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What is Perception for

I Control? (After all, the only point of having a brain is to move. . . )
I Forecasting and planning?
I Finding prey, mates, forage . . .

Presumably all of the above, but there is useful intermediate abstraction.
I work out what’s “out there”.
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Helmholtz

What information, then, can the qualities of such sensations give us about the characteristics
of the external causes and influences which produce them? Only this: our sensations are
signs, not images, of such characteristics.



Illusions

Gregory 1968
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Perception and Generative Models

I Sensor activations reflect the state of the world through a (usually
non-invertible and noisy) physical transformation.

I The goal of perception is to invert this transformation as best as
possible: to infer the state of the world from the sensor signals.

I To do this, we need to know something about the forward (generative)
process: both the transformation and the statistics of the world

I . . . and to use every available source of information.
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Incorporating priors – long-term priors

https://www.cs.huji.ac.il/˜yweiss/Rhombus/rhombus.html

https://www.cs.huji.ac.il/~yweiss/Rhombus/rhombus.html


No simple rule

Weiss, Simoncelli, Adelson, 2002



Bayesian inference under a ’slow’ prior

Weiss, Simoncelli, Adelson, 2002



Incorporating priors – short-term adaptation

Raviv, Ahissar, Loewenstein, 2012



Frequency discrimination – contraction bias

Raviv, Ahissar, Loewenstein, 2012
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Subjects acquire varied priors
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Structured inference

Kördig, Beierholm, et al. 2007
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Structured inference

Kördig, Beierholm, et al. 2007



Some neural consequences (in theory)

I Sensory systems (possibly needed for low-level control) should feed into Perceptual
systems.

I See Goodale & Milner on (visual) ventral and dorsal streams.

I Response properties and receptive fields in the perceptual pathway reflect properties of
elements within an inferential system.

I Inference is more than “recognition”: segmentation, grouping, reconstruction,
prediction . . . We parse scenes and process and learn about objects we’ve never
encountered.

I Properties of neural systems should align with inferential processing in models of
the real world.

I Representations should have the capacity to represent and manipulate
uncertainties, priors and other elements of inference.



Unsupervised Learning

I Sensory data do not come with ’supervision’ – no direct information
about z.

I Prediction of and/or reinforcement from consequences of actions can
help, but input is sparse relative to raw data.

I Most unsupervised learning is based (explicitly or implicitly) on fitting
a “generative” world model to data. Power comes from conjunction of
principled probabilistic structural priors and likelihood-based
objectives for learning.

I Other viewpoints, such as redundancy reduction, are often special
cases.



Physical vs. Generic Models

I If the physics is known and simple (or if evolution is lucky), it may be possible
to invert the exact physical model. This will give the most accurate results.

I Often difficult, particularly from an evolutionary standpoint.
I Not flexible (e.g. if the statistics of the world change).
I May be difficult to invert.
I Neocortex appears to be generic.

I Alternative: evolution has led to a generic generative model, with only some
elements of physicality — but that can be successfully adapted by learning to
be close enough to the generative process in the world.
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Inference and Learning

Latent variable model:

Pθ (xi) =

∫
dz Pθ (xi | z)Pθ (z)

Inference (find zi given xi and θ):

Pθ (zi | xi) =
Pθ (xi | zi)Pθ (zi)

Pθ (xi)

Learning (find θ given {x})

P (θ | {x}) ∝
∏

i

Pθ (xi)P (θ)

often by ML approximation

θ∗ = argmax
θ

∏
i

Pθ (xi)



Linear Image Codes
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Sparse Coding

E = min
{ai}

∑
x,y

[
I(x , y)−

∑
i

aiφi(x , y)

]2

︸ ︷︷ ︸
log P (I | a)

+λ
∑

i

S(ai)︸ ︷︷ ︸
log P (a)

S(a) = log(1 + (a/σ)2)

Olshausen & Field (1996)



Infomax

E = −H

[
g

(∑
x,y

Wi(x , y)I(x , y)

)]

g(a) =
1

1 + e−a

Bell & Sejnowski (1997)



Overcompleteness

E = −
∫

da Pφ (I | a)PS (a)

(Integral is approximated by saddle-point
method.)

Lewicki & Sejnowski (2000); Lewicki & Olshausen (1999)



Topographic ICA - Hyvärinen & Hoyer

(locally pooled energies)

(linear filters)
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Dynamic constancy

I Dynamic images and latent variables
I(x , y , t)⇒ ai(t).

I Impose prior limiting change in ai(t).
I With suitably constrained models,

results in phase insensitivity
(complex cells).
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Recognition models

P (I(x , y)) =
e−E(â)∫

db e−E(b)

E(â) = −
∑

i

log Pi (âi)

âi =
∑
x,y

W (x , y)I(x , y)

Hinton, Welling, Teh & Osindero (2002)



Feedback cancellation (or predictive coding)
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Lateral normalization
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Uncertainty in population codes

I Models relate neural response properties to simple inference, but shouldn’t be read
literally:

I Many neurons have very similar responses⇒ population representations of
variables.

I Correspondence usually based on single values, but behaviour (and intermediate
stages of computation) seems to require distributional representations.

I Uncertainty is not easy to control, and experimental view on representations is far from
settled. Theories can be broadly divided:

I Theory focuses on two broad types of representation:

I Stochastic (sample-based) representations in time and/or space.

I Deterministic representations of distributions
I Linear decoding (“Neural Engineering Framework”)
I Log-linear decoding
I ’Probabilistic encoding’ / Inferential decoding (PPC)
I Expected-value encodings (DDC)

I Crucial questions around computation, learnability and verifiability.



Probabilistic computation and message passing

I In complex models, beliefs about different variables are interdependent.

I Separate representation of variables⇒ updating based on evolving beliefs and/or
priors.

I Message-passing (generally exact on tree-structured models, but approximate
otherwise).

I Many ways to implement message-passing schemes:
I belief propagation
I variational messages
I reparametrisation
I predictive coding
I . . .

I Hints of many in data, but details are challenging . . .


