidden variable distribution). Linear
approximations are particularly useful since Gaussian distributions are closed under
linear transformations (e.g., EKF). Also Laplace’s approximation.

I Monte Carlo Sampling: Approximate posterior distribution over unobserved variables by
a set of random samples. We often need Markov chain Monte carlo or sequential Monte
Carlo methods to sample from difficult distributions.

I Variational Methods: Approximate the hidden variable posterior p(H) with a tractable
form q(H), such that KL[q‖p] is minimised. This gives a lower bound on the likelihood
that can be maximised with respect to the parameters of q(H).

I Local Message Passing Methods: Approximate the hidden variable posterior p(H) with
a tractable form q(H) or with a set of locally consistent tractable forms by other means
(loopy belief propagation, expectation propagation).

I Recognition Models and Autoencoders: Approximate the hidden variable posterior
distribution using an explicit bottom-up recognition model/network.

References

I Pattern Classification. Duda, Hart and Stork. Wiley, 2000.
I A Unifying Review of Linear Gaussian Models. Roweis and Ghaharamani. Neural

Computation, 1999.
I Independent Component Analysis. Hyvarinen, Karhunan and Oja. John Wiley and Sons,

2001.
I Emergence of Simple-Cell Receptive Field Properties by Learning a Sparse Code for

Natural Images. Olshausen & Field Nature, 1996.
I A Learning Algorithm for Boltzmann Machines. Ackley, Hinton and Sejnowski. Cognitive

Science, 1985.
I Connectionist Learning of Belief Networks. Neal. Artificial Intelligence, 1992.
I Latent Dirichlet Allocation. Blei, Ng and Jordan. Journal of Machine Learning Research,

2003.
I Factorial Hidden Markov Models. Ghahramani and Jordan. Machine Learning, 1997.
I Dynamic Bayesian Networks: Representation, Inference and Learning. Kevin Murphy.

PhD Thesis, 2002.

References

I Isomap. Tenenbaum, de Silva & Langford, Science, 290(5500):2319–23 (2000).
I LLE. Roweis & Saul, Science, 290(5500):2323–6 (2000).
I Laplacian Eigenmaps. Belkin & Niyogi, Neural Comput 23(6):1373–96 (2003).
I Hessian LLE. Donoho & Grimes, PNAS 100(10): 5591–6 (2003).
I Maximum variance unfolding. Weinberger & Saul, Int J Comput Vis 70(1):77–90 (2006).
I Conformal eigenmaps. Sha & Saul ICML 22:785–92 (2005).
I SNE Hinton & Roweis, NIPS, 2002; t-SNE van der Maaten & Hinton, JMLR,

9:2579–2605, 2008.
I Gaussian Process Latent Variable Models Lawrence. Advances in Neural Information

Processing Systems, 2004.
I Locally-Linear Latent Variable Models Park et al. Advances in Neural Information

Processing Systems, 2015.

More at: http://www.gatsby.ucl.ac.uk/~maneesh/dimred/

http://www.gatsby.ucl.ac.uk/~maneesh/dimred/

	Probabilistic & Unsupervised Learning Approximate Inference [4ex] Beyond linear-Gaussian models and Mixtures
	Tractable Models
	A Generative Model for Generative Models
	Expanding Our Horizons
	Why We Need … Nonlinear/Non-Gaussian Models
	Why We Need … Hierarchical (Deep) Models
	Why We Need … Distributed Models
	Independent Components Analysis
	Square, Noiseless ICA
	Learning in ICA
	Infomax ICA
	Kurtosis
	ICA and BSS
	Blind Source Separation
	Images
	Natural Scenes
	The LGSSM: Kalman Filtering
	The LGSSM: Kalman smoothing
	Nonlinear state-space model (NLSSM)
	Learning (online EKF)
	Boltzmann Machines
	Learning in Boltzmann Machines
	Sigmoid Belief Networks
	Restricted Boltzmann Machines
	Factorial Hidden Markov Models
	Dynamic Bayesian Networks
	Topic Modelling
	Topic Modelling
	Recap: Beta Distributions
	Dirichlet Distributions
	Latent Dirichlet Allocation
	Latent Dirichlet Allocation as Matrix Decomposition
	Latent Dirichlet Allocation
	Nonlinear Dimensionality Reduction
	Another view of PCA: matching inner products
	Another view of PCA: matching inner products
	Multidimensional Scaling
	Metric MDS
	Metric MDS and eigenvalues
	Interpreting MDS
	MDS and PCA
	Non-metric MDS
	But
	Isomap
	Stages of Isomap
	Step 1: Adjacency graph
	Step 2: Geodesics
	Step 3: Embed
	Isomap example 1
	Isomap example 2
	Locally Linear Embedding (LLE)
	Stages of LLE
	Step 1: Neighbourhoods
	Step 2: Local weights
	Step 3: Embed
	LLE example 1
	LLE example 2
	LLE example 3
	LLE and Isomap
	Maximum Variance Unfolding
	Maximum Variance Unfolding
	Stochastic Neighbour Embedding
	SNE variants
	Gaussian Process Latent Variable Models
	Gaussian Process Latent Variable Models
	Intractability
	Approximate Inference
	References
	References

