
Probabilistic & Unsupervised Learning
Approximate Inference

Expectation Propagation

Maneesh Sahani
maneesh@gatsby.ucl.ac.uk

Gatsby Computational Neuroscience Unit, and
MSc ML/CSML, Dept Computer Science

University College London

Term 1, Autumn 2023

Intractabilities and approximations
▶ Inference – computational intractability

▶ Gibbs sampling, other MCMC
▶ Factored variational approx
▶ Loopy BP/EP/Power EP
▶ Recognition models

▶ Inference – analytic intractability
▶ Laplace approximation (global)
▶ (Sequential) Monte-Carlo
▶ Message approximations (linearised, sigma-point, Laplace)
▶ Assumed-density methods and Expectation-Propagation
▶ Parametric variational approx
▶ Recognition models

▶ Learning – intractable partition function
▶ Sampling parameters
▶ Constrastive divergence
▶ Score-matching

▶ Posterior estimation and model selection
▶ Laplace approximation / BIC
▶ Monte-Carlo
▶ (Annealed) importance sampling
▶ Reversible jump MCMC
▶ Variational Bayes

Not a complete list!

Nonlinear state-space model (NLSSM)

z1 z2 z3 zT

x1 x2 x3 xT

u1 u2 u3 uT

• • •f f f f

g g g g

D̃t D̃t D̃t D̃t

zt+1 = f (zt , ut) + wt

xt = g(zt , ut) + vt

wt , vt usually still Gaussian.

Extended Kalman Filter (EKF): linearise nonlinear functions about current estimate, ẑt
t :

zt+1 ≈ f (ẑt
t , ut) +

∂f
∂zt

∣∣∣∣
ẑt

t

(zt − ẑt
t) + wt

xt ≈ g(ẑt−1
t , ut) +

∂g
∂zt

∣∣∣∣
ẑt−1

t

(zt − ẑt−1
t) + vt

zt

f (zt)

ẑt
t

Run the Kalman filter (smoother) on non-stationary linearised system (Ãt , B̃t , C̃t , D̃t):

▶ Adaptively approximates non-Gaussian messages by Gaussians.
▶ Local linearisation depends on central point of distribution⇒ approximation degrades

with increased state uncertainty.

May work acceptably for close-to-linear systems.

Can base EM-like algorithm on EKF/EKS (or alternatives).

Nonlinear state-space model (NLSSM)

z1 z2 z3 zT

x1 x2 x3 xT

u1 u2 u3 uT

• • •f f f f

g g g g

D̃t D̃t D̃t D̃t

zt+1 = f (zt , ut) + wt

xt = g(zt , ut) + vt

wt , vt usually still Gaussian.

Extended Kalman Filter (EKF): linearise nonlinear functions about current estimate, ẑt
t :

zt+1 ≈ f (ẑt
t , ut) +

∂f
∂zt

∣∣∣∣
ẑt

t

(zt − ẑt
t) + wt

xt ≈ g(ẑt−1
t , ut) +

∂g
∂zt

∣∣∣∣
ẑt−1

t

(zt − ẑt−1
t) + vt zt

f (zt)

ẑt
t

Run the Kalman filter (smoother) on non-stationary linearised system (Ãt , B̃t , C̃t , D̃t):

▶ Adaptively approximates non-Gaussian messages by Gaussians.
▶ Local linearisation depends on central point of distribution⇒ approximation degrades

with increased state uncertainty.

May work acceptably for close-to-linear systems.

Can base EM-like algorithm on EKF/EKS (or alternatives).

Nonlinear state-space model (NLSSM)

z1 z2 z3 zT

x1 x2 x3 xT

u1 u2 u3 uT

• • •
Ãt Ãt Ãt Ãt

C̃t C̃t C̃t C̃t

B̃t B̃t B̃t B̃t

D̃t D̃t D̃t D̃t

zt+1 = f (zt , ut) + wt

xt = g(zt , ut) + vt

wt , vt usually still Gaussian.

Extended Kalman Filter (EKF): linearise nonlinear functions about current estimate, ẑt
t :

zt+1 ≈ f (ẑt
t , ut)︸ ︷︷ ︸

B̃t ut

+
∂f
∂zt

∣∣∣∣
ẑt

t︸ ︷︷ ︸
Ãt

(zt − ẑt
t) + wt

xt ≈ g(ẑt−1
t , ut)︸ ︷︷ ︸
D̃t ut

+
∂g
∂zt

∣∣∣∣
ẑt−1

t︸ ︷︷ ︸
C̃t

(zt − ẑt−1
t) + vt zt

f (zt)

ẑt
t

Run the Kalman filter (smoother) on non-stationary linearised system (Ãt , B̃t , C̃t , D̃t):

▶ Adaptively approximates non-Gaussian messages by Gaussians.
▶ Local linearisation depends on central point of distribution⇒ approximation degrades

with increased state uncertainty.

May work acceptably for close-to-linear systems.

Can base EM-like algorithm on EKF/EKS (or alternatives).

Nonlinear state-space model (NLSSM)

z1 z2 z3 zT

x1 x2 x3 xT

u1 u2 u3 uT

• • •
Ãt Ãt Ãt Ãt

C̃t C̃t C̃t C̃t

B̃t B̃t B̃t B̃t

D̃t D̃t D̃t D̃t

zt+1 = f (zt , ut) + wt

xt = g(zt , ut) + vt

wt , vt usually still Gaussian.

Extended Kalman Filter (EKF): linearise nonlinear functions about current estimate, ẑt
t :

zt+1 ≈ f (ẑt
t , ut)︸ ︷︷ ︸

B̃t ut

+
∂f
∂zt

∣∣∣∣
ẑt

t︸ ︷︷ ︸
Ãt

(zt − ẑt
t) + wt

xt ≈ g(ẑt−1
t , ut)︸ ︷︷ ︸
D̃t ut

+
∂g
∂zt

∣∣∣∣
ẑt−1

t︸ ︷︷ ︸
C̃t

(zt − ẑt−1
t) + vt zt

f (zt)

ẑt
t

Run the Kalman filter (smoother) on non-stationary linearised system (Ãt , B̃t , C̃t , D̃t):
▶ Adaptively approximates non-Gaussian messages by Gaussians.

▶ Local linearisation depends on central point of distribution⇒ approximation degrades
with increased state uncertainty.

May work acceptably for close-to-linear systems.

Can base EM-like algorithm on EKF/EKS (or alternatives).

Nonlinear state-space model (NLSSM)

z1 z2 z3 zT

x1 x2 x3 xT

u1 u2 u3 uT

• • •
Ãt Ãt Ãt Ãt

C̃t C̃t C̃t C̃t

B̃t B̃t B̃t B̃t

D̃t D̃t D̃t D̃t

zt+1 = f (zt , ut) + wt

xt = g(zt , ut) + vt

wt , vt usually still Gaussian.

Extended Kalman Filter (EKF): linearise nonlinear functions about current estimate, ẑt
t :

zt+1 ≈ f (ẑt
t , ut)︸ ︷︷ ︸

B̃t ut

+
∂f
∂zt

∣∣∣∣
ẑt

t︸ ︷︷ ︸
Ãt

(zt − ẑt
t) + wt

xt ≈ g(ẑt−1
t , ut)︸ ︷︷ ︸
D̃t ut

+
∂g
∂zt

∣∣∣∣
ẑt−1

t︸ ︷︷ ︸
C̃t

(zt − ẑt−1
t) + vt zt

f (zt)

ẑt
t

Run the Kalman filter (smoother) on non-stationary linearised system (Ãt , B̃t , C̃t , D̃t):
▶ Adaptively approximates non-Gaussian messages by Gaussians.
▶ Local linearisation depends on central point of distribution⇒ approximation degrades

with increased state uncertainty.

May work acceptably for close-to-linear systems.

Can base EM-like algorithm on EKF/EKS (or alternatives).

Nonlinear state-space model (NLSSM)

z1 z2 z3 zT

x1 x2 x3 xT

u1 u2 u3 uT

• • •
Ãt Ãt Ãt Ãt

C̃t C̃t C̃t C̃t

B̃t B̃t B̃t B̃t

D̃t D̃t D̃t D̃t

zt+1 = f (zt , ut) + wt

xt = g(zt , ut) + vt

wt , vt usually still Gaussian.

Extended Kalman Filter (EKF): linearise nonlinear functions about current estimate, ẑt
t :

zt+1 ≈ f (ẑt
t , ut)︸ ︷︷ ︸

B̃t ut

+
∂f
∂zt

∣∣∣∣
ẑt

t︸ ︷︷ ︸
Ãt

(zt − ẑt
t) + wt

xt ≈ g(ẑt−1
t , ut)︸ ︷︷ ︸
D̃t ut

+
∂g
∂zt

∣∣∣∣
ẑt−1

t︸ ︷︷ ︸
C̃t

(zt − ẑt−1
t) + vt zt

f (zt)

ẑt
t

Run the Kalman filter (smoother) on non-stationary linearised system (Ãt , B̃t , C̃t , D̃t):
▶ Adaptively approximates non-Gaussian messages by Gaussians.
▶ Local linearisation depends on central point of distribution⇒ approximation degrades

with increased state uncertainty. May work acceptably for close-to-linear systems.

Can base EM-like algorithm on EKF/EKS (or alternatives).

Nonlinear state-space model (NLSSM)

z1 z2 z3 zT

x1 x2 x3 xT

u1 u2 u3 uT

• • •
Ãt Ãt Ãt Ãt

C̃t C̃t C̃t C̃t

B̃t B̃t B̃t B̃t

D̃t D̃t D̃t D̃t

zt+1 = f (zt , ut) + wt

xt = g(zt , ut) + vt

wt , vt usually still Gaussian.

Extended Kalman Filter (EKF): linearise nonlinear functions about current estimate, ẑt
t :

zt+1 ≈ f (ẑt
t , ut)︸ ︷︷ ︸

B̃t ut

+
∂f
∂zt

∣∣∣∣
ẑt

t︸ ︷︷ ︸
Ãt

(zt − ẑt
t) + wt

xt ≈ g(ẑt−1
t , ut)︸ ︷︷ ︸
D̃t ut

+
∂g
∂zt

∣∣∣∣
ẑt−1

t︸ ︷︷ ︸
C̃t

(zt − ẑt−1
t) + vt zt

f (zt)

ẑt
t

Run the Kalman filter (smoother) on non-stationary linearised system (Ãt , B̃t , C̃t , D̃t):
▶ Adaptively approximates non-Gaussian messages by Gaussians.
▶ Local linearisation depends on central point of distribution⇒ approximation degrades

with increased state uncertainty. May work acceptably for close-to-linear systems.

Can base EM-like algorithm on EKF/EKS (or alternatives).

Other message approximations
Consider the forward messages on a latent chain:

P(zt |x1:t) =
1
Z

P(xt |zt)

∫
dzt–1 P(zt |zt–1)P(zt–1|x1:t–1)

We want to approximate the messages to retain a tractable form (e.g. Gaussian).

P̃(zt |x1:t) ≈
1
Z

P(xt |zt)

∫
dzt–1 P(zt |zt–1)︸ ︷︷ ︸

N (f (zt–1),Q)

P̃(zt–1|x1:t–1)︸ ︷︷ ︸
N (ẑt–1,Vt–1)

▶ Linearisation at the peak (EKF) is only one approach.
▶ Laplace filter: use mode and curvature of integrand.
▶ Sigma-point (“unscented”) filter: next slide.
▶ Parametric variational:

argminKL
[
N
(
ẑt , V̂t

)∥∥∥∥∫ dzt–1 . . .

]
.

Needs Gaussian expectations of log
∫
⇒ Monte-Carlo integration (later lecture).

▶ The other KL:

argminKL
[∫

dzt–1

∥∥∥∥N (
ẑt , V̂t

)]
needs only first and second moments of nonlinear message⇒ EP.

Other message approximations
Consider the forward messages on a latent chain:

P(zt |x1:t) =
1
Z

P(xt |zt)

∫
dzt–1 P(zt |zt–1)P(zt–1|x1:t–1)

We want to approximate the messages to retain a tractable form (e.g. Gaussian).

P̃(zt |x1:t) ≈
1
Z

P(xt |zt)

∫
dzt–1 P(zt |zt–1)︸ ︷︷ ︸

N (f (zt–1),Q)

P̃(zt–1|x1:t–1)︸ ︷︷ ︸
N (ẑt–1,Vt–1)

▶ Linearisation at the peak (EKF) is only one approach.

▶ Laplace filter: use mode and curvature of integrand.
▶ Sigma-point (“unscented”) filter: next slide.
▶ Parametric variational:

argminKL
[
N
(
ẑt , V̂t

)∥∥∥∥∫ dzt–1 . . .

]
.

Needs Gaussian expectations of log
∫
⇒ Monte-Carlo integration (later lecture).

▶ The other KL:

argminKL
[∫

dzt–1

∥∥∥∥N (
ẑt , V̂t

)]
needs only first and second moments of nonlinear message⇒ EP.

Other message approximations
Consider the forward messages on a latent chain:

P(zt |x1:t) =
1
Z

P(xt |zt)

∫
dzt–1 P(zt |zt–1)P(zt–1|x1:t–1)

We want to approximate the messages to retain a tractable form (e.g. Gaussian).

P̃(zt |x1:t) ≈
1
Z

P(xt |zt)

∫
dzt–1 P(zt |zt–1)︸ ︷︷ ︸

N (f (zt–1),Q)

P̃(zt–1|x1:t–1)︸ ︷︷ ︸
N (ẑt–1,Vt–1)

▶ Linearisation at the peak (EKF) is only one approach.
▶ Laplace filter: use mode and curvature of integrand.

▶ Sigma-point (“unscented”) filter: next slide.
▶ Parametric variational:

argminKL
[
N
(
ẑt , V̂t

)∥∥∥∥∫ dzt–1 . . .

]
.

Needs Gaussian expectations of log
∫
⇒ Monte-Carlo integration (later lecture).

▶ The other KL:

argminKL
[∫

dzt–1

∥∥∥∥N (
ẑt , V̂t

)]
needs only first and second moments of nonlinear message⇒ EP.

Other message approximations
Consider the forward messages on a latent chain:

P(zt |x1:t) =
1
Z

P(xt |zt)

∫
dzt–1 P(zt |zt–1)P(zt–1|x1:t–1)

We want to approximate the messages to retain a tractable form (e.g. Gaussian).

P̃(zt |x1:t) ≈
1
Z

P(xt |zt)

∫
dzt–1 P(zt |zt–1)︸ ︷︷ ︸

N (f (zt–1),Q)

P̃(zt–1|x1:t–1)︸ ︷︷ ︸
N (ẑt–1,Vt–1)

▶ Linearisation at the peak (EKF) is only one approach.
▶ Laplace filter: use mode and curvature of integrand.
▶ Sigma-point (“unscented”) filter: next slide.

▶ Parametric variational:

argminKL
[
N
(
ẑt , V̂t

)∥∥∥∥∫ dzt–1 . . .

]
.

Needs Gaussian expectations of log
∫
⇒ Monte-Carlo integration (later lecture).

▶ The other KL:

argminKL
[∫

dzt–1

∥∥∥∥N (
ẑt , V̂t

)]
needs only first and second moments of nonlinear message⇒ EP.

Other message approximations
Consider the forward messages on a latent chain:

P(zt |x1:t) =
1
Z

P(xt |zt)

∫
dzt–1 P(zt |zt–1)P(zt–1|x1:t–1)

We want to approximate the messages to retain a tractable form (e.g. Gaussian).

P̃(zt |x1:t) ≈
1
Z

P(xt |zt)

∫
dzt–1 P(zt |zt–1)︸ ︷︷ ︸

N (f (zt–1),Q)

P̃(zt–1|x1:t–1)︸ ︷︷ ︸
N (ẑt–1,Vt–1)

▶ Linearisation at the peak (EKF) is only one approach.
▶ Laplace filter: use mode and curvature of integrand.
▶ Sigma-point (“unscented”) filter: next slide.
▶ Parametric variational:

argminKL
[
N
(
ẑt , V̂t

)∥∥∥∥∫ dzt–1 . . .

]
.

Needs Gaussian expectations of log
∫
⇒ Monte-Carlo integration (later lecture).

▶ The other KL:

argminKL
[∫

dzt–1

∥∥∥∥N (
ẑt , V̂t

)]
needs only first and second moments of nonlinear message⇒ EP.

Other message approximations
Consider the forward messages on a latent chain:

P(zt |x1:t) =
1
Z

P(xt |zt)

∫
dzt–1 P(zt |zt–1)P(zt–1|x1:t–1)

We want to approximate the messages to retain a tractable form (e.g. Gaussian).

P̃(zt |x1:t) ≈
1
Z

P(xt |zt)

∫
dzt–1 P(zt |zt–1)︸ ︷︷ ︸

N (f (zt–1),Q)

P̃(zt–1|x1:t–1)︸ ︷︷ ︸
N (ẑt–1,Vt–1)

▶ Linearisation at the peak (EKF) is only one approach.
▶ Laplace filter: use mode and curvature of integrand.
▶ Sigma-point (“unscented”) filter: next slide.
▶ Parametric variational:

argminKL
[
N
(
ẑt , V̂t

)∥∥∥∥∫ dzt–1 . . .

]
.

Needs Gaussian expectations of log
∫
⇒ Monte-Carlo integration (later lecture).

▶ The other KL:

argminKL
[∫

dzt–1

∥∥∥∥N (
ẑt , V̂t

)]
needs only first and second moments of nonlinear message⇒ EP.

The Sigma-point filter
▶ Historical interest, but also a useful intuition for what comes next.

zt–1

P̃(zt–1|x1:t–1) f

zt

P̃t–1#f

P̃(zt |x1:t–1)

▶ Approximates pushed-forward belief from time t–1.
▶ Evaluate f(ẑt–1), f(ẑt–1 ±

√
λv) for eigenvalues, eigenvectors V̂t−1v = λv.

▶ “Fit” Gaussian to these 2K + 1 σ−points:

N
(

1
2K+1

2K+1∑
i=1

f(σi)︸ ︷︷ ︸
µ

, 1
2K+1

2K+1∑
i=1

f(σi)f(σi)
T − µµT

)

▶ Incorporate noise process.
▶ Equivalent to evaluation of mean and covariance of P̃t–1#f by Gaussian quadrature.
▶ One form of “Assumed Density Filtering” (and of calculations for EP).

The Sigma-point filter
▶ Historical interest, but also a useful intuition for what comes next.

zt–1

P̃(zt–1|x1:t–1) f

zt

P̃t–1#f

P̃(zt |x1:t–1)

▶ Approximates pushed-forward belief from time t–1.

▶ Evaluate f(ẑt–1), f(ẑt–1 ±
√
λv) for eigenvalues, eigenvectors V̂t−1v = λv.

▶ “Fit” Gaussian to these 2K + 1 σ−points:

N
(

1
2K+1

2K+1∑
i=1

f(σi)︸ ︷︷ ︸
µ

, 1
2K+1

2K+1∑
i=1

f(σi)f(σi)
T − µµT

)

▶ Incorporate noise process.
▶ Equivalent to evaluation of mean and covariance of P̃t–1#f by Gaussian quadrature.
▶ One form of “Assumed Density Filtering” (and of calculations for EP).

The Sigma-point filter
▶ Historical interest, but also a useful intuition for what comes next.

zt–1

P̃(zt–1|x1:t–1) f

zt

P̃t–1#f

P̃(zt |x1:t–1)

▶ Approximates pushed-forward belief from time t–1.
▶ Evaluate f(ẑt–1), f(ẑt–1 ±

√
λv) for eigenvalues, eigenvectors V̂t−1v = λv.

▶ “Fit” Gaussian to these 2K + 1 σ−points:

N
(

1
2K+1

2K+1∑
i=1

f(σi)︸ ︷︷ ︸
µ

, 1
2K+1

2K+1∑
i=1

f(σi)f(σi)
T − µµT

)

▶ Incorporate noise process.
▶ Equivalent to evaluation of mean and covariance of P̃t–1#f by Gaussian quadrature.
▶ One form of “Assumed Density Filtering” (and of calculations for EP).

The Sigma-point filter
▶ Historical interest, but also a useful intuition for what comes next.

zt–1

P̃(zt–1|x1:t–1) f

zt

P̃t–1#f

P̃(zt |x1:t–1)

▶ Approximates pushed-forward belief from time t–1.
▶ Evaluate f(ẑt–1), f(ẑt–1 ±

√
λv) for eigenvalues, eigenvectors V̂t−1v = λv.

▶ “Fit” Gaussian to these 2K + 1 σ−points:

N
(

1
2K+1

2K+1∑
i=1

f(σi)︸ ︷︷ ︸
µ

, 1
2K+1

2K+1∑
i=1

f(σi)f(σi)
T − µµT

)

▶ Incorporate noise process.
▶ Equivalent to evaluation of mean and covariance of P̃t–1#f by Gaussian quadrature.
▶ One form of “Assumed Density Filtering” (and of calculations for EP).

The Sigma-point filter
▶ Historical interest, but also a useful intuition for what comes next.

zt–1

P̃(zt–1|x1:t–1) f

zt

P̃t–1#f

P̃(zt |x1:t–1)

▶ Approximates pushed-forward belief from time t–1.
▶ Evaluate f(ẑt–1), f(ẑt–1 ±

√
λv) for eigenvalues, eigenvectors V̂t−1v = λv.

▶ “Fit” Gaussian to these 2K + 1 σ−points:

N
(

1
2K+1

2K+1∑
i=1

f(σi)︸ ︷︷ ︸
µ

, 1
2K+1

2K+1∑
i=1

f(σi)f(σi)
T − µµT + Q

)

▶ Incorporate noise process.

▶ Equivalent to evaluation of mean and covariance of P̃t–1#f by Gaussian quadrature.
▶ One form of “Assumed Density Filtering” (and of calculations for EP).

The Sigma-point filter
▶ Historical interest, but also a useful intuition for what comes next.

zt–1

P̃(zt–1|x1:t–1) f

zt

P̃t–1#f

P̃(zt |x1:t–1)

▶ Approximates pushed-forward belief from time t–1.
▶ Evaluate f(ẑt–1), f(ẑt–1 ±

√
λv) for eigenvalues, eigenvectors V̂t−1v = λv.

▶ “Fit” Gaussian to these 2K + 1 σ−points:

N
(

1
2K+1

2K+1∑
i=1

f(σi)︸ ︷︷ ︸
µ

, 1
2K+1

2K+1∑
i=1

f(σi)f(σi)
T − µµT + Q

)

▶ Incorporate noise process.
▶ Equivalent to evaluation of mean and covariance of P̃t–1#f by Gaussian quadrature.

▶ One form of “Assumed Density Filtering” (and of calculations for EP).

The Sigma-point filter
▶ Historical interest, but also a useful intuition for what comes next.

zt–1

P̃(zt–1|x1:t–1) f

zt

P̃t–1#f

P̃(zt |x1:t–1)

▶ Approximates pushed-forward belief from time t–1.
▶ Evaluate f(ẑt–1), f(ẑt–1 ±

√
λv) for eigenvalues, eigenvectors V̂t−1v = λv.

▶ “Fit” Gaussian to these 2K + 1 σ−points:

N
(

1
2K+1

2K+1∑
i=1

f(σi)︸ ︷︷ ︸
µ

, 1
2K+1

2K+1∑
i=1

f(σi)f(σi)
T − µµT + Q

)

▶ Incorporate noise process.
▶ Equivalent to evaluation of mean and covariance of P̃t–1#f by Gaussian quadrature.
▶ One form of “Assumed Density Filtering” (and of calculations for EP).

Variational learning

Free energy:

F(q, θ) = ⟨log P(X ,Z|θ)⟩q(Z|X) +H[q] = log P(X|θ)−KL[q(Z)∥P(Z|X , θ)] ≤ ℓ(θ)

E-steps:

▶ Exact EM: q(Z) = argmax
q
F = P(Z|X , θ)

▶ Saturates bound: converges to local maximum of likelihood.

▶ (Factored) variational approximation:

q(Z) = argmax
q1(Z1)q2(Z2)

F = argmin
q1(Z1)q2(Z2)

KL[q1(Z1)q2(Z2)∥P(Z|X , θ)]

▶ Increases bound: converges, but not necessarily to ML.

▶ Other approximations: q(Z) ≈ P(Z|X , θ)

▶ Usually no guarantees, but if learning converges it may be more accurate than the
factored approximation

Variational learning

Free energy:

F(q, θ) = ⟨log P(X ,Z|θ)⟩q(Z|X) +H[q] = log P(X|θ)−KL[q(Z)∥P(Z|X , θ)] ≤ ℓ(θ)

E-steps:
▶ Exact EM: q(Z) = argmax

q
F = P(Z|X , θ)

▶ Saturates bound: converges to local maximum of likelihood.

▶ (Factored) variational approximation:

q(Z) = argmax
q1(Z1)q2(Z2)

F = argmin
q1(Z1)q2(Z2)

KL[q1(Z1)q2(Z2)∥P(Z|X , θ)]

▶ Increases bound: converges, but not necessarily to ML.

▶ Other approximations: q(Z) ≈ P(Z|X , θ)

▶ Usually no guarantees, but if learning converges it may be more accurate than the
factored approximation

Variational learning

Free energy:

F(q, θ) = ⟨log P(X ,Z|θ)⟩q(Z|X) +H[q] = log P(X|θ)−KL[q(Z)∥P(Z|X , θ)] ≤ ℓ(θ)

E-steps:
▶ Exact EM: q(Z) = argmax

q
F = P(Z|X , θ)

▶ Saturates bound: converges to local maximum of likelihood.

▶ (Factored) variational approximation:

q(Z) = argmax
q1(Z1)q2(Z2)

F = argmin
q1(Z1)q2(Z2)

KL[q1(Z1)q2(Z2)∥P(Z|X , θ)]

▶ Increases bound: converges, but not necessarily to ML.

▶ Other approximations: q(Z) ≈ P(Z|X , θ)

▶ Usually no guarantees, but if learning converges it may be more accurate than the
factored approximation

Variational learning

Free energy:

F(q, θ) = ⟨log P(X ,Z|θ)⟩q(Z|X) +H[q] = log P(X|θ)−KL[q(Z)∥P(Z|X , θ)] ≤ ℓ(θ)

E-steps:
▶ Exact EM: q(Z) = argmax

q
F = P(Z|X , θ)

▶ Saturates bound: converges to local maximum of likelihood.

▶ (Factored) variational approximation:

q(Z) = argmax
q1(Z1)q2(Z2)

F = argmin
q1(Z1)q2(Z2)

KL[q1(Z1)q2(Z2)∥P(Z|X , θ)]

▶ Increases bound: converges, but not necessarily to ML.

▶ Other approximations: q(Z) ≈ P(Z|X , θ)

▶ Usually no guarantees, but if learning converges it may be more accurate than the
factored approximation

Variational learning

Free energy:

F(q, θ) = ⟨log P(X ,Z|θ)⟩q(Z|X) +H[q] = log P(X|θ)−KL[q(Z)∥P(Z|X , θ)] ≤ ℓ(θ)

E-steps:
▶ Exact EM: q(Z) = argmax

q
F = P(Z|X , θ)

▶ Saturates bound: converges to local maximum of likelihood.

▶ (Factored) variational approximation:

q(Z) = argmax
q1(Z1)q2(Z2)

F = argmin
q1(Z1)q2(Z2)

KL[q1(Z1)q2(Z2)∥P(Z|X , θ)]

▶ Increases bound: converges, but not necessarily to ML.

▶ Other approximations: q(Z) ≈ P(Z|X , θ)

▶ Usually no guarantees, but if learning converges it may be more accurate than the
factored approximation

Variational learning

Free energy:

F(q, θ) = ⟨log P(X ,Z|θ)⟩q(Z|X) +H[q] = log P(X|θ)−KL[q(Z)∥P(Z|X , θ)] ≤ ℓ(θ)

E-steps:
▶ Exact EM: q(Z) = argmax

q
F = P(Z|X , θ)

▶ Saturates bound: converges to local maximum of likelihood.

▶ (Factored) variational approximation:

q(Z) = argmax
q1(Z1)q2(Z2)

F = argmin
q1(Z1)q2(Z2)

KL[q1(Z1)q2(Z2)∥P(Z|X , θ)]

▶ Increases bound: converges, but not necessarily to ML.

▶ Other approximations: q(Z) ≈ P(Z|X , θ)

▶ Usually no guarantees, but if learning converges it may be more accurate than the
factored approximation

Variational learning

Free energy:

F(q, θ) = ⟨log P(X ,Z|θ)⟩q(Z|X) +H[q] = log P(X|θ)−KL[q(Z)∥P(Z|X , θ)] ≤ ℓ(θ)

E-steps:
▶ Exact EM: q(Z) = argmax

q
F = P(Z|X , θ)

▶ Saturates bound: converges to local maximum of likelihood.

▶ (Factored) variational approximation:

q(Z) = argmax
q1(Z1)q2(Z2)

F = argmin
q1(Z1)q2(Z2)

KL[q1(Z1)q2(Z2)∥P(Z|X , θ)]

▶ Increases bound: converges, but not necessarily to ML.

▶ Other approximations: q(Z) ≈ P(Z|X , θ)
▶ Usually no guarantees, but if learning converges it may be more accurate than the

factored approximation

Approximating the posterior

Linearisation (or local Laplace, sigma-point and other such approaches) seem ad hoc. A
more principled approach might look for an approximate q that is closest to P in some sense.

q = argmin
q∈Q

D(P ↔ q)

Open choices:
▶ form of the metric D
▶ nature of the constraint space Q

▶ Variational methods: D = KL[q∥P].

▶ Choosing Q = {tree-factored distributions} leads to efficient message passing.

▶ Can we use other divergences?

Approximating the posterior

Linearisation (or local Laplace, sigma-point and other such approaches) seem ad hoc. A
more principled approach might look for an approximate q that is closest to P in some sense.

q = argmin
q∈Q

D(P ↔ q)

Open choices:
▶ form of the metric D
▶ nature of the constraint space Q

▶ Variational methods: D = KL[q∥P].

▶ Choosing Q = {tree-factored distributions} leads to efficient message passing.

▶ Can we use other divergences?

Approximating the posterior

Linearisation (or local Laplace, sigma-point and other such approaches) seem ad hoc. A
more principled approach might look for an approximate q that is closest to P in some sense.

q = argmin
q∈Q

D(P ↔ q)

Open choices:
▶ form of the metric D
▶ nature of the constraint space Q

▶ Variational methods: D = KL[q∥P].

▶ Choosing Q = {tree-factored distributions} leads to efficient message passing.

▶ Can we use other divergences?

Approximating the posterior

Linearisation (or local Laplace, sigma-point and other such approaches) seem ad hoc. A
more principled approach might look for an approximate q that is closest to P in some sense.

q = argmin
q∈Q

D(P ↔ q)

Open choices:
▶ form of the metric D
▶ nature of the constraint space Q

▶ Variational methods: D = KL[q∥P].
▶ Choosing Q = {tree-factored distributions} leads to efficient message passing.

▶ Can we use other divergences?

Approximating the posterior

Linearisation (or local Laplace, sigma-point and other such approaches) seem ad hoc. A
more principled approach might look for an approximate q that is closest to P in some sense.

q = argmin
q∈Q

D(P ↔ q)

Open choices:
▶ form of the metric D
▶ nature of the constraint space Q

▶ Variational methods: D = KL[q∥P].
▶ Choosing Q = {tree-factored distributions} leads to efficient message passing.

▶ Can we use other divergences?

The other KL

What about the ‘other’ KL (q = argminKL[P∥q])?

For a factored approximation the (clique) marginals obtained by minimising this KL are
correct:

argmin
qi

KL
[
P(Z|X)

∥∥∥∏ qj(Zj |X)
]
= argmin

qi

−
∫

dZ P(Z|X) log
∏

j

qj(Zj |X)

= argmin
qi

−
∑

j

∫
dZ P(Z|X) log qj(Zj |X)

= argmin
qi

−
∫

dZi P(Zi |X) log qi(Zi |X)

= P(Zi |X)

and the marginals are what we need for learning (although if factored over disjoint sets as in
the variational approximation some cliques will be missing).

Perversely, this means finding the best q for this KL is intractable!

But it raises the hope that approximate minimisation might still yield useful results.

The other KL

What about the ‘other’ KL (q = argminKL[P∥q])?

For a factored approximation the (clique) marginals obtained by minimising this KL are
correct:

argmin
qi

KL
[
P(Z|X)

∥∥∥∏ qj(Zj |X)
]
= argmin

qi

−
∫

dZ P(Z|X) log
∏

j

qj(Zj |X)

= argmin
qi

−
∑

j

∫
dZ P(Z|X) log qj(Zj |X)

= argmin
qi

−
∫

dZi P(Zi |X) log qi(Zi |X)

= P(Zi |X)

and the marginals are what we need for learning (although if factored over disjoint sets as in
the variational approximation some cliques will be missing).

Perversely, this means finding the best q for this KL is intractable!

But it raises the hope that approximate minimisation might still yield useful results.

The other KL

What about the ‘other’ KL (q = argminKL[P∥q])?

For a factored approximation the (clique) marginals obtained by minimising this KL are
correct:

argmin
qi

KL
[
P(Z|X)

∥∥∥∏ qj(Zj |X)
]
= argmin

qi

−
∫

dZ P(Z|X) log
∏

j

qj(Zj |X)

= argmin
qi

−
∑

j

∫
dZ P(Z|X) log qj(Zj |X)

= argmin
qi

−
∫

dZi P(Zi |X) log qi(Zi |X)

= P(Zi |X)

and the marginals are what we need for learning (although if factored over disjoint sets as in
the variational approximation some cliques will be missing).

Perversely, this means finding the best q for this KL is intractable!

But it raises the hope that approximate minimisation might still yield useful results.

The other KL

What about the ‘other’ KL (q = argminKL[P∥q])?

For a factored approximation the (clique) marginals obtained by minimising this KL are
correct:

argmin
qi

KL
[
P(Z|X)

∥∥∥∏ qj(Zj |X)
]
= argmin

qi

−
∫

dZ P(Z|X) log
∏

j

qj(Zj |X)

= argmin
qi

−
∑

j

∫
dZ P(Z|X) log qj(Zj |X)

= argmin
qi

−
∫

dZi P(Zi |X) log qi(Zi |X)

= P(Zi |X)

and the marginals are what we need for learning (although if factored over disjoint sets as in
the variational approximation some cliques will be missing).

Perversely, this means finding the best q for this KL is intractable!

But it raises the hope that approximate minimisation might still yield useful results.

The other KL

What about the ‘other’ KL (q = argminKL[P∥q])?

For a factored approximation the (clique) marginals obtained by minimising this KL are
correct:

argmin
qi

KL
[
P(Z|X)

∥∥∥∏ qj(Zj |X)
]
= argmin

qi

−
∫

dZ P(Z|X) log
∏

j

qj(Zj |X)

= argmin
qi

−
∑

j

∫
dZ P(Z|X) log qj(Zj |X)

= argmin
qi

−
∫

dZi P(Zi |X) log qi(Zi |X)

= P(Zi |X)

and the marginals are what we need for learning (although if factored over disjoint sets as in
the variational approximation some cliques will be missing).

Perversely, this means finding the best q for this KL is intractable!

But it raises the hope that approximate minimisation might still yield useful results.

The other KL

What about the ‘other’ KL (q = argminKL[P∥q])?

For a factored approximation the (clique) marginals obtained by minimising this KL are
correct:

argmin
qi

KL
[
P(Z|X)

∥∥∥∏ qj(Zj |X)
]
= argmin

qi

−
∫

dZ P(Z|X) log
∏

j

qj(Zj |X)

= argmin
qi

−
∑

j

∫
dZ P(Z|X) log qj(Zj |X)

= argmin
qi

−
∫

dZi P(Zi |X) log qi(Zi |X)

= P(Zi |X)

and the marginals are what we need for learning (although if factored over disjoint sets as in
the variational approximation some cliques will be missing).

Perversely, this means finding the best q for this KL is intractable!

But it raises the hope that approximate minimisation might still yield useful results.

The other KL

What about the ‘other’ KL (q = argminKL[P∥q])?

For a factored approximation the (clique) marginals obtained by minimising this KL are
correct:

argmin
qi

KL
[
P(Z|X)

∥∥∥∏ qj(Zj |X)
]
= argmin

qi

−
∫

dZ P(Z|X) log
∏

j

qj(Zj |X)

= argmin
qi

−
∑

j

∫
dZ P(Z|X) log qj(Zj |X)

= argmin
qi

−
∫

dZi P(Zi |X) log qi(Zi |X)

= P(Zi |X)

and the marginals are what we need for learning (although if factored over disjoint sets as in
the variational approximation some cliques will be missing).

Perversely, this means finding the best q for this KL is intractable!

But it raises the hope that approximate minimisation might still yield useful results.

The other KL

What about the ‘other’ KL (q = argminKL[P∥q])?

For a factored approximation the (clique) marginals obtained by minimising this KL are
correct:

argmin
qi

KL
[
P(Z|X)

∥∥∥∏ qj(Zj |X)
]
= argmin

qi

−
∫

dZ P(Z|X) log
∏

j

qj(Zj |X)

= argmin
qi

−
∑

j

∫
dZ P(Z|X) log qj(Zj |X)

= argmin
qi

−
∫

dZi P(Zi |X) log qi(Zi |X)

= P(Zi |X)

and the marginals are what we need for learning (although if factored over disjoint sets as in
the variational approximation some cliques will be missing).

Perversely, this means finding the best q for this KL is intractable!

But it raises the hope that approximate minimisation might still yield useful results.

Approximate optimisation
The posterior distribution in a graphical model is a (normalised) product of factors:

P(Z|X) = P(Z,X)
P(X) =

1
Z

∏
i

P(Zi | pa(Zi)) ∝
N∏

i=1

fi(Zi)

where the Zi are not necessarily disjoint. In the language of EP the fi are called sites.

Consider q with the same factorisation, but potentially approximated sites: q(Z) ∝
N∏

i=1

f̃i(Zi).

We would like to minimise (at least in some sense) KL[P∥q].
Possible optimisations:

min
{̃fi}

KL
[

1
Z

N∏
i=1

fi(Zi)
∥∥∥ 1

Z̃

N∏
i=1

f̃i(Zi)
]

(global: intractable)

min
f̃i

KL
[
fi(Zi)

∥∥∥̃fi(Zi)
]

(local, fixed: simple, inaccurate)

min
f̃i

KL
[
fi(Zi)

∏
j ̸=i

f̃j(Zj)
∥∥∥̃fi(Zi)

∏
j ̸=i

f̃j(Zj)
]

(local, contextual: iterative, accurate)← EP

Zi

f

∏
j ̸=i f̃j(Zi)

Approximate optimisation
The posterior distribution in a graphical model is a (normalised) product of factors:

P(Z|X) = P(Z,X)
P(X) =

1
Z

∏
i

P(Zi | pa(Zi)) ∝
N∏

i=1

fi(Zi)

where the Zi are not necessarily disjoint. In the language of EP the fi are called sites.

Consider q with the same factorisation, but potentially approximated sites: q(Z) ∝
N∏

i=1

f̃i(Zi).

We would like to minimise (at least in some sense) KL[P∥q].

Possible optimisations:

min
{̃fi}

KL
[

1
Z

N∏
i=1

fi(Zi)
∥∥∥ 1

Z̃

N∏
i=1

f̃i(Zi)
]

(global: intractable)

min
f̃i

KL
[
fi(Zi)

∥∥∥̃fi(Zi)
]

(local, fixed: simple, inaccurate)

min
f̃i

KL
[
fi(Zi)

∏
j ̸=i

f̃j(Zj)
∥∥∥̃fi(Zi)

∏
j ̸=i

f̃j(Zj)
]

(local, contextual: iterative, accurate)← EP

Zi

f

∏
j ̸=i f̃j(Zi)

Approximate optimisation
The posterior distribution in a graphical model is a (normalised) product of factors:

P(Z|X) = P(Z,X)
P(X) =

1
Z

∏
i

P(Zi | pa(Zi)) ∝
N∏

i=1

fi(Zi)

where the Zi are not necessarily disjoint. In the language of EP the fi are called sites.

Consider q with the same factorisation, but potentially approximated sites: q(Z) ∝
N∏

i=1

f̃i(Zi).

We would like to minimise (at least in some sense) KL[P∥q].
Possible optimisations:

min
{̃fi}

KL
[

1
Z

N∏
i=1

fi(Zi)
∥∥∥ 1

Z̃

N∏
i=1

f̃i(Zi)
]

(global: intractable)

min
f̃i

KL
[
fi(Zi)

∥∥∥̃fi(Zi)
]

(local, fixed: simple, inaccurate)

min
f̃i

KL
[
fi(Zi)

∏
j ̸=i

f̃j(Zj)
∥∥∥̃fi(Zi)

∏
j ̸=i

f̃j(Zj)
]

(local, contextual: iterative, accurate)← EP

Zi

f

∏
j ̸=i f̃j(Zi)

Approximate optimisation
The posterior distribution in a graphical model is a (normalised) product of factors:

P(Z|X) = P(Z,X)
P(X) =

1
Z

∏
i

P(Zi | pa(Zi)) ∝
N∏

i=1

fi(Zi)

where the Zi are not necessarily disjoint. In the language of EP the fi are called sites.

Consider q with the same factorisation, but potentially approximated sites: q(Z) ∝
N∏

i=1

f̃i(Zi).

We would like to minimise (at least in some sense) KL[P∥q].
Possible optimisations:

min
{̃fi}

KL
[

1
Z

N∏
i=1

fi(Zi)
∥∥∥ 1

Z̃

N∏
i=1

f̃i(Zi)
]

(global: intractable)

min
f̃i

KL
[
fi(Zi)

∥∥∥̃fi(Zi)
]

(local, fixed: simple, inaccurate)

min
f̃i

KL
[
fi(Zi)

∏
j ̸=i

f̃j(Zj)
∥∥∥̃fi(Zi)

∏
j ̸=i

f̃j(Zj)
]

(local, contextual: iterative, accurate)← EP

Zi

f

∏
j ̸=i f̃j(Zi)

Approximate optimisation
The posterior distribution in a graphical model is a (normalised) product of factors:

P(Z|X) = P(Z,X)
P(X) =

1
Z

∏
i

P(Zi | pa(Zi)) ∝
N∏

i=1

fi(Zi)

where the Zi are not necessarily disjoint. In the language of EP the fi are called sites.

Consider q with the same factorisation, but potentially approximated sites: q(Z) ∝
N∏

i=1

f̃i(Zi).

We would like to minimise (at least in some sense) KL[P∥q].
Possible optimisations:

min
{̃fi}

KL
[

1
Z

N∏
i=1

fi(Zi)
∥∥∥ 1

Z̃

N∏
i=1

f̃i(Zi)
]

(global: intractable)

min
f̃i

KL
[
fi(Zi)

∥∥∥̃fi(Zi)
]

(local, fixed: simple, inaccurate)

min
f̃i

KL
[
fi(Zi)

∏
j ̸=i

f̃j(Zj)
∥∥∥̃fi(Zi)

∏
j ̸=i

f̃j(Zj)
]

(local, contextual: iterative, accurate)← EP

Zi

f

∏
j ̸=i f̃j(Zi)

Approximate optimisation
The posterior distribution in a graphical model is a (normalised) product of factors:

P(Z|X) = P(Z,X)
P(X) =

1
Z

∏
i

P(Zi | pa(Zi)) ∝
N∏

i=1

fi(Zi)

where the Zi are not necessarily disjoint. In the language of EP the fi are called sites.

Consider q with the same factorisation, but potentially approximated sites: q(Z) ∝
N∏

i=1

f̃i(Zi).

We would like to minimise (at least in some sense) KL[P∥q].
Possible optimisations:

min
{̃fi}

KL
[

1
Z

N∏
i=1

fi(Zi)
∥∥∥ 1

Z̃

N∏
i=1

f̃i(Zi)
]

(global: intractable)

min
f̃i

KL
[
fi(Zi)

∥∥∥̃fi(Zi)
]

(local, fixed: simple, inaccurate)

min
f̃i

KL
[
fi(Zi)

∏
j ̸=i

f̃j(Zj)
∥∥∥̃fi(Zi)

∏
j ̸=i

f̃j(Zj)
]

(local, contextual: iterative, accurate)

← EP

Zi

f ∏
j ̸=i f̃j(Zi)

Approximate optimisation
The posterior distribution in a graphical model is a (normalised) product of factors:

P(Z|X) = P(Z,X)
P(X) =

1
Z

∏
i

P(Zi | pa(Zi)) ∝
N∏

i=1

fi(Zi)

where the Zi are not necessarily disjoint. In the language of EP the fi are called sites.

Consider q with the same factorisation, but potentially approximated sites: q(Z) ∝
N∏

i=1

f̃i(Zi).

We would like to minimise (at least in some sense) KL[P∥q].
Possible optimisations:

min
{̃fi}

KL
[

1
Z

N∏
i=1

fi(Zi)
∥∥∥ 1

Z̃

N∏
i=1

f̃i(Zi)
]

(global: intractable)

min
f̃i

KL
[
fi(Zi)

∥∥∥̃fi(Zi)
]

(local, fixed: simple, inaccurate)

min
f̃i

KL
[
fi(Zi)

∏
j ̸=i

f̃j(Zj)
∥∥∥̃fi(Zi)

∏
j ̸=i

f̃j(Zj)
]

(local, contextual: iterative, accurate)← EP

Zi

f ∏
j ̸=i f̃j(Zi)

Expectation? Propagation?

EP is really two ideas:

▶ Approximation of factors.

▶ Usually by “projection” to exponential families.

▶ This involves finding expected sufficient statistics, hence expectation.

▶ Local divergence minimization in the context of other factors.

▶ This leads to a message passing approach, hence propagation.

Note: we will ignore normalisation for now, but return to this later.

Expectation? Propagation?

EP is really two ideas:

▶ Approximation of factors.

▶ Usually by “projection” to exponential families.

▶ This involves finding expected sufficient statistics, hence expectation.

▶ Local divergence minimization in the context of other factors.

▶ This leads to a message passing approach, hence propagation.

Note: we will ignore normalisation for now, but return to this later.

Expectation? Propagation?

EP is really two ideas:

▶ Approximation of factors.

▶ Usually by “projection” to exponential families.

▶ This involves finding expected sufficient statistics, hence expectation.

▶ Local divergence minimization in the context of other factors.

▶ This leads to a message passing approach, hence propagation.

Note: we will ignore normalisation for now, but return to this later.

Expectation? Propagation?

EP is really two ideas:

▶ Approximation of factors.

▶ Usually by “projection” to exponential families.

▶ This involves finding expected sufficient statistics, hence expectation.

▶ Local divergence minimization in the context of other factors.

▶ This leads to a message passing approach, hence propagation.

Note: we will ignore normalisation for now, but return to this later.

Expectation? Propagation?

EP is really two ideas:

▶ Approximation of factors.

▶ Usually by “projection” to exponential families.

▶ This involves finding expected sufficient statistics, hence expectation.

▶ Local divergence minimization in the context of other factors.

▶ This leads to a message passing approach, hence propagation.

Note: we will ignore normalisation for now, but return to this later.

Local updates

Each EP update involves a KL minimisation:

f̃ newi (Z)← argmin
f∈{̃f}

KL[fi(Zi)q¬i(Z)∥f (Zi)q¬i(Z)]
[
q¬i(Z)

def
=

∏
j ̸=i

f̃j(Zj)
]

Separate the contextual factor: q¬i(Z) = q¬i(Zi)q¬i(Z¬i |Zi) [Z¬i
def
= Z\Zi]

Then:
min

f
KL[fi(Zi)q¬i(Z)∥f (Zi)q¬i(Z)]

= max
f

∫
dZ fi(Zi)q¬i(Z) log f (Zi)q¬i(Z)

= max
f

∫
dZi dZ¬i fi(Zi)q¬i(Zi)q¬i(Z¬i |Zi)

(
log f (Zi)q¬i(Zi) + log q¬i(Z¬i |Zi)

)
= max

f

∫
dZi fi(Zi)q¬i(Zi)

(
log f (Zi)q¬i(Zi))

∫
dZ¬i q¬i(Z¬i |Zi)

= min
f

KL[fi(Zi)q¬i(Zi)∥f (Zi)q¬i(Zi)]

q¬i(Zi) is sometimes called the cavity distribution.

Local updates

Each EP update involves a KL minimisation:

f̃ newi (Z)← argmin
f∈{̃f}

KL[fi(Zi)q¬i(Z)∥f (Zi)q¬i(Z)]
[
q¬i(Z)

def
=

∏
j ̸=i

f̃j(Zj)
]

Separate the contextual factor: q¬i(Z) = q¬i(Zi)q¬i(Z¬i |Zi) [Z¬i
def
= Z\Zi]

Then:
min

f
KL[fi(Zi)q¬i(Z)∥f (Zi)q¬i(Z)]

= max
f

∫
dZ fi(Zi)q¬i(Z) log f (Zi)q¬i(Z)

= max
f

∫
dZi dZ¬i fi(Zi)q¬i(Zi)q¬i(Z¬i |Zi)

(
log f (Zi)q¬i(Zi) + log q¬i(Z¬i |Zi)

)
= max

f

∫
dZi fi(Zi)q¬i(Zi)

(
log f (Zi)q¬i(Zi))

∫
dZ¬i q¬i(Z¬i |Zi)

= min
f

KL[fi(Zi)q¬i(Zi)∥f (Zi)q¬i(Zi)]

q¬i(Zi) is sometimes called the cavity distribution.

Local updates

Each EP update involves a KL minimisation:

f̃ newi (Z)← argmin
f∈{̃f}

KL[fi(Zi)q¬i(Z)∥f (Zi)q¬i(Z)]
[
q¬i(Z)

def
=

∏
j ̸=i

f̃j(Zj)
]

Separate the contextual factor: q¬i(Z) = q¬i(Zi)q¬i(Z¬i |Zi) [Z¬i
def
= Z\Zi]

Then:
min

f
KL[fi(Zi)q¬i(Z)∥f (Zi)q¬i(Z)]

= max
f

∫
dZ fi(Zi)q¬i(Z) log f (Zi)q¬i(Z)

= max
f

∫
dZi dZ¬i fi(Zi)q¬i(Zi)q¬i(Z¬i |Zi)

(
log f (Zi)q¬i(Zi) + log q¬i(Z¬i |Zi)

)
= max

f

∫
dZi fi(Zi)q¬i(Zi)

(
log f (Zi)q¬i(Zi))

∫
dZ¬i q¬i(Z¬i |Zi)

= min
f

KL[fi(Zi)q¬i(Zi)∥f (Zi)q¬i(Zi)]

q¬i(Zi) is sometimes called the cavity distribution.

Local updates

Each EP update involves a KL minimisation:

f̃ newi (Z)← argmin
f∈{̃f}

KL[fi(Zi)q¬i(Z)∥f (Zi)q¬i(Z)]
[
q¬i(Z)

def
=

∏
j ̸=i

f̃j(Zj)
]

Separate the contextual factor: q¬i(Z) = q¬i(Zi)q¬i(Z¬i |Zi) [Z¬i
def
= Z\Zi]

Then:
min

f
KL[fi(Zi)q¬i(Z)∥f (Zi)q¬i(Z)]

= max
f

∫
dZ fi(Zi)q¬i(Z) log f (Zi)q¬i(Z)

= max
f

∫
dZi dZ¬i fi(Zi)q¬i(Zi)q¬i(Z¬i |Zi)

(
log f (Zi)q¬i(Zi) + log q¬i(Z¬i |Zi)

)

= max
f

∫
dZi fi(Zi)q¬i(Zi)

(
log f (Zi)q¬i(Zi))

∫
dZ¬i q¬i(Z¬i |Zi)

= min
f

KL[fi(Zi)q¬i(Zi)∥f (Zi)q¬i(Zi)]

q¬i(Zi) is sometimes called the cavity distribution.

Local updates

Each EP update involves a KL minimisation:

f̃ newi (Z)← argmin
f∈{̃f}

KL[fi(Zi)q¬i(Z)∥f (Zi)q¬i(Z)]
[
q¬i(Z)

def
=

∏
j ̸=i

f̃j(Zj)
]

Separate the contextual factor: q¬i(Z) = q¬i(Zi)q¬i(Z¬i |Zi) [Z¬i
def
= Z\Zi]

Then:
min

f
KL[fi(Zi)q¬i(Z)∥f (Zi)q¬i(Z)]

= max
f

∫
dZ fi(Zi)q¬i(Z) log f (Zi)q¬i(Z)

= max
f

∫
dZi dZ¬i fi(Zi)q¬i(Zi)q¬i(Z¬i |Zi)

(
log f (Zi)q¬i(Zi) + log q¬i(Z¬i |Zi)

)
= max

f

∫
dZi fi(Zi)q¬i(Zi)

(
log f (Zi)q¬i(Zi))

∫
dZ¬i q¬i(Z¬i |Zi)

= min
f

KL[fi(Zi)q¬i(Zi)∥f (Zi)q¬i(Zi)]

q¬i(Zi) is sometimes called the cavity distribution.

Local updates

Each EP update involves a KL minimisation:

f̃ newi (Z)← argmin
f∈{̃f}

KL[fi(Zi)q¬i(Z)∥f (Zi)q¬i(Z)]
[
q¬i(Z)

def
=

∏
j ̸=i

f̃j(Zj)
]

Separate the contextual factor: q¬i(Z) = q¬i(Zi)q¬i(Z¬i |Zi) [Z¬i
def
= Z\Zi]

Then:
min

f
KL[fi(Zi)q¬i(Z)∥f (Zi)q¬i(Z)]

= max
f

∫
dZ fi(Zi)q¬i(Z) log f (Zi)q¬i(Z)

= max
f

∫
dZi dZ¬i fi(Zi)q¬i(Zi)q¬i(Z¬i |Zi)

(
log f (Zi)q¬i(Zi) + log q¬i(Z¬i |Zi)

)
= max

f

∫
dZi fi(Zi)q¬i(Zi)

(
log f (Zi)q¬i(Zi))

∫
dZ¬i q¬i(Z¬i |Zi)

= min
f

KL[fi(Zi)q¬i(Zi)∥f (Zi)q¬i(Zi)]

q¬i(Zi) is sometimes called the cavity distribution.

Local updates

Each EP update involves a KL minimisation:

f̃ newi (Z)← argmin
f∈{̃f}

KL[fi(Zi)q¬i(Z)∥f (Zi)q¬i(Z)]
[
q¬i(Z)

def
=

∏
j ̸=i

f̃j(Zj)
]

Separate the contextual factor: q¬i(Z) = q¬i(Zi)q¬i(Z¬i |Zi) [Z¬i
def
= Z\Zi]

Then:
min

f
KL[fi(Zi)q¬i(Z)∥f (Zi)q¬i(Z)]

= max
f

∫
dZ fi(Zi)q¬i(Z) log f (Zi)q¬i(Z)

= max
f

∫
dZi dZ¬i fi(Zi)q¬i(Zi)q¬i(Z¬i |Zi)

(
log f (Zi)q¬i(Zi) + log q¬i(Z¬i |Zi)

)
= max

f

∫
dZi fi(Zi)q¬i(Zi)

(
log f (Zi)q¬i(Zi))

∫
dZ¬i q¬i(Z¬i |Zi)

= min
f

KL[fi(Zi)q¬i(Zi)∥f (Zi)q¬i(Zi)]

q¬i(Zi) is sometimes called the cavity distribution.

Expectation Propagation (EP)

Input f1(Z1) . . . fN(ZN)

Initialize f̃1(Z1) = argmin
f∈{̃f}

KL[f1(Z1)∥f1(Z1)], f̃i(Zi) = 1 for i > 1, q(Z) ∝
∏

i f̃i(Zi)

repeat

for i = 1 . . .N do

Delete: q¬i(Z)←
q(Z)
f̃i(Zi)

=
∏
j ̸=i

f̃j(Zj)

Project: f̃ newi (Z)← argmin
f∈{̃f}

KL[fi(Zi)q¬i(Zi)∥f (Zi)q¬i(Zi)]

Include: q(Z)← f̃ newi (Zi) q¬i(Z)

end for

until convergence

Message Passing

▶ The cavity distribution (in a tree) can be further broken down into a product of terms
from each neighbouring clique:

q¬i(Zi) =
∏

j∈ne(i)

Mj→i(Zj ∩ Zi)

▶ Once the i th site has been approximated, the messages can be passed on to
neighbouring cliques by marginalising to the shared variables (SSM example follows).
⇒ belief propagation.

▶ In loopy graphs, we can use loopy belief propagation. In that case

q¬i(Zi) =
∏

j∈ne(i)

Mj→i(Zj ∩ Zi)

becomes an approximation to the true cavity distribution (or we can recast the
approximation directly in terms of messages⇒ later lecture).

▶ For some approximations (e.g. Gaussian) may be able to compute true loopy cavity
using approximate sites, even if computing exact message would have been intractable.

▶ In either case, message updates can be scheduled in any order.
▶ No guarantee of convergence (but see “power-EP” methods).

Message Passing

▶ The cavity distribution (in a tree) can be further broken down into a product of terms
from each neighbouring clique:

q¬i(Zi) =
∏

j∈ne(i)

Mj→i(Zj ∩ Zi)

▶ Once the i th site has been approximated, the messages can be passed on to
neighbouring cliques by marginalising to the shared variables (SSM example follows).
⇒ belief propagation.

▶ In loopy graphs, we can use loopy belief propagation. In that case

q¬i(Zi) =
∏

j∈ne(i)

Mj→i(Zj ∩ Zi)

becomes an approximation to the true cavity distribution (or we can recast the
approximation directly in terms of messages⇒ later lecture).

▶ For some approximations (e.g. Gaussian) may be able to compute true loopy cavity
using approximate sites, even if computing exact message would have been intractable.

▶ In either case, message updates can be scheduled in any order.
▶ No guarantee of convergence (but see “power-EP” methods).

Message Passing

▶ The cavity distribution (in a tree) can be further broken down into a product of terms
from each neighbouring clique:

q¬i(Zi) =
∏

j∈ne(i)

Mj→i(Zj ∩ Zi)

▶ Once the i th site has been approximated, the messages can be passed on to
neighbouring cliques by marginalising to the shared variables (SSM example follows).
⇒ belief propagation.

▶ In loopy graphs, we can use loopy belief propagation. In that case

q¬i(Zi) =
∏

j∈ne(i)

Mj→i(Zj ∩ Zi)

becomes an approximation to the true cavity distribution (or we can recast the
approximation directly in terms of messages⇒ later lecture).

▶ For some approximations (e.g. Gaussian) may be able to compute true loopy cavity
using approximate sites, even if computing exact message would have been intractable.

▶ In either case, message updates can be scheduled in any order.
▶ No guarantee of convergence (but see “power-EP” methods).

Message Passing

▶ The cavity distribution (in a tree) can be further broken down into a product of terms
from each neighbouring clique:

q¬i(Zi) =
∏

j∈ne(i)

Mj→i(Zj ∩ Zi)

▶ Once the i th site has been approximated, the messages can be passed on to
neighbouring cliques by marginalising to the shared variables (SSM example follows).
⇒ belief propagation.

▶ In loopy graphs, we can use loopy belief propagation. In that case

q¬i(Zi) =
∏

j∈ne(i)

Mj→i(Zj ∩ Zi)

becomes an approximation to the true cavity distribution (or we can recast the
approximation directly in terms of messages⇒ later lecture).

▶ For some approximations (e.g. Gaussian) may be able to compute true loopy cavity
using approximate sites, even if computing exact message would have been intractable.

▶ In either case, message updates can be scheduled in any order.
▶ No guarantee of convergence (but see “power-EP” methods).

Message Passing

▶ The cavity distribution (in a tree) can be further broken down into a product of terms
from each neighbouring clique:

q¬i(Zi) =
∏

j∈ne(i)

Mj→i(Zj ∩ Zi)

▶ Once the i th site has been approximated, the messages can be passed on to
neighbouring cliques by marginalising to the shared variables (SSM example follows).
⇒ belief propagation.

▶ In loopy graphs, we can use loopy belief propagation. In that case

q¬i(Zi) =
∏

j∈ne(i)

Mj→i(Zj ∩ Zi)

becomes an approximation to the true cavity distribution (or we can recast the
approximation directly in terms of messages⇒ later lecture).

▶ For some approximations (e.g. Gaussian) may be able to compute true loopy cavity
using approximate sites, even if computing exact message would have been intractable.

▶ In either case, message updates can be scheduled in any order.

▶ No guarantee of convergence (but see “power-EP” methods).

Message Passing

▶ The cavity distribution (in a tree) can be further broken down into a product of terms
from each neighbouring clique:

q¬i(Zi) =
∏

j∈ne(i)

Mj→i(Zj ∩ Zi)

▶ Once the i th site has been approximated, the messages can be passed on to
neighbouring cliques by marginalising to the shared variables (SSM example follows).
⇒ belief propagation.

▶ In loopy graphs, we can use loopy belief propagation. In that case

q¬i(Zi) =
∏

j∈ne(i)

Mj→i(Zj ∩ Zi)

becomes an approximation to the true cavity distribution (or we can recast the
approximation directly in terms of messages⇒ later lecture).

▶ For some approximations (e.g. Gaussian) may be able to compute true loopy cavity
using approximate sites, even if computing exact message would have been intractable.

▶ In either case, message updates can be scheduled in any order.
▶ No guarantee of convergence (but see “power-EP” methods).

EP for a NLSSM

zi−2 zi−1 zi zi+1 zi+2 • • •• • •

xi−2 xi−1 xi xi+1 xi+2

P(zi |zi−1) = ϕi(zi , zi−1) e.g. exp(−∥zi − hs(zi−1)∥2/2σ2)

P(xi |zi) = ψi(zi) e.g. exp(−∥xi − ho(zi)∥2/2σ2)

Then fi(zi , zi−1) = ϕi(zi , zi−1)ψi(zi). As ϕi and ψi are non-linear, inference is not generally
tractable.
Assume f̃i(zi , zi−1) is Gaussian. Then,

q¬i(zi , zi−1) =

∫
z1...zi−2
zi+1...zi

∏
i′ ̸=i

f̃i′(zi′ , zi′−1) =

∫
z1...zi−2

∏
i′<i

f̃i′(zi′ , zi′−1)

︸ ︷︷ ︸
αi−1(zi−1)

∫
zi+1...zn

∏
i′>i

f̃i′(zi′ , zi′−1)

︸ ︷︷ ︸
βi (zi)

with both α and β Gaussian.

f̃i(zi , zi−1) = argmin
f∈N

KL
[
ϕi(zi , zi−1)ψi(zi)αi−1(zi−1)βi(zi)

∥∥f (zi , zi−1)αi−1(zi−1)βi(zi)
]

EP for a NLSSM

zi−2 zi−1 zi zi+1 zi+2 • • •• • •

xi−2 xi−1 xi xi+1 xi+2

P(zi |zi−1) = ϕi(zi , zi−1) e.g. exp(−∥zi − hs(zi−1)∥2/2σ2)

P(xi |zi) = ψi(zi) e.g. exp(−∥xi − ho(zi)∥2/2σ2)

Then fi(zi , zi−1) = ϕi(zi , zi−1)ψi(zi). As ϕi and ψi are non-linear, inference is not generally
tractable.

Assume f̃i(zi , zi−1) is Gaussian. Then,

q¬i(zi , zi−1) =

∫
z1...zi−2
zi+1...zi

∏
i′ ̸=i

f̃i′(zi′ , zi′−1) =

∫
z1...zi−2

∏
i′<i

f̃i′(zi′ , zi′−1)

︸ ︷︷ ︸
αi−1(zi−1)

∫
zi+1...zn

∏
i′>i

f̃i′(zi′ , zi′−1)

︸ ︷︷ ︸
βi (zi)

with both α and β Gaussian.

f̃i(zi , zi−1) = argmin
f∈N

KL
[
ϕi(zi , zi−1)ψi(zi)αi−1(zi−1)βi(zi)

∥∥f (zi , zi−1)αi−1(zi−1)βi(zi)
]

EP for a NLSSM

zi−2 zi−1 zi zi+1 zi+2 • • •• • •

xi−2 xi−1 xi xi+1 xi+2

P(zi |zi−1) = ϕi(zi , zi−1) e.g. exp(−∥zi − hs(zi−1)∥2/2σ2)

P(xi |zi) = ψi(zi) e.g. exp(−∥xi − ho(zi)∥2/2σ2)

Then fi(zi , zi−1) = ϕi(zi , zi−1)ψi(zi). As ϕi and ψi are non-linear, inference is not generally
tractable.
Assume f̃i(zi , zi−1) is Gaussian. Then,

q¬i(zi , zi−1) =

∫
z1...zi−2
zi+1...zi

∏
i′ ̸=i

f̃i′(zi′ , zi′−1) =

∫
z1...zi−2

∏
i′<i

f̃i′(zi′ , zi′−1)

︸ ︷︷ ︸
αi−1(zi−1)

∫
zi+1...zn

∏
i′>i

f̃i′(zi′ , zi′−1)

︸ ︷︷ ︸
βi (zi)

with both α and β Gaussian.

f̃i(zi , zi−1) = argmin
f∈N

KL
[
ϕi(zi , zi−1)ψi(zi)αi−1(zi−1)βi(zi)

∥∥f (zi , zi−1)αi−1(zi−1)βi(zi)
]

EP for a NLSSM

zi−2 zi−1 zi zi+1 zi+2 • • •• • •

xi−2 xi−1 xi xi+1 xi+2

P(zi |zi−1) = ϕi(zi , zi−1) e.g. exp(−∥zi − hs(zi−1)∥2/2σ2)

P(xi |zi) = ψi(zi) e.g. exp(−∥xi − ho(zi)∥2/2σ2)

Then fi(zi , zi−1) = ϕi(zi , zi−1)ψi(zi). As ϕi and ψi are non-linear, inference is not generally
tractable.
Assume f̃i(zi , zi−1) is Gaussian. Then,

q¬i(zi , zi−1) =

∫
z1...zi−2
zi+1...zi

∏
i′ ̸=i

f̃i′(zi′ , zi′−1) =

∫
z1...zi−2

∏
i′<i

f̃i′(zi′ , zi′−1)

︸ ︷︷ ︸
αi−1(zi−1)

∫
zi+1...zn

∏
i′>i

f̃i′(zi′ , zi′−1)

︸ ︷︷ ︸
βi (zi)

with both α and β Gaussian.

f̃i(zi , zi−1) = argmin
f∈N

KL
[
ϕi(zi , zi−1)ψi(zi)αi−1(zi−1)βi(zi)

∥∥f (zi , zi−1)αi−1(zi−1)βi(zi)
]

NLSSM EP message updates

f̃i(zi , zi−1) = argmin
f∈N

KL
[
f (zi , zi−1)q¬i(zi , zi−1)

∥∥f (zi , zi−1)q¬i(zi , zi−1)
]

= argmin
f∈N

KL
[
ϕi(zi , zi−1)ψi(zi)αi−1(zi−1)βi(zi)

∥∥f (zi , zi−1)αi−1(zi−1)βi(zi)
]

P̃(zi−1, zi) = argmin
P∈N

KL
[
P̂(zi−1, zi)

∥∥P(zi−1, zi)
]

f̃i(zi , zi−1) =
P̃(zi−1, zi)

αi−1(zi−1)βi(zi)

αi(zi) =

∫
z1...zi−1

∏
i′<i+1

f̃i′(zi′ , zi′−1) =

∫
zi−1

αi−1(zi−1)̃fi(zi , zi−1) =
1

βi(zi)

∫
zi−1

P̃(zi−1, zi)

βi−1(zi−1) =

∫
zi+1...zi

∏
i′>i

f̃i′(zi′ , zi′−1) =

∫
zi

βi(zi)̃fi(zi , zi−1) =
1

αi−1(zi−1)

∫
zi

P̃(zi−1, zi)

zi−1

zi

αi−1

βi
f

q¬i

zi−1

zi

P̂

P̃

NLSSM EP message updates

f̃i(zi , zi−1) = argmin
f∈N

KL
[
ϕi(zi , zi−1)ψi(zi)αi−1(zi−1)βi(zi)

∥∥f (zi , zi−1)αi−1(zi−1)βi(zi)
]

P̃(zi−1, zi) = argmin
P∈N

KL
[
P̂(zi−1, zi)

∥∥P(zi−1, zi)
]

f̃i(zi , zi−1) =
P̃(zi−1, zi)

αi−1(zi−1)βi(zi)

αi(zi) =

∫
z1...zi−1

∏
i′<i+1

f̃i′(zi′ , zi′−1) =

∫
zi−1

αi−1(zi−1)̃fi(zi , zi−1) =
1

βi(zi)

∫
zi−1

P̃(zi−1, zi)

βi−1(zi−1) =

∫
zi+1...zi

∏
i′>i

f̃i′(zi′ , zi′−1) =

∫
zi

βi(zi)̃fi(zi , zi−1) =
1

αi−1(zi−1)

∫
zi

P̃(zi−1, zi)

zi−1

zi

αi−1

βi
f

q¬i

zi−1

zi

P̂

P̃

NLSSM EP message updates

f̃i(zi , zi−1) = argmin
f∈N

KL
[
ϕi(zi , zi−1)ψi(zi)αi−1(zi−1)βi(zi)︸ ︷︷ ︸

P̂(zi−1,zi)

∥∥f (zi , zi−1)αi−1(zi−1)βi(zi)︸ ︷︷ ︸
P(zi−1,zi)

]

P̃(zi−1, zi) = argmin
P∈N

KL
[
P̂(zi−1, zi)

∥∥P(zi−1, zi)
]

f̃i(zi , zi−1) =
P̃(zi−1, zi)

αi−1(zi−1)βi(zi)

αi(zi) =

∫
z1...zi−1

∏
i′<i+1

f̃i′(zi′ , zi′−1) =

∫
zi−1

αi−1(zi−1)̃fi(zi , zi−1) =
1

βi(zi)

∫
zi−1

P̃(zi−1, zi)

βi−1(zi−1) =

∫
zi+1...zi

∏
i′>i

f̃i′(zi′ , zi′−1) =

∫
zi

βi(zi)̃fi(zi , zi−1) =
1

αi−1(zi−1)

∫
zi

P̃(zi−1, zi)

zi−1

zi

αi−1

βi
f

q¬i

P̂

zi−1

zi

P̂

P̃

NLSSM EP message updates

f̃i(zi , zi−1) = argmin
f∈N

KL
[
ϕi(zi , zi−1)ψi(zi)αi−1(zi−1)βi(zi)︸ ︷︷ ︸

P̂(zi−1,zi)

∥∥f (zi , zi−1)αi−1(zi−1)βi(zi)︸ ︷︷ ︸
P(zi−1,zi)

]

P̃(zi−1, zi) = argmin
P∈N

KL
[
P̂(zi−1, zi)

∥∥P(zi−1, zi)
]

f̃i(zi , zi−1) =
P̃(zi−1, zi)

αi−1(zi−1)βi(zi)

αi(zi) =

∫
z1...zi−1

∏
i′<i+1

f̃i′(zi′ , zi′−1) =

∫
zi−1

αi−1(zi−1)̃fi(zi , zi−1) =
1

βi(zi)

∫
zi−1

P̃(zi−1, zi)

βi−1(zi−1) =

∫
zi+1...zi

∏
i′>i

f̃i′(zi′ , zi′−1) =

∫
zi

βi(zi)̃fi(zi , zi−1) =
1

αi−1(zi−1)

∫
zi

P̃(zi−1, zi)

zi−1

zi

αi−1

βi
f

q¬i

P̂

zi−1

zi

P̂

P̃

NLSSM EP message updates

f̃i(zi , zi−1) = argmin
f∈N

KL
[
ϕi(zi , zi−1)ψi(zi)αi−1(zi−1)βi(zi)︸ ︷︷ ︸

P̂(zi−1,zi)

∥∥f (zi , zi−1)αi−1(zi−1)βi(zi)︸ ︷︷ ︸
P(zi−1,zi)

]

P̃(zi−1, zi) = argmin
P∈N

KL
[
P̂(zi−1, zi)

∥∥P(zi−1, zi)
]

f̃i(zi , zi−1) =
P̃(zi−1, zi)

αi−1(zi−1)βi(zi)

αi(zi) =

∫
z1...zi−1

∏
i′<i+1

f̃i′(zi′ , zi′−1) =

∫
zi−1

αi−1(zi−1)̃fi(zi , zi−1) =
1

βi(zi)

∫
zi−1

P̃(zi−1, zi)

βi−1(zi−1) =

∫
zi+1...zi

∏
i′>i

f̃i′(zi′ , zi′−1) =

∫
zi

βi(zi)̃fi(zi , zi−1) =
1

αi−1(zi−1)

∫
zi

P̃(zi−1, zi)

zi−1

zi

αi−1

βi
f

q¬i

P̂

zi−1

zi

P̂

P̃

NLSSM EP message updates

f̃i(zi , zi−1) = argmin
f∈N

KL
[
ϕi(zi , zi−1)ψi(zi)αi−1(zi−1)βi(zi)︸ ︷︷ ︸

P̂(zi−1,zi)

∥∥f (zi , zi−1)αi−1(zi−1)βi(zi)︸ ︷︷ ︸
P(zi−1,zi)

]

P̃(zi−1, zi) = argmin
P∈N

KL
[
P̂(zi−1, zi)

∥∥P(zi−1, zi)
]

f̃i(zi , zi−1) =
P̃(zi−1, zi)

αi−1(zi−1)βi(zi)

αi(zi) =

∫
z1...zi−1

∏
i′<i+1

f̃i′(zi′ , zi′−1) =

∫
zi−1

αi−1(zi−1)̃fi(zi , zi−1) =
1

βi(zi)

∫
zi−1

P̃(zi−1, zi)

βi−1(zi−1) =

∫
zi+1...zi

∏
i′>i

f̃i′(zi′ , zi′−1) =

∫
zi

βi(zi)̃fi(zi , zi−1) =
1

αi−1(zi−1)

∫
zi

P̃(zi−1, zi)

zi−1

zi

αi−1

βi
f

q¬i

P̂

zi−1

zi

P̂

P̃

βi−1

αi

Moment Matching

Each EP update involves a KL minimisation:

f̃ newi (Z)← argmin
f∈{̃f}

KL[fi(Zi)q¬i(Z)∥f (Zi)q¬i(Z)]

Usually, both q¬i(Zi) and f̃ are in the same exponential family. Let q(x) = 1
Z(θ)eT(x)·θ . Then

argmin
q

KL
[
p(x)

∥∥q(x)
]
= argmin

θ
KL

[
p(x)

∥∥∥∥ 1
Z(θ)

eT(x)·θ
]

= argmin
θ
−
∫

dx p(x) log
1

Z(θ)
eT(x)·θ

= argmin
θ
−
∫

dx p(x)T(x) · θ + log Z(θ)

∂

∂θ
= −

∫
dx p(x)T(x) +

1
Z(θ)

∂

∂θ

∫
dx eT(x)·θ

= −⟨T(x)⟩p +
1

Z(θ)

∫
dx eT(x)·θT(x)

= −⟨T(x)⟩p + ⟨T(x)⟩q

So minimum is found by matching sufficient stats or moment matching.

Numerical issues

How do we calculate ⟨T(x)⟩P̂?

Often analytically tractable, but even if not requires a (relatively) low-dimensional integral:

▶ Quadrature methods.

▶ Classical Gaussian quadrature (same Gauss, but nothing to do with the
distribution) gives an iterative version of Sigma-point methods.

▶ Positive definite joints, but not guaranteed to give positive definite messages.
▶ Heuristics include skipping non-positive-definite steps, or damping messages by

interpolation or exponentiating to power < 1.
▶ Other quadrature approaches (e.g. GP quadrature) may be more accurate, and

may allow formal constraint to pos-def cone.

▶ Laplace approximation.

▶ Equivalent to Laplace propagation.
▶ As long as messages remain positive definite will converge to global Laplace

approximation.

Numerical issues

How do we calculate ⟨T(x)⟩P̂?

Often analytically tractable, but even if not requires a (relatively) low-dimensional integral:
▶ Quadrature methods.

▶ Classical Gaussian quadrature (same Gauss, but nothing to do with the
distribution) gives an iterative version of Sigma-point methods.

▶ Positive definite joints, but not guaranteed to give positive definite messages.
▶ Heuristics include skipping non-positive-definite steps, or damping messages by

interpolation or exponentiating to power < 1.
▶ Other quadrature approaches (e.g. GP quadrature) may be more accurate, and

may allow formal constraint to pos-def cone.

▶ Laplace approximation.

▶ Equivalent to Laplace propagation.
▶ As long as messages remain positive definite will converge to global Laplace

approximation.

Numerical issues

How do we calculate ⟨T(x)⟩P̂?

Often analytically tractable, but even if not requires a (relatively) low-dimensional integral:
▶ Quadrature methods.

▶ Classical Gaussian quadrature (same Gauss, but nothing to do with the
distribution) gives an iterative version of Sigma-point methods.

▶ Positive definite joints, but not guaranteed to give positive definite messages.
▶ Heuristics include skipping non-positive-definite steps, or damping messages by

interpolation or exponentiating to power < 1.
▶ Other quadrature approaches (e.g. GP quadrature) may be more accurate, and

may allow formal constraint to pos-def cone.

▶ Laplace approximation.

▶ Equivalent to Laplace propagation.
▶ As long as messages remain positive definite will converge to global Laplace

approximation.

Numerical issues

How do we calculate ⟨T(x)⟩P̂?

Often analytically tractable, but even if not requires a (relatively) low-dimensional integral:
▶ Quadrature methods.

▶ Classical Gaussian quadrature (same Gauss, but nothing to do with the
distribution) gives an iterative version of Sigma-point methods.

▶ Positive definite joints, but not guaranteed to give positive definite messages.

▶ Heuristics include skipping non-positive-definite steps, or damping messages by
interpolation or exponentiating to power < 1.

▶ Other quadrature approaches (e.g. GP quadrature) may be more accurate, and
may allow formal constraint to pos-def cone.

▶ Laplace approximation.

▶ Equivalent to Laplace propagation.
▶ As long as messages remain positive definite will converge to global Laplace

approximation.

Numerical issues

How do we calculate ⟨T(x)⟩P̂?

Often analytically tractable, but even if not requires a (relatively) low-dimensional integral:
▶ Quadrature methods.

▶ Classical Gaussian quadrature (same Gauss, but nothing to do with the
distribution) gives an iterative version of Sigma-point methods.

▶ Positive definite joints, but not guaranteed to give positive definite messages.
▶ Heuristics include skipping non-positive-definite steps, or damping messages by

interpolation or exponentiating to power < 1.

▶ Other quadrature approaches (e.g. GP quadrature) may be more accurate, and
may allow formal constraint to pos-def cone.

▶ Laplace approximation.

▶ Equivalent to Laplace propagation.
▶ As long as messages remain positive definite will converge to global Laplace

approximation.

Numerical issues

How do we calculate ⟨T(x)⟩P̂?

Often analytically tractable, but even if not requires a (relatively) low-dimensional integral:
▶ Quadrature methods.

▶ Classical Gaussian quadrature (same Gauss, but nothing to do with the
distribution) gives an iterative version of Sigma-point methods.

▶ Positive definite joints, but not guaranteed to give positive definite messages.
▶ Heuristics include skipping non-positive-definite steps, or damping messages by

interpolation or exponentiating to power < 1.
▶ Other quadrature approaches (e.g. GP quadrature) may be more accurate, and

may allow formal constraint to pos-def cone.

▶ Laplace approximation.

▶ Equivalent to Laplace propagation.
▶ As long as messages remain positive definite will converge to global Laplace

approximation.

Numerical issues

How do we calculate ⟨T(x)⟩P̂?

Often analytically tractable, but even if not requires a (relatively) low-dimensional integral:
▶ Quadrature methods.

▶ Classical Gaussian quadrature (same Gauss, but nothing to do with the
distribution) gives an iterative version of Sigma-point methods.

▶ Positive definite joints, but not guaranteed to give positive definite messages.
▶ Heuristics include skipping non-positive-definite steps, or damping messages by

interpolation or exponentiating to power < 1.
▶ Other quadrature approaches (e.g. GP quadrature) may be more accurate, and

may allow formal constraint to pos-def cone.

▶ Laplace approximation.

▶ Equivalent to Laplace propagation.
▶ As long as messages remain positive definite will converge to global Laplace

approximation.

Numerical issues

How do we calculate ⟨T(x)⟩P̂?

Often analytically tractable, but even if not requires a (relatively) low-dimensional integral:
▶ Quadrature methods.

▶ Classical Gaussian quadrature (same Gauss, but nothing to do with the
distribution) gives an iterative version of Sigma-point methods.

▶ Positive definite joints, but not guaranteed to give positive definite messages.
▶ Heuristics include skipping non-positive-definite steps, or damping messages by

interpolation or exponentiating to power < 1.
▶ Other quadrature approaches (e.g. GP quadrature) may be more accurate, and

may allow formal constraint to pos-def cone.

▶ Laplace approximation.
▶ Equivalent to Laplace propagation.

▶ As long as messages remain positive definite will converge to global Laplace
approximation.

Numerical issues

How do we calculate ⟨T(x)⟩P̂?

Often analytically tractable, but even if not requires a (relatively) low-dimensional integral:
▶ Quadrature methods.

▶ Classical Gaussian quadrature (same Gauss, but nothing to do with the
distribution) gives an iterative version of Sigma-point methods.

▶ Positive definite joints, but not guaranteed to give positive definite messages.
▶ Heuristics include skipping non-positive-definite steps, or damping messages by

interpolation or exponentiating to power < 1.
▶ Other quadrature approaches (e.g. GP quadrature) may be more accurate, and

may allow formal constraint to pos-def cone.

▶ Laplace approximation.
▶ Equivalent to Laplace propagation.
▶ As long as messages remain positive definite will converge to global Laplace

approximation.

EP for Gaussian process classification
EP provides a succesful framework for Gaussian-process modelling of non-Gaussian
observations (e.g. for classification).

g1 g2 g3 gn• • •

x1 x2 x3 xn• • •

K

y1 y2 y3 yn

x′

g′

y ′

Recall:

▶ A GP defines a multivariate Gaussian distribution on any finite subset of random vars
{g1 . . . gn} drawn from a (usually uncountable) potential set indexed by “inputs” xi .

▶ The Gaussian parameters depend on the inputs: (µ = [µ(xi)], Σ = [K (xi , xj)]).
▶ If we think of the gs as function values, a GP provides a prior over functions.
▶ In a GP regression model, noisy observations yi are conditionally independent given gi .
▶ No parameters to learn (though often hyperparameters); instead, we make predictions

on test data directly: [assuming µ = 0, and matrix Σ incorporates diagonal noise]

P(y ′|x′,D) = N
(
Σx′,XΣ

−1
X,X z, Σx′,x′ − Σx′,XΣ

−1
X,XΣX,x′

)

EP for Gaussian process classification
EP provides a succesful framework for Gaussian-process modelling of non-Gaussian
observations (e.g. for classification).

g1 g2 g3 gn• • •

x1 x2 x3 xn• • •

K

y1 y2 y3 yn

x′

g′

y ′

Recall:
▶ A GP defines a multivariate Gaussian distribution on any finite subset of random vars
{g1 . . . gn} drawn from a (usually uncountable) potential set indexed by “inputs” xi .

▶ The Gaussian parameters depend on the inputs: (µ = [µ(xi)], Σ = [K (xi , xj)]).
▶ If we think of the gs as function values, a GP provides a prior over functions.
▶ In a GP regression model, noisy observations yi are conditionally independent given gi .
▶ No parameters to learn (though often hyperparameters); instead, we make predictions

on test data directly: [assuming µ = 0, and matrix Σ incorporates diagonal noise]

P(y ′|x′,D) = N
(
Σx′,XΣ

−1
X,X z, Σx′,x′ − Σx′,XΣ

−1
X,XΣX,x′

)

EP for Gaussian process classification
EP provides a succesful framework for Gaussian-process modelling of non-Gaussian
observations (e.g. for classification).

g1 g2 g3 gn• • •

x1 x2 x3 xn• • •

K

y1 y2 y3 yn

x′

g′

y ′

Recall:
▶ A GP defines a multivariate Gaussian distribution on any finite subset of random vars
{g1 . . . gn} drawn from a (usually uncountable) potential set indexed by “inputs” xi .

▶ The Gaussian parameters depend on the inputs: (µ = [µ(xi)], Σ = [K (xi , xj)]).

▶ If we think of the gs as function values, a GP provides a prior over functions.
▶ In a GP regression model, noisy observations yi are conditionally independent given gi .
▶ No parameters to learn (though often hyperparameters); instead, we make predictions

on test data directly: [assuming µ = 0, and matrix Σ incorporates diagonal noise]

P(y ′|x′,D) = N
(
Σx′,XΣ

−1
X,X z, Σx′,x′ − Σx′,XΣ

−1
X,XΣX,x′

)

EP for Gaussian process classification
EP provides a succesful framework for Gaussian-process modelling of non-Gaussian
observations (e.g. for classification).

g1 g2 g3 gn• • •

x1 x2 x3 xn• • •

K

y1 y2 y3 yn

x′

g′

y ′

Recall:
▶ A GP defines a multivariate Gaussian distribution on any finite subset of random vars
{g1 . . . gn} drawn from a (usually uncountable) potential set indexed by “inputs” xi .

▶ The Gaussian parameters depend on the inputs: (µ = [µ(xi)], Σ = [K (xi , xj)]).
▶ If we think of the gs as function values, a GP provides a prior over functions.

▶ In a GP regression model, noisy observations yi are conditionally independent given gi .
▶ No parameters to learn (though often hyperparameters); instead, we make predictions

on test data directly: [assuming µ = 0, and matrix Σ incorporates diagonal noise]

P(y ′|x′,D) = N
(
Σx′,XΣ

−1
X,X z, Σx′,x′ − Σx′,XΣ

−1
X,XΣX,x′

)

EP for Gaussian process classification
EP provides a succesful framework for Gaussian-process modelling of non-Gaussian
observations (e.g. for classification).

g1 g2 g3 gn• • •

x1 x2 x3 xn• • •

K

y1 y2 y3 yn

x′

g′

y ′

Recall:
▶ A GP defines a multivariate Gaussian distribution on any finite subset of random vars
{g1 . . . gn} drawn from a (usually uncountable) potential set indexed by “inputs” xi .

▶ The Gaussian parameters depend on the inputs: (µ = [µ(xi)], Σ = [K (xi , xj)]).
▶ If we think of the gs as function values, a GP provides a prior over functions.
▶ In a GP regression model, noisy observations yi are conditionally independent given gi .

▶ No parameters to learn (though often hyperparameters); instead, we make predictions
on test data directly: [assuming µ = 0, and matrix Σ incorporates diagonal noise]

P(y ′|x′,D) = N
(
Σx′,XΣ

−1
X,X z, Σx′,x′ − Σx′,XΣ

−1
X,XΣX,x′

)

EP for Gaussian process classification
EP provides a succesful framework for Gaussian-process modelling of non-Gaussian
observations (e.g. for classification).

g1 g2 g3 gn• • •

x1 x2 x3 xn• • •

K

y1 y2 y3 yn

x′

g′

y ′

Recall:
▶ A GP defines a multivariate Gaussian distribution on any finite subset of random vars
{g1 . . . gn} drawn from a (usually uncountable) potential set indexed by “inputs” xi .

▶ The Gaussian parameters depend on the inputs: (µ = [µ(xi)], Σ = [K (xi , xj)]).
▶ If we think of the gs as function values, a GP provides a prior over functions.
▶ In a GP regression model, noisy observations yi are conditionally independent given gi .
▶ No parameters to learn (though often hyperparameters); instead, we make predictions

on test data directly: [assuming µ = 0, and matrix Σ incorporates diagonal noise]

P(y ′|x′,D) = N
(
Σx′,XΣ

−1
X,X z, Σx′,x′ − Σx′,XΣ

−1
X,XΣX,x′

)

GP EP updates

g1 g2 g3 gn• • •

y1 y2 y3 yn

▶ We can write the GP joint on gi and yi as a factor graph:

P(g1 . . . gn, y1, . . . yn) = N (g1 . . . gn|0,K)
∏

i

N
(
yi |gi , σ

2
i

)

▶ The same factorisation applies to non-Gaussian P(yi |gi) (e.g. P(yi =1) = 1/(1 + e−gi)).

▶ EP: approximate non-Gaussian fi(gi) by Gaussian f̃i(gi) = N
(
µ̃i , ψ̃

2
i

)
.

▶ q¬i(gi) can be constructed by the usual GP marginalisation. If Σ = K + diag
[
ψ̃2

1 . . . ψ̃
2
n

]
q¬i(gi) = N

(
Σi,¬iΣ

−1
¬i,¬iµ̃¬i , Ki,i − Σi,¬iΣ

−1
¬i,¬iΣ¬i,i

)
▶ The EP updates thus require calculating Gaussian expectations of fi(g)g{1,2}:

f̃ new
i (gi) = N

(∫
dg q¬i(g)fi(g)g,

∫
dg q¬i(g)fi(g)g

2 − (µ̃new
i)2

)/
q¬i(gi)

GP EP updates

g1 g2 g3 gn• • •

y1 y2 y3 yn

▶ We can write the GP joint on gi and yi as a factor graph:

P(g1 . . . gn, y1, . . . yn) = N (g1 . . . gn|0,K)︸ ︷︷ ︸
f0(G)

∏
i

N
(
yi |gi , σ

2
i

)
︸ ︷︷ ︸

fi(gi)

▶ The same factorisation applies to non-Gaussian P(yi |gi) (e.g. P(yi =1) = 1/(1 + e−gi)).

▶ EP: approximate non-Gaussian fi(gi) by Gaussian f̃i(gi) = N
(
µ̃i , ψ̃

2
i

)
.

▶ q¬i(gi) can be constructed by the usual GP marginalisation. If Σ = K + diag
[
ψ̃2

1 . . . ψ̃
2
n

]
q¬i(gi) = N

(
Σi,¬iΣ

−1
¬i,¬iµ̃¬i , Ki,i − Σi,¬iΣ

−1
¬i,¬iΣ¬i,i

)
▶ The EP updates thus require calculating Gaussian expectations of fi(g)g{1,2}:

f̃ new
i (gi) = N

(∫
dg q¬i(g)fi(g)g,

∫
dg q¬i(g)fi(g)g

2 − (µ̃new
i)2

)/
q¬i(gi)

GP EP updates

g1 g2 g3 gn• • •

y1 y2 y3 yn

▶ We can write the GP joint on gi and yi as a factor graph:

P(g1 . . . gn, y1, . . . yn) = N (g1 . . . gn|0,K)︸ ︷︷ ︸
f0(G)

∏
i

N
(
yi |gi , σ

2
i

)
︸ ︷︷ ︸

fi(gi)

▶ The same factorisation applies to non-Gaussian P(yi |gi) (e.g. P(yi =1) = 1/(1 + e−gi)).

▶ EP: approximate non-Gaussian fi(gi) by Gaussian f̃i(gi) = N
(
µ̃i , ψ̃

2
i

)
.

▶ q¬i(gi) can be constructed by the usual GP marginalisation. If Σ = K + diag
[
ψ̃2

1 . . . ψ̃
2
n

]
q¬i(gi) = N

(
Σi,¬iΣ

−1
¬i,¬iµ̃¬i , Ki,i − Σi,¬iΣ

−1
¬i,¬iΣ¬i,i

)
▶ The EP updates thus require calculating Gaussian expectations of fi(g)g{1,2}:

f̃ new
i (gi) = N

(∫
dg q¬i(g)fi(g)g,

∫
dg q¬i(g)fi(g)g

2 − (µ̃new
i)2

)/
q¬i(gi)

GP EP updates

g1 g2 g3 gn• • •

y1 y2 y3 yn

▶ We can write the GP joint on gi and yi as a factor graph:

P(g1 . . . gn, y1, . . . yn) = N (g1 . . . gn|0,K)︸ ︷︷ ︸
f0(G)

∏
i

N
(
yi |gi , σ

2
i

)
︸ ︷︷ ︸

fi(gi)

▶ The same factorisation applies to non-Gaussian P(yi |gi) (e.g. P(yi =1) = 1/(1 + e−gi)).

▶ EP: approximate non-Gaussian fi(gi) by Gaussian f̃i(gi) = N
(
µ̃i , ψ̃

2
i

)
.

▶ q¬i(gi) can be constructed by the usual GP marginalisation. If Σ = K + diag
[
ψ̃2

1 . . . ψ̃
2
n

]
q¬i(gi) = N

(
Σi,¬iΣ

−1
¬i,¬iµ̃¬i , Ki,i − Σi,¬iΣ

−1
¬i,¬iΣ¬i,i

)
▶ The EP updates thus require calculating Gaussian expectations of fi(g)g{1,2}:

f̃ new
i (gi) = N

(∫
dg q¬i(g)fi(g)g,

∫
dg q¬i(g)fi(g)g

2 − (µ̃new
i)2

)/
q¬i(gi)

GP EP updates

g1 g2 g3 gn• • •

y1 y2 y3 yn

▶ We can write the GP joint on gi and yi as a factor graph:

P(g1 . . . gn, y1, . . . yn) = N (g1 . . . gn|0,K)︸ ︷︷ ︸
f0(G)

∏
i

N
(
yi |gi , σ

2
i

)
︸ ︷︷ ︸

fi(gi)

▶ The same factorisation applies to non-Gaussian P(yi |gi) (e.g. P(yi =1) = 1/(1 + e−gi)).

▶ EP: approximate non-Gaussian fi(gi) by Gaussian f̃i(gi) = N
(
µ̃i , ψ̃

2
i

)
.

▶ q¬i(gi) can be constructed by the usual GP marginalisation. If Σ = K + diag
[
ψ̃2

1 . . . ψ̃
2
n

]
q¬i(gi) = N

(
Σi,¬iΣ

−1
¬i,¬iµ̃¬i , Ki,i − Σi,¬iΣ

−1
¬i,¬iΣ¬i,i

)

▶ The EP updates thus require calculating Gaussian expectations of fi(g)g{1,2}:

f̃ new
i (gi) = N

(∫
dg q¬i(g)fi(g)g,

∫
dg q¬i(g)fi(g)g

2 − (µ̃new
i)2

)/
q¬i(gi)

GP EP updates

g1 g2 g3 gn• • •

y1 y2 y3 yn

▶ We can write the GP joint on gi and yi as a factor graph:

P(g1 . . . gn, y1, . . . yn) = N (g1 . . . gn|0,K)︸ ︷︷ ︸
f0(G)

∏
i

N
(
yi |gi , σ

2
i

)
︸ ︷︷ ︸

fi(gi)

▶ The same factorisation applies to non-Gaussian P(yi |gi) (e.g. P(yi =1) = 1/(1 + e−gi)).

▶ EP: approximate non-Gaussian fi(gi) by Gaussian f̃i(gi) = N
(
µ̃i , ψ̃

2
i

)
.

▶ q¬i(gi) can be constructed by the usual GP marginalisation. If Σ = K + diag
[
ψ̃2

1 . . . ψ̃
2
n

]
q¬i(gi) = N

(
Σi,¬iΣ

−1
¬i,¬iµ̃¬i , Ki,i − Σi,¬iΣ

−1
¬i,¬iΣ¬i,i

)
▶ The EP updates thus require calculating Gaussian expectations of fi(g)g{1,2}:

f̃ new
i (gi) = N

(∫
dg q¬i(g)fi(g)g,

∫
dg q¬i(g)fi(g)g

2 − (µ̃new
i)2

)/
q¬i(gi)

EP GP prediction

x1 x2 x3 xn• • •

K

g1 g2 g3 gn• • •

y1 y2 y3 yn

x′

g′

y ′

▶ Once appoximate site potentials have stabilised, they can be used to make predictions.

▶ Introducing a test point changes K , but does not affect the marginal P(g1 . . . gn) (by
consistency of the GP).

▶ The unobserved output factor provides no information about g′ (⇒ constant factor on g′)
▶ Thus no change is needed to the approximating potentials f̃i .

▶ Predictions are obtained by marginalising the approximation: [let Ψ̃ = diag
[
ψ̃2

1 . . . ψ̃
2
n

]
]

P(y ′|x′,D) =
∫

dg′ P(y ′|g′)N
(

g′ | K x′,X (K X,X + Ψ̃)−1µ̃,

K x′,x′ − K x′,X (K X,X + Ψ̃)−1K X,x′

)

EP GP prediction

x1 x2 x3 xn• • •

K

g1 g2 g3 gn• • •

y1 y2 y3 yn

x′

g′

y ′

▶ Once appoximate site potentials have stabilised, they can be used to make predictions.
▶ Introducing a test point changes K , but does not affect the marginal P(g1 . . . gn) (by

consistency of the GP).

▶ The unobserved output factor provides no information about g′ (⇒ constant factor on g′)
▶ Thus no change is needed to the approximating potentials f̃i .

▶ Predictions are obtained by marginalising the approximation: [let Ψ̃ = diag
[
ψ̃2

1 . . . ψ̃
2
n

]
]

P(y ′|x′,D) =
∫

dg′ P(y ′|g′)N
(

g′ | K x′,X (K X,X + Ψ̃)−1µ̃,

K x′,x′ − K x′,X (K X,X + Ψ̃)−1K X,x′

)

EP GP prediction

x1 x2 x3 xn• • •

K

g1 g2 g3 gn• • •

y1 y2 y3 yn

x′

g′

y ′

▶ Once appoximate site potentials have stabilised, they can be used to make predictions.
▶ Introducing a test point changes K , but does not affect the marginal P(g1 . . . gn) (by

consistency of the GP).
▶ The unobserved output factor provides no information about g′ (⇒ constant factor on g′)

▶ Thus no change is needed to the approximating potentials f̃i .

▶ Predictions are obtained by marginalising the approximation: [let Ψ̃ = diag
[
ψ̃2

1 . . . ψ̃
2
n

]
]

P(y ′|x′,D) =
∫

dg′ P(y ′|g′)N
(

g′ | K x′,X (K X,X + Ψ̃)−1µ̃,

K x′,x′ − K x′,X (K X,X + Ψ̃)−1K X,x′

)

EP GP prediction

x1 x2 x3 xn• • •

K

g1 g2 g3 gn• • •

y1 y2 y3 yn

x′

g′

y ′

▶ Once appoximate site potentials have stabilised, they can be used to make predictions.
▶ Introducing a test point changes K , but does not affect the marginal P(g1 . . . gn) (by

consistency of the GP).
▶ The unobserved output factor provides no information about g′ (⇒ constant factor on g′)
▶ Thus no change is needed to the approximating potentials f̃i .

▶ Predictions are obtained by marginalising the approximation: [let Ψ̃ = diag
[
ψ̃2

1 . . . ψ̃
2
n

]
]

P(y ′|x′,D) =
∫

dg′ P(y ′|g′)N
(

g′ | K x′,X (K X,X + Ψ̃)−1µ̃,

K x′,x′ − K x′,X (K X,X + Ψ̃)−1K X,x′

)

EP GP prediction

x1 x2 x3 xn• • •

K

g1 g2 g3 gn• • •

y1 y2 y3 yn

x′

g′

y ′

▶ Once appoximate site potentials have stabilised, they can be used to make predictions.
▶ Introducing a test point changes K , but does not affect the marginal P(g1 . . . gn) (by

consistency of the GP).
▶ The unobserved output factor provides no information about g′ (⇒ constant factor on g′)
▶ Thus no change is needed to the approximating potentials f̃i .

▶ Predictions are obtained by marginalising the approximation: [let Ψ̃ = diag
[
ψ̃2

1 . . . ψ̃
2
n

]
]

P(y ′|x′,D) =
∫

dg′ P(y ′|g′)N
(

g′ | K x′,X (K X,X + Ψ̃)−1µ̃,

K x′,x′ − K x′,X (K X,X + Ψ̃)−1K X,x′

)

Normalisers

▶ As long as our approximating class is a tractable exponential family, normalisers can be
computed as needed.

▶ Consider an approximating class written

f̃i(Zi) ∝ eT(Z)·θi−Φ(θi)

i.e., define a single sufficient statistic vector on all latents, setting entries in θi to 0 for
suff stat functions that take cliques other than Zi .

▶ Then

q(Z) ∝
∏

i

f̃i ∝ eT (Z)·
∑

θi−
∑

Φ(θi)

and so we can simply renormalise at the end as usual:

q(Z) = eT (Z)·
∑

θi−Φ(
∑

θi) .

▶ However, to compute an approximation to the likelihood
∫

dZ
∏

i fi(Zi) we need to keep
track of the site integrals.

Normalisers

▶ As long as our approximating class is a tractable exponential family, normalisers can be
computed as needed.

▶ Consider an approximating class written

f̃i(Zi) ∝ eT(Z)·θi−Φ(θi)

i.e., define a single sufficient statistic vector on all latents, setting entries in θi to 0 for
suff stat functions that take cliques other than Zi .

▶ Then

q(Z) ∝
∏

i

f̃i ∝ eT (Z)·
∑

θi−
∑

Φ(θi)

and so we can simply renormalise at the end as usual:

q(Z) = eT (Z)·
∑

θi−Φ(
∑

θi) .

▶ However, to compute an approximation to the likelihood
∫

dZ
∏

i fi(Zi) we need to keep
track of the site integrals.

Normalisers

▶ As long as our approximating class is a tractable exponential family, normalisers can be
computed as needed.

▶ Consider an approximating class written

f̃i(Zi) ∝ eT(Z)·θi−Φ(θi)

i.e., define a single sufficient statistic vector on all latents, setting entries in θi to 0 for
suff stat functions that take cliques other than Zi .

▶ Then

q(Z) ∝
∏

i

f̃i ∝ eT (Z)·
∑

θi−
∑

Φ(θi)

and so we can simply renormalise at the end as usual:

q(Z) = eT (Z)·
∑

θi−Φ(
∑

θi) .

▶ However, to compute an approximation to the likelihood
∫

dZ
∏

i fi(Zi) we need to keep
track of the site integrals.

Normalisers

▶ As long as our approximating class is a tractable exponential family, normalisers can be
computed as needed.

▶ Consider an approximating class written

f̃i(Zi) ∝ eT(Z)·θi−Φ(θi)

i.e., define a single sufficient statistic vector on all latents, setting entries in θi to 0 for
suff stat functions that take cliques other than Zi .

▶ Then

q(Z) ∝
∏

i

f̃i ∝ eT (Z)·
∑

θi−
∑

Φ(θi)

and so we can simply renormalise at the end as usual:

q(Z) = eT (Z)·
∑

θi−Φ(
∑

θi) .

▶ However, to compute an approximation to the likelihood
∫

dZ
∏

i fi(Zi) we need to keep
track of the site integrals.

Computing likelihoods – keeping track of normalisers
▶ Define unnormalised ExpFam approximating sites f̃i = C̃i eT(Z)·θi .

Write θ =
∑

θj for the natural parameters of q(Z) and θ¬i =
∑

j ̸=i θj for the natural
parameters of q¬i(Z).

Let Φ(θ) = log
∫

eT(Z)·θ be the (tractable) ExpFam log normaliser.

▶ Now, at each EP step minimise the “unnormalised KL”:

KL[p∥q] =
∫

dx p(x) log
p(x)
q(x)

+

∫
dx

(
q(x)− p(x)

)
This matches the zeroth moment of fi(Zi)q¬i(Z) as well as the expected sufficient
statistics as before. That is:∫

C̃i e
T(Z)·θi

∏
¬i

C̃j e
T(Z)·θj =

∫
fi(Zi)

∏
¬i

C̃j e
T(Z)·θj ⇒ C̃i = eΦi (θ¬i)−Φ(θ)

where Φi is the log-normaliser of the “tilted” ExpFam P̂i(Z) ∝ f (Zi)eT(Z)·θ .
▶ The likelihood approximation is then:

log

∫ N∏
i=1

fi(Zi) ≈ log

∫ N∏
i=1

f̃i(Zi) = Φ(θ) +
∑

log C̃i
def
= ℓ̃

Computing likelihoods – keeping track of normalisers
▶ Define unnormalised ExpFam approximating sites f̃i = C̃i eT(Z)·θi .

Write θ =
∑

θj for the natural parameters of q(Z) and θ¬i =
∑

j ̸=i θj for the natural
parameters of q¬i(Z).

Let Φ(θ) = log
∫

eT(Z)·θ be the (tractable) ExpFam log normaliser.
▶ Now, at each EP step minimise the “unnormalised KL”:

KL[p∥q] =
∫

dx p(x) log
p(x)
q(x)

+

∫
dx

(
q(x)− p(x)

)
This matches the zeroth moment of fi(Zi)q¬i(Z) as well as the expected sufficient
statistics as before. That is:∫

C̃i e
T(Z)·θi

∏
¬i

C̃j e
T(Z)·θj =

∫
fi(Zi)

∏
¬i

C̃j e
T(Z)·θj ⇒ C̃i = eΦi (θ¬i)−Φ(θ)

where Φi is the log-normaliser of the “tilted” ExpFam P̂i(Z) ∝ f (Zi)eT(Z)·θ .

▶ The likelihood approximation is then:

log

∫ N∏
i=1

fi(Zi) ≈ log

∫ N∏
i=1

f̃i(Zi) = Φ(θ) +
∑

log C̃i
def
= ℓ̃

Computing likelihoods – keeping track of normalisers
▶ Define unnormalised ExpFam approximating sites f̃i = C̃i eT(Z)·θi .

Write θ =
∑

θj for the natural parameters of q(Z) and θ¬i =
∑

j ̸=i θj for the natural
parameters of q¬i(Z).

Let Φ(θ) = log
∫

eT(Z)·θ be the (tractable) ExpFam log normaliser.
▶ Now, at each EP step minimise the “unnormalised KL”:

KL[p∥q] =
∫

dx p(x) log
p(x)
q(x)

+

∫
dx

(
q(x)− p(x)

)
This matches the zeroth moment of fi(Zi)q¬i(Z) as well as the expected sufficient
statistics as before. That is:∫

C̃i e
T(Z)·θi

∏
¬i

C̃j e
T(Z)·θj =

∫
fi(Zi)

∏
¬i

C̃j e
T(Z)·θj ⇒ C̃i = eΦi (θ¬i)−Φ(θ)

where Φi is the log-normaliser of the “tilted” ExpFam P̂i(Z) ∝ f (Zi)eT(Z)·θ .
▶ The likelihood approximation is then:

log

∫ N∏
i=1

fi(Zi) ≈ log

∫ N∏
i=1

f̃i(Zi) = Φ(θ) +
∑

log C̃i
def
= ℓ̃

Learning

EP yields approximate inferential posteriors. To learn (hyper)parameters we can use:

▶ Approximate Bayesian inference (analagous to VB)

▶ may be difficult to construct a coherent normalisable exponential family
approximation on both latents and parameters.

▶ Approximate EM – maximize ⟨log P(X ,Z)⟩qEP (Z).

▶ Practical, but no coherent cost function (unlike variational inference), so no
guarantee of convergence even if EP itself converges.

▶ Direct maximisation of EP log-likelihood estimate.

▶ Consistent, although convergence guarantees still difficult.
▶ Seems challenging as we need to differentiate through (iteration-based)

dependence of approximate q(Z) and C̃i s.
▶ However, proves to be simpler than it sounds.

Learning

EP yields approximate inferential posteriors. To learn (hyper)parameters we can use:

▶ Approximate Bayesian inference (analagous to VB)
▶ may be difficult to construct a coherent normalisable exponential family

approximation on both latents and parameters.

▶ Approximate EM – maximize ⟨log P(X ,Z)⟩qEP (Z).

▶ Practical, but no coherent cost function (unlike variational inference), so no
guarantee of convergence even if EP itself converges.

▶ Direct maximisation of EP log-likelihood estimate.

▶ Consistent, although convergence guarantees still difficult.
▶ Seems challenging as we need to differentiate through (iteration-based)

dependence of approximate q(Z) and C̃i s.
▶ However, proves to be simpler than it sounds.

Learning

EP yields approximate inferential posteriors. To learn (hyper)parameters we can use:

▶ Approximate Bayesian inference (analagous to VB)
▶ may be difficult to construct a coherent normalisable exponential family

approximation on both latents and parameters.

▶ Approximate EM – maximize ⟨log P(X ,Z)⟩qEP (Z).

▶ Practical, but no coherent cost function (unlike variational inference), so no
guarantee of convergence even if EP itself converges.

▶ Direct maximisation of EP log-likelihood estimate.

▶ Consistent, although convergence guarantees still difficult.
▶ Seems challenging as we need to differentiate through (iteration-based)

dependence of approximate q(Z) and C̃i s.
▶ However, proves to be simpler than it sounds.

Learning

EP yields approximate inferential posteriors. To learn (hyper)parameters we can use:

▶ Approximate Bayesian inference (analagous to VB)
▶ may be difficult to construct a coherent normalisable exponential family

approximation on both latents and parameters.

▶ Approximate EM – maximize ⟨log P(X ,Z)⟩qEP (Z).
▶ Practical, but no coherent cost function (unlike variational inference), so no

guarantee of convergence even if EP itself converges.

▶ Direct maximisation of EP log-likelihood estimate.

▶ Consistent, although convergence guarantees still difficult.
▶ Seems challenging as we need to differentiate through (iteration-based)

dependence of approximate q(Z) and C̃i s.
▶ However, proves to be simpler than it sounds.

Learning

EP yields approximate inferential posteriors. To learn (hyper)parameters we can use:

▶ Approximate Bayesian inference (analagous to VB)
▶ may be difficult to construct a coherent normalisable exponential family

approximation on both latents and parameters.

▶ Approximate EM – maximize ⟨log P(X ,Z)⟩qEP (Z).
▶ Practical, but no coherent cost function (unlike variational inference), so no

guarantee of convergence even if EP itself converges.

▶ Direct maximisation of EP log-likelihood estimate.

▶ Consistent, although convergence guarantees still difficult.
▶ Seems challenging as we need to differentiate through (iteration-based)

dependence of approximate q(Z) and C̃i s.
▶ However, proves to be simpler than it sounds.

Learning

EP yields approximate inferential posteriors. To learn (hyper)parameters we can use:

▶ Approximate Bayesian inference (analagous to VB)
▶ may be difficult to construct a coherent normalisable exponential family

approximation on both latents and parameters.

▶ Approximate EM – maximize ⟨log P(X ,Z)⟩qEP (Z).
▶ Practical, but no coherent cost function (unlike variational inference), so no

guarantee of convergence even if EP itself converges.

▶ Direct maximisation of EP log-likelihood estimate.
▶ Consistent, although convergence guarantees still difficult.

▶ Seems challenging as we need to differentiate through (iteration-based)
dependence of approximate q(Z) and C̃i s.

▶ However, proves to be simpler than it sounds.

Learning

EP yields approximate inferential posteriors. To learn (hyper)parameters we can use:

▶ Approximate Bayesian inference (analagous to VB)
▶ may be difficult to construct a coherent normalisable exponential family

approximation on both latents and parameters.

▶ Approximate EM – maximize ⟨log P(X ,Z)⟩qEP (Z).
▶ Practical, but no coherent cost function (unlike variational inference), so no

guarantee of convergence even if EP itself converges.

▶ Direct maximisation of EP log-likelihood estimate.
▶ Consistent, although convergence guarantees still difficult.
▶ Seems challenging as we need to differentiate through (iteration-based)

dependence of approximate q(Z) and C̃i s.

▶ However, proves to be simpler than it sounds.

Learning

EP yields approximate inferential posteriors. To learn (hyper)parameters we can use:

▶ Approximate Bayesian inference (analagous to VB)
▶ may be difficult to construct a coherent normalisable exponential family

approximation on both latents and parameters.

▶ Approximate EM – maximize ⟨log P(X ,Z)⟩qEP (Z).
▶ Practical, but no coherent cost function (unlike variational inference), so no

guarantee of convergence even if EP itself converges.

▶ Direct maximisation of EP log-likelihood estimate.
▶ Consistent, although convergence guarantees still difficult.
▶ Seems challenging as we need to differentiate through (iteration-based)

dependence of approximate q(Z) and C̃i s.
▶ However, proves to be simpler than it sounds.

EP log-likelihood optimisation for learning

Let true potentials fi depend on model (hyper)parameters η.

We have

∇η ℓ̃ = ∇ηΦ(θ) +
N∑

i=1

∇η log C̃i = µ · ∇ηθ +
N∑

i=1

∇η log C̃i (*)

using the standard ExpFam moment-generating result with mean parameters
µ = ⟨T (Z)⟩q(Z).
Now, zeroth-moment matching implies that at EP convergence:

log C̃i = Φi(θ¬i)− Φ(θ)⇒ ∇η log C̃i = ∇ηΦi(θ¬i)− µ · ∇ηθ (**)

but Φi(θ¬i) = log
∫

fi(Zi)eT(Z)·θ¬i depends on η in two ways: directly through fi and
indirectly through the converged θ¬i .

∇ηΦi(θ¬i) = ∂θ¬iΦi(θ¬i) · ∇ηθ¬i + e−Φi (θ¬i)

∫
∇η fi(Zi) eT(Z)·θ¬i dZ

= ⟨T (Z)⟩P̂i
· ∇ηθ¬i +

∫
∇η log fi(Zi) fi(Zi)e

T(Z)·θ¬i−Φi (θ¬i) dZ

= µ · ∇ηθ¬i + ⟨∇η log fi(Zi)⟩P̂i

by EP moment matching at convergence!

EP log-likelihood optimisation for learning

Let true potentials fi depend on model (hyper)parameters η.
We have

∇η ℓ̃ = ∇ηΦ(θ) +
N∑

i=1

∇η log C̃i

= µ · ∇ηθ +
N∑

i=1

∇η log C̃i (*)

using the standard ExpFam moment-generating result with mean parameters
µ = ⟨T (Z)⟩q(Z).
Now, zeroth-moment matching implies that at EP convergence:

log C̃i = Φi(θ¬i)− Φ(θ)⇒ ∇η log C̃i = ∇ηΦi(θ¬i)− µ · ∇ηθ (**)

but Φi(θ¬i) = log
∫

fi(Zi)eT(Z)·θ¬i depends on η in two ways: directly through fi and
indirectly through the converged θ¬i .

∇ηΦi(θ¬i) = ∂θ¬iΦi(θ¬i) · ∇ηθ¬i + e−Φi (θ¬i)

∫
∇η fi(Zi) eT(Z)·θ¬i dZ

= ⟨T (Z)⟩P̂i
· ∇ηθ¬i +

∫
∇η log fi(Zi) fi(Zi)e

T(Z)·θ¬i−Φi (θ¬i) dZ

= µ · ∇ηθ¬i + ⟨∇η log fi(Zi)⟩P̂i

by EP moment matching at convergence!

EP log-likelihood optimisation for learning

Let true potentials fi depend on model (hyper)parameters η.
We have

∇η ℓ̃ = ∇ηΦ(θ) +
N∑

i=1

∇η log C̃i = µ · ∇ηθ +
N∑

i=1

∇η log C̃i (*)

using the standard ExpFam moment-generating result with mean parameters
µ = ⟨T (Z)⟩q(Z).

Now, zeroth-moment matching implies that at EP convergence:

log C̃i = Φi(θ¬i)− Φ(θ)⇒ ∇η log C̃i = ∇ηΦi(θ¬i)− µ · ∇ηθ (**)

but Φi(θ¬i) = log
∫

fi(Zi)eT(Z)·θ¬i depends on η in two ways: directly through fi and
indirectly through the converged θ¬i .

∇ηΦi(θ¬i) = ∂θ¬iΦi(θ¬i) · ∇ηθ¬i + e−Φi (θ¬i)

∫
∇η fi(Zi) eT(Z)·θ¬i dZ

= ⟨T (Z)⟩P̂i
· ∇ηθ¬i +

∫
∇η log fi(Zi) fi(Zi)e

T(Z)·θ¬i−Φi (θ¬i) dZ

= µ · ∇ηθ¬i + ⟨∇η log fi(Zi)⟩P̂i

by EP moment matching at convergence!

EP log-likelihood optimisation for learning

Let true potentials fi depend on model (hyper)parameters η.
We have

∇η ℓ̃ = ∇ηΦ(θ) +
N∑

i=1

∇η log C̃i = µ · ∇ηθ +
N∑

i=1

∇η log C̃i (*)

using the standard ExpFam moment-generating result with mean parameters
µ = ⟨T (Z)⟩q(Z).
Now, zeroth-moment matching implies that at EP convergence:

log C̃i = Φi(θ¬i)− Φ(θ)

⇒ ∇η log C̃i = ∇ηΦi(θ¬i)− µ · ∇ηθ (**)

but Φi(θ¬i) = log
∫

fi(Zi)eT(Z)·θ¬i depends on η in two ways: directly through fi and
indirectly through the converged θ¬i .

∇ηΦi(θ¬i) = ∂θ¬iΦi(θ¬i) · ∇ηθ¬i + e−Φi (θ¬i)

∫
∇η fi(Zi) eT(Z)·θ¬i dZ

= ⟨T (Z)⟩P̂i
· ∇ηθ¬i +

∫
∇η log fi(Zi) fi(Zi)e

T(Z)·θ¬i−Φi (θ¬i) dZ

= µ · ∇ηθ¬i + ⟨∇η log fi(Zi)⟩P̂i

by EP moment matching at convergence!

EP log-likelihood optimisation for learning

Let true potentials fi depend on model (hyper)parameters η.
We have

∇η ℓ̃ = ∇ηΦ(θ) +
N∑

i=1

∇η log C̃i = µ · ∇ηθ +
N∑

i=1

∇η log C̃i (*)

using the standard ExpFam moment-generating result with mean parameters
µ = ⟨T (Z)⟩q(Z).
Now, zeroth-moment matching implies that at EP convergence:

log C̃i = Φi(θ¬i)− Φ(θ)⇒ ∇η log C̃i = ∇ηΦi(θ¬i)− µ · ∇ηθ (**)

but Φi(θ¬i) = log
∫

fi(Zi)eT(Z)·θ¬i depends on η in two ways: directly through fi and
indirectly through the converged θ¬i .

∇ηΦi(θ¬i) = ∂θ¬iΦi(θ¬i) · ∇ηθ¬i + e−Φi (θ¬i)

∫
∇η fi(Zi) eT(Z)·θ¬i dZ

= ⟨T (Z)⟩P̂i
· ∇ηθ¬i +

∫
∇η log fi(Zi) fi(Zi)e

T(Z)·θ¬i−Φi (θ¬i) dZ

= µ · ∇ηθ¬i + ⟨∇η log fi(Zi)⟩P̂i

by EP moment matching at convergence!

EP log-likelihood optimisation for learning

Let true potentials fi depend on model (hyper)parameters η.
We have

∇η ℓ̃ = ∇ηΦ(θ) +
N∑

i=1

∇η log C̃i = µ · ∇ηθ +
N∑

i=1

∇η log C̃i (*)

using the standard ExpFam moment-generating result with mean parameters
µ = ⟨T (Z)⟩q(Z).
Now, zeroth-moment matching implies that at EP convergence:

log C̃i = Φi(θ¬i)− Φ(θ)⇒ ∇η log C̃i = ∇ηΦi(θ¬i)− µ · ∇ηθ (**)

but Φi(θ¬i) = log
∫

fi(Zi)eT(Z)·θ¬i depends on η in two ways: directly through fi and
indirectly through the converged θ¬i .

∇ηΦi(θ¬i) = ∂θ¬iΦi(θ¬i) · ∇ηθ¬i + e−Φi (θ¬i)

∫
∇η fi(Zi) eT(Z)·θ¬i dZ

= ⟨T (Z)⟩P̂i
· ∇ηθ¬i +

∫
∇η log fi(Zi) fi(Zi)e

T(Z)·θ¬i−Φi (θ¬i) dZ

= µ · ∇ηθ¬i + ⟨∇η log fi(Zi)⟩P̂i

by EP moment matching at convergence!

EP log-likelihood optimisation for learning

Let true potentials fi depend on model (hyper)parameters η.
We have

∇η ℓ̃ = ∇ηΦ(θ) +
N∑

i=1

∇η log C̃i = µ · ∇ηθ +
N∑

i=1

∇η log C̃i (*)

using the standard ExpFam moment-generating result with mean parameters
µ = ⟨T (Z)⟩q(Z).
Now, zeroth-moment matching implies that at EP convergence:

log C̃i = Φi(θ¬i)− Φ(θ)⇒ ∇η log C̃i = ∇ηΦi(θ¬i)− µ · ∇ηθ (**)

but Φi(θ¬i) = log
∫

fi(Zi)eT(Z)·θ¬i depends on η in two ways: directly through fi and
indirectly through the converged θ¬i .

∇ηΦi(θ¬i) = ∂θ¬iΦi(θ¬i) · ∇ηθ¬i + e−Φi (θ¬i)

∫
∇η fi(Zi) eT(Z)·θ¬i dZ

= ⟨T (Z)⟩P̂i
· ∇ηθ¬i +

∫
∇η log fi(Zi) fi(Zi)e

T(Z)·θ¬i−Φi (θ¬i) dZ

= µ · ∇ηθ¬i + ⟨∇η log fi(Zi)⟩P̂i

by EP moment matching at convergence!

EP log-likelihood optimisation for learning

Let true potentials fi depend on model (hyper)parameters η.
We have

∇η ℓ̃ = ∇ηΦ(θ) +
N∑

i=1

∇η log C̃i = µ · ∇ηθ +
N∑

i=1

∇η log C̃i (*)

using the standard ExpFam moment-generating result with mean parameters
µ = ⟨T (Z)⟩q(Z).
Now, zeroth-moment matching implies that at EP convergence:

log C̃i = Φi(θ¬i)− Φ(θ)⇒ ∇η log C̃i = ∇ηΦi(θ¬i)− µ · ∇ηθ (**)

but Φi(θ¬i) = log
∫

fi(Zi)eT(Z)·θ¬i depends on η in two ways: directly through fi and
indirectly through the converged θ¬i .

∇ηΦi(θ¬i) = ∂θ¬iΦi(θ¬i) · ∇ηθ¬i + e−Φi (θ¬i)

∫
∇η fi(Zi) eT(Z)·θ¬i dZ

= ⟨T (Z)⟩P̂i
· ∇ηθ¬i +

∫
∇η log fi(Zi) fi(Zi)e

T(Z)·θ¬i−Φi (θ¬i) dZ

= µ · ∇ηθ¬i + ⟨∇η log fi(Zi)⟩P̂i

by EP moment matching at convergence!

EP log-likelihood optimisation for learning

Let true potentials fi depend on model (hyper)parameters η.
We have

∇η ℓ̃ = ∇ηΦ(θ) +
N∑

i=1

∇η log C̃i = µ · ∇ηθ +
N∑

i=1

∇η log C̃i (*)

using the standard ExpFam moment-generating result with mean parameters
µ = ⟨T (Z)⟩q(Z).
Now, zeroth-moment matching implies that at EP convergence:

log C̃i = Φi(θ¬i)− Φ(θ)⇒ ∇η log C̃i = ∇ηΦi(θ¬i)− µ · ∇ηθ (**)

but Φi(θ¬i) = log
∫

fi(Zi)eT(Z)·θ¬i depends on η in two ways: directly through fi and
indirectly through the converged θ¬i .

∇ηΦi(θ¬i) = ∂θ¬iΦi(θ¬i) · ∇ηθ¬i + e−Φi (θ¬i)

∫
∇η fi(Zi) eT(Z)·θ¬i dZ

= ⟨T (Z)⟩P̂i
· ∇ηθ¬i +

∫
∇η log fi(Zi) fi(Zi)e

T(Z)·θ¬i−Φi (θ¬i) dZ

= µ · ∇ηθ¬i + ⟨∇η log fi(Zi)⟩P̂i
(***)

by EP moment matching at convergence!

EP log-likelihood optimisation for learning
So putting it all together:

∇η ℓ̃ = µ · ∇ηθ +
N∑

i=1

∇η log C̃i (*)

= µ · ∇ηθ +
N∑

i=1

(
∇ηΦi(θ¬i)− µ · ∇ηθ

)
= µ · ∇ηθ +

N∑
i=1

(
µ · ∇ηθ¬i − µ · ∇ηθ + ⟨∇η log fi(Zi)⟩P̂i

)
= µ · ∇η

(
θ +

N∑
i=1

(θ¬i − θ)
)
+

N∑
i=1

⟨∇η log fi(Zi)⟩P̂i

= µ · ∇η

(N∑
i=1

θi +
N∑

i=1

(θ¬i − θ)
)
+

N∑
i=1

⟨∇η log fi(Zi)⟩P̂i

= µ · ∇η

N∑
i=1

(θ − θ) +
N∑

i=1

⟨∇η log fi(Zi)⟩P̂i

=
N∑

i=1

⟨∇η log fi(Zi)⟩P̂i

and the gradient can be computed provided EP converges.

EP log-likelihood optimisation for learning
So putting it all together:

∇η ℓ̃ = µ · ∇ηθ +
N∑

i=1

∇η log C̃i (*)

= µ · ∇ηθ +
N∑

i=1

(
∇ηΦi(θ¬i)− µ · ∇ηθ

)
(**)

= µ · ∇ηθ +
N∑

i=1

(
µ · ∇ηθ¬i − µ · ∇ηθ + ⟨∇η log fi(Zi)⟩P̂i

)
= µ · ∇η

(
θ +

N∑
i=1

(θ¬i − θ)
)
+

N∑
i=1

⟨∇η log fi(Zi)⟩P̂i

= µ · ∇η

(N∑
i=1

θi +
N∑

i=1

(θ¬i − θ)
)
+

N∑
i=1

⟨∇η log fi(Zi)⟩P̂i

= µ · ∇η

N∑
i=1

(θ − θ) +
N∑

i=1

⟨∇η log fi(Zi)⟩P̂i

=
N∑

i=1

⟨∇η log fi(Zi)⟩P̂i

and the gradient can be computed provided EP converges.

EP log-likelihood optimisation for learning
So putting it all together:

∇η ℓ̃ = µ · ∇ηθ +
N∑

i=1

∇η log C̃i (*)

= µ · ∇ηθ +
N∑

i=1

(
∇ηΦi(θ¬i)− µ · ∇ηθ

)
(**)

= µ · ∇ηθ +
N∑

i=1

(
µ · ∇ηθ¬i − µ · ∇ηθ + ⟨∇η log fi(Zi)⟩P̂i

)
(***)

= µ · ∇η

(
θ +

N∑
i=1

(θ¬i − θ)
)
+

N∑
i=1

⟨∇η log fi(Zi)⟩P̂i

= µ · ∇η

(N∑
i=1

θi +
N∑

i=1

(θ¬i − θ)
)
+

N∑
i=1

⟨∇η log fi(Zi)⟩P̂i

= µ · ∇η

N∑
i=1

(θ − θ) +
N∑

i=1

⟨∇η log fi(Zi)⟩P̂i

=
N∑

i=1

⟨∇η log fi(Zi)⟩P̂i

and the gradient can be computed provided EP converges.

EP log-likelihood optimisation for learning
So putting it all together:

∇η ℓ̃ = µ · ∇ηθ +
N∑

i=1

∇η log C̃i (*)

= µ · ∇ηθ +
N∑

i=1

(
∇ηΦi(θ¬i)− µ · ∇ηθ

)
(**)

= µ · ∇ηθ +
N∑

i=1

(
µ · ∇ηθ¬i − µ · ∇ηθ + ⟨∇η log fi(Zi)⟩P̂i

)
(***)

= µ · ∇η

(
θ +

N∑
i=1

(θ¬i − θ)
)
+

N∑
i=1

⟨∇η log fi(Zi)⟩P̂i

= µ · ∇η

(N∑
i=1

θi +
N∑

i=1

(θ¬i − θ)
)
+

N∑
i=1

⟨∇η log fi(Zi)⟩P̂i

= µ · ∇η

N∑
i=1

(θ − θ) +
N∑

i=1

⟨∇η log fi(Zi)⟩P̂i

=
N∑

i=1

⟨∇η log fi(Zi)⟩P̂i

and the gradient can be computed provided EP converges.

EP log-likelihood optimisation for learning
So putting it all together:

∇η ℓ̃ = µ · ∇ηθ +
N∑

i=1

∇η log C̃i (*)

= µ · ∇ηθ +
N∑

i=1

(
∇ηΦi(θ¬i)− µ · ∇ηθ

)
(**)

= µ · ∇ηθ +
N∑

i=1

(
µ · ∇ηθ¬i − µ · ∇ηθ + ⟨∇η log fi(Zi)⟩P̂i

)
(***)

= µ · ∇η

(
θ +

N∑
i=1

(θ¬i − θ)
)
+

N∑
i=1

⟨∇η log fi(Zi)⟩P̂i

= µ · ∇η

(N∑
i=1

θi +
N∑

i=1

(θ¬i − θ)
)
+

N∑
i=1

⟨∇η log fi(Zi)⟩P̂i

= µ · ∇η

N∑
i=1

(θ − θ) +
N∑

i=1

⟨∇η log fi(Zi)⟩P̂i

=
N∑

i=1

⟨∇η log fi(Zi)⟩P̂i

and the gradient can be computed provided EP converges.

EP log-likelihood optimisation for learning
So putting it all together:

∇η ℓ̃ = µ · ∇ηθ +
N∑

i=1

∇η log C̃i (*)

= µ · ∇ηθ +
N∑

i=1

(
∇ηΦi(θ¬i)− µ · ∇ηθ

)
(**)

= µ · ∇ηθ +
N∑

i=1

(
µ · ∇ηθ¬i − µ · ∇ηθ + ⟨∇η log fi(Zi)⟩P̂i

)
(***)

= µ · ∇η

(
θ +

N∑
i=1

(θ¬i − θ)
)
+

N∑
i=1

⟨∇η log fi(Zi)⟩P̂i

= µ · ∇η

(N∑
i=1

θi +
N∑

i=1

(θ¬i − θ)
)
+

N∑
i=1

⟨∇η log fi(Zi)⟩P̂i

= µ · ∇η

N∑
i=1

(θ − θ) +
N∑

i=1

⟨∇η log fi(Zi)⟩P̂i

=
N∑

i=1

⟨∇η log fi(Zi)⟩P̂i

and the gradient can be computed provided EP converges.

EP log-likelihood optimisation for learning
So putting it all together:

∇η ℓ̃ = µ · ∇ηθ +
N∑

i=1

∇η log C̃i (*)

= µ · ∇ηθ +
N∑

i=1

(
∇ηΦi(θ¬i)− µ · ∇ηθ

)
(**)

= µ · ∇ηθ +
N∑

i=1

(
µ · ∇ηθ¬i − µ · ∇ηθ + ⟨∇η log fi(Zi)⟩P̂i

)
(***)

= µ · ∇η

(
θ +

N∑
i=1

(θ¬i − θ)
)
+

N∑
i=1

⟨∇η log fi(Zi)⟩P̂i

= µ · ∇η

(N∑
i=1

θi +
N∑

i=1

(θ¬i − θ)
)
+

N∑
i=1

⟨∇η log fi(Zi)⟩P̂i

= µ · ∇η

N∑
i=1

(θ − θ) +
N∑

i=1

⟨∇η log fi(Zi)⟩P̂i

=
N∑

i=1

⟨∇η log fi(Zi)⟩P̂i

and the gradient can be computed provided EP converges.

A final generalisation: alpha divergences and Power EP
▶ Alpha divergences

Dα[p∥q] =
1

α(1− α)

∫
dx

(
αp(x) + (1− α)q(x)− p(x)αq(x)1−α)

D−1[p∥q] = 1
2

∫
dx

(p(x)− q(x))2

p(x)

lim
α→0

Dα[p∥q] = KL[q∥p] Note: lim
α→0

(p(x)/q(x))α

α
= log

p(x)
q(x)

D 1
2
[p∥q] = 2

∫
dx (p(x)

1
2 − q(x)

1
2
)2

lim
α→1

Dα[p∥q] = KL[p∥q]

D2[p∥q] = 1
2

∫
dx

(p(x)− q(x))2

q(x)

▶ Local (EP) minimisation gives fixed-point updates that blend messages (to power α) with
previous site approximations.

f̃ new
i = argmin

f∈{̃f}
KL

[
fi(Zi)

αf̃i(Zi)
1−αq¬i(Z)

∥∥f (Zi)q¬i(Z)
]

▶ Small changes (for α < 1) lead to more stable updates, and more reliable convergence.

A final generalisation: alpha divergences and Power EP
▶ Alpha divergences

Dα[p∥q] =
1

α(1− α)

∫
dx

(
αp(x) + (1− α)q(x)− p(x)αq(x)1−α)

D−1[p∥q] = 1
2

∫
dx

(p(x)− q(x))2

p(x)

lim
α→0

Dα[p∥q] = KL[q∥p] Note: lim
α→0

(p(x)/q(x))α

α
= log

p(x)
q(x)

D 1
2
[p∥q] = 2

∫
dx (p(x)

1
2 − q(x)

1
2
)2

lim
α→1

Dα[p∥q] = KL[p∥q]

D2[p∥q] = 1
2

∫
dx

(p(x)− q(x))2

q(x)

▶ Local (EP) minimisation gives fixed-point updates that blend messages (to power α) with
previous site approximations.

f̃ new
i = argmin

f∈{̃f}
KL

[
fi(Zi)

αf̃i(Zi)
1−αq¬i(Z)

∥∥f (Zi)q¬i(Z)
]

▶ Small changes (for α < 1) lead to more stable updates, and more reliable convergence.

A final generalisation: alpha divergences and Power EP
▶ Alpha divergences

Dα[p∥q] =
1

α(1− α)

∫
dx

(
αp(x) + (1− α)q(x)− p(x)αq(x)1−α)

D−1[p∥q] = 1
2

∫
dx

(p(x)− q(x))2

p(x)

lim
α→0

Dα[p∥q] = KL[q∥p] Note: lim
α→0

(p(x)/q(x))α

α
= log

p(x)
q(x)

D 1
2
[p∥q] = 2

∫
dx (p(x)

1
2 − q(x)

1
2
)2

lim
α→1

Dα[p∥q] = KL[p∥q]

D2[p∥q] = 1
2

∫
dx

(p(x)− q(x))2

q(x)

▶ Local (EP) minimisation gives fixed-point updates that blend messages (to power α) with
previous site approximations.

f̃ new
i = argmin

f∈{̃f}
KL

[
fi(Zi)

αf̃i(Zi)
1−αq¬i(Z)

∥∥f (Zi)q¬i(Z)
]

▶ Small changes (for α < 1) lead to more stable updates, and more reliable convergence.

A final generalisation: alpha divergences and Power EP
▶ Alpha divergences

Dα[p∥q] =
1

α(1− α)

∫
dx

(
αp(x) + (1− α)q(x)− p(x)αq(x)1−α)

D−1[p∥q] = 1
2

∫
dx

(p(x)− q(x))2

p(x)

lim
α→0

Dα[p∥q] = KL[q∥p] Note: lim
α→0

(p(x)/q(x))α

α
= log

p(x)
q(x)

D 1
2
[p∥q] = 2

∫
dx (p(x)

1
2 − q(x)

1
2
)2

lim
α→1

Dα[p∥q] = KL[p∥q]

D2[p∥q] = 1
2

∫
dx

(p(x)− q(x))2

q(x)

▶ Local (EP) minimisation gives fixed-point updates that blend messages (to power α) with
previous site approximations.

f̃ new
i = argmin

f∈{̃f}
KL

[
fi(Zi)

αf̃i(Zi)
1−αq¬i(Z)

∥∥f (Zi)q¬i(Z)
]

▶ Small changes (for α < 1) lead to more stable updates, and more reliable convergence.

	Probabilistic & Unsupervised Learning Approximate Inference [4ex] Expectation Propagation
	Nonlinear state-space model (NLSSM)
	Other message approximations
	The Sigma-point filter
	Variational learning
	Approximating the posterior
	The other KL
	Approximate optimisation
	Expectation? Propagation?
	Local updates
	Expectation Propagation (EP)
	Message Passing
	EP for a NLSSM
	NLSSM EP message updates
	Moment Matching
	Numerical issues
	EP for Gaussian process classification
	GP EP updates
	EP GP prediction
	Normalisers
	Computing likelihoods – keeping track of normalisers
	Learning
	EP log-likelihood optimisation for learning
	EP log-likelihood optimisation for learning
	A final generalisation: alpha divergences and Power EP

