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Quantifying a Code

� How much information does a neural response carry about a stimulus?
� How efficient is a hypothetical code, given the statistical behaviour of the components?
� How much better could another code do, given the same components?
� Is the information carried by different neurons complementary, synergistic (whole is

greater than sum of parts), or redundant?
� Can further processing extract more information about a stimulus?

Information theory is the mathematical framework within which questions such as these can
be framed and answered.
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� How efficient is a hypothetical code, given the statistical behaviour of the components?
� How much better could another code do, given the same components?
� Is the information carried by different neurons complementary, synergistic (whole is

greater than sum of parts), or redundant?
� Can further processing extract more information about a stimulus?

Information theory is the mathematical framework within which questions such as these can
be framed and answered.

Information theory does not directly address:

� estimation (but there are some relevant bounds)
� computation (but “information bottleneck” might provide a motivating framework)
� representation (but redundancy reduction has obvious information theoretic connections)
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⇒ low information?

But also depends on P(S).

We need to start by considering the uncertainty in a probability distribution → called the
entropy

Let S ∼ P(S). The entropy is the minimum number of bits needed, on average, to specify the
value S takes, assuming P(S) is known.

Equivalently, the minimum average number of yes/no questions needed to guess S.
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Entropy

� Suppose there are M equiprobable stimuli: P(sm) = 1/M.

To specify which stimulus appears on a given trial, we would need assign each a
(binary) number. This would take,

Bs ≤ log2 M + 1 [2B ≥ M]

= − log2
1
M

+ 1 bits

� Now suppose we code N such stimuli, drawn iid, at once.

BN ≤ log2 MN + 1

→ −N log2
1
M

as N → ∞

⇒ Bs → − log2 p bits

This is called block coding. It is useful for extracting theoretical limits. The nervous
system is unlikely to use block codes in time, but may in space.
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P(S1,S2, . . . ,SN) =
�

m

pnm
m [where nm = (# of Si = sm)].

As N → ∞ only “typical” sequences, with nm = pmN, have non-zero probability of
occuring; and they are all equally likely. This is called the Asymptotic Equipartition
Property (or AEP).
Thus,

BN → − log2

�
m pnm

m = −�m nm log2 pm

= −�m pmN log2 pm = −N
�

m

pm log2 pm

� �� �
−H[s]

H[S] = E [− log2 P(S)], also written H[P(S)], is the entropy of the stimulus distribution.

Rather than appealing to typicality, we could instead have used the law of large numbers directly:

1

N
log2 P(S1,S2, . . .SN) =

1

N
log2

�

i

P(Si) =
1

N

�

i

log2 P(Si)
N→∞→ E[log2 P(Si)]
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Entropy is a measure of “available information” in the stimulus ensemble. Now suppose we
measure a particular response r which depends on the stimulus according to P(R|S).

How uncertain is the stimulus once we know r? Bayes rule gives us

P(S|r) = P(r |S)P(S)�
s P(r |s)P(s)

so we can write
H[S|r ] = −
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s

P(s|r) log2 P(s|r)

The average uncertainty in S for r ∼ P(R) =
�

s P(R|s)p(s) is then

H[S|R] =
�

r

P(r)

�
−
�

s

P(s|r) log2 P(s|r)
�
= −

�

s,r

P(s, r) log2 P(s|r)

It is easy to show that:

1. H[S|R] ≤ H[S]

2. H[S|R] = H[S,R]− H[R]

3. H[S|R] = H[S] iff S ⊥⊥ R
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A natural definition of the average information gained about S from R is

I[S;R] = H[S]− H[S|R]

Measures reduction in uncertainty due to R.

It follows from the definition that

I[S;R] =
�

s

P(s) log
1

P(s)
−
�

s,r

P(s, r) log
1

P(s|r)

=
�

s,r

P(s, r) log
1

P(s)
+
�

s,r

P(s, r) log P(s|r)

=
�

s,r

P(s, r) log
P(s|r)
P(s)

=
�

s,r

P(s, r) log
P(s, r)

P(s)P(r)

= I[R;S]



Average Mutual Information

The symmetry suggests a Venn-like diagram.

H[S|R]
I[S;R]

I[R;S]
H[R|S]

H[S,R]

H[S] H[R]

All of the additive and equality relationships implied by this picture hold for two variables.
Unfortunately, we will see that this does not generalise to any more than two.
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�

s

P(s) log
P(s)
Q(s)

=
�

s

P(s) log
1

Q(s)
� �� �

cross entropy
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−KL[P�Q] =
�

s

P(s) log
Q(s)
P(s)

≤ log
�

s

P(s)
Q(s)
P(s)

by Jensen

= log
�

s

Q(s) = log 1 = 0

So KL[P�Q] ≥ 0. Equality iff P = Q
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Mutual Information and KL

I[S;R] =
�

s,r

P(s, r) log
P(s, r)

P(s)P(r)
= KL[P(S,R)�P(S)P(R)]

Thus:

1. Mutual information is always non-negative

I[S;R] ≥ 0

2. Conditioning never increases entropy

H[S|R] ≤ H[S]
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Two responses to the same stimulus, R1 and R2, may provide either more or less information
jointly than independently.

I12 = I[S;R1,R2] = H[R1,R2]− H[R1,R2|S]

R1 ⊥⊥ R2 ⇒ H[R1,R2] = H[R1] + H[R2]

R1 ⊥⊥ R2|S ⇒ H[R1,R2|S] = H[R1|S] + H[R2|S]

R1 ⊥⊥ R2 R1 ⊥⊥ R2|S
no yes I12 < I1 + I2 redundant
yes yes I12 = I1 + I2 independent
yes no I12 > I1 + I2 synergistic
no no ? any of the above

I12 > max(I1, I2): the second response cannot destroy information.

Thus, the Venn-like diagram with three variables is misleading.
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Data Processing Inequality

Suppose S → R1 → R2 form a Markov chain; that is, R2 ⊥⊥ S | R1.

Then,

P(R2,S|R1) = P(R2|R1)P(S|R1)

⇒ P(S|R1,R2) = P(S|R1)

Thus,

H[S|R2] ≥ H[S|R1,R2] = H[S|R1]

⇒ I[S;R2] ≤ I[S;R1]

So any computation based on R1 that does not have separate access to S cannot add
information (in the Shannon sense) about the world.

Equality holds iff S → R2 → R1 as well. In this case R2 is called a sufficient statistic for S.
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responses form a time series.

Let S = {S1,S2,S3 . . .} form a stochastic process.

H[S1,S2, . . . ,Sn] = H[Sn|S1,S2, . . . ,Sn−1] + H[S1,S2, . . . ,Sn−1]

= H[Sn|S1,S2, . . . ,Sn−1] + H[Sn−1|S1,S2, . . . ,Sn−2] + . . .+ H[S1]

The entropy rate of S is defined as

H[S] = lim
n→∞

H[S1,S2, . . . ,Sn]

N

or alternatively as
H[S] = lim

n→∞
H[Sn|S1,S2, . . . ,Sn−1]

If Si
iid∼ P(S) then H[S] = H[S].

If S is Markov (and stationary) then H[S] = H[Sn|Sn−1].
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Continuous Random Variables

The discussion so far has involved discrete S and R. Now, let S ∈ R with density p(s). What
is its entropy?

Suppose we discretise with length Δs:

HΔ[S] = −
�

i

p(si)Δs log p(si)Δs

= −
�

i

p(si)Δs(log p(si) + logΔs)

= −
�

i

p(si)Δs log p(si)− logΔs
�

i

p(si)Δs

= −
�

i

Δs p(si) log p(si)− logΔs

→ −
�

ds p(s) log p(s) +∞

We define the differential entropy:

h(S) = −
�

ds p(s) log p(s).

Note that h(S) can be < 0, and can be ±∞.
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Continuous Random Variables

We can define other information theoretic quantities similarly.

The conditional differential entropy is

h(S|R) = −
�

ds dr p(s, r) log p(s|r)

and, like the differential entropy itself, may be poorly behaved.

The mutual information, however, is well-defined

IΔ[S;R] = HΔ[S]− HΔ[S|R]

= −
�

i

Δs p(si) log p(si)− logΔs

−
�

dr p(r)

�
−
�

i

Δs p(si |r) log p(si |r)− logΔs

�

→ h(S)− h(S|R)

as are other KL divergences.
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2. Let
�

ds p(s)f (s) = a for some function f . What distribution has maximum entropy?
Use Lagrange multipliers:

L =
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f (s) = s2 ⇒ p(s) = 1
Z eλ1s2

. Gaussian.
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Both results together ⇒ maximum entropy point process (for fixed mean arrival rate) is
homogeneous Poisson – independent, exponentially distributed ISIs.
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S
P(R|S)−→ R

The mutual information

I[S;R] =
�

s,r

P(s, r) log
P(s, r)

P(s)P(r)
=
�

s,r

P(s)P(r |s) log
P(r |s)
P(r)

depends on marginals P(s) and P(r) =
�

s P(r |s)P(s) as well and thus is unsuitable to
characterise the conditional alone.

Instead, we characterise the channel by its capacity

CR|S = sup
P(s)

I[S;R]

Thus the capacity gives the theoretical limit on the amount of information that can be
transmitted over a channel. Clearly, this is limited by the properties of the noise.



Joint source-channel coding theorem

The remarkable central result of information theory.

S
encoder−−−−−−−−−−−→ �S channel−−−−−−−−−−−→

CR|�S
R

decoder−−−−−−−−−−−→ �T

Any source ensemble S with entropy H[S] < CR|�S can be transmitted (in sufficiently long
blocks) with Perror → 0.

The proof is beyond our scope.

Some of the key ideas that appear in the proof are:

� block coding
� error correction
� joint typicality
� random codes



The channel coding problem

S
encoder−−−−−−−−−−−→ �S channel−−−−−−−−−−−→

CR|�S
R

decoder−−−−−−−−−−−→ �T

Given channel P(R|�S) and source P(S), find encoding P(�S|S) (may be deterministic) to
maximise I[S;R].

By data processing inequality, and defn of capacity:

I[S;R] ≤ I[�S;R] ≤ CR|�S

By JSCT, equality can be achieved (in the limit of increasing block size).

Thus I[�S;R] should saturate CR|�S .

See homework for an algorithm (Blahut-Arimoto) to find P(�S) that saturates CR|�S for a
general discrete channel.
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Entropy maximisation

I[�S;R] = H[R]� �� �
marginal entropy

− H
�
R|�S
�

� �� �
noise entropy

If noise is small and “constant” ⇒ maximise marginal entropy ⇒ maximise H
�
�S
�

Consider a (rate coding) neuron with r ∈ [0, rmax].

h(r) = −
� rmax

0
dr p(r) log p(r)

To maximise the marginal entropy, we add a Lagrange multiplier (µ) to enforce normalisation
and then differentiate

δ

δp(r)

�
h(r)− µ

� rmax

0
p(r)
�
=

�
− log p(r)− 1 − µ r ∈ [0, rmax]

0 otherwise

⇒ p(r) = const for r ∈ [0, rmax]
i.e.

p(r) =
� 1

rmax
r ∈ [0, rmax]

0 otherwise



Histogram Equalisation
Suppose r = s̃ + η where η represents a (relatively small) source of noise. Consider
deterministic encoding s̃ = f (s). How do we ensure that p(r) = 1/rmax?

1
rmax

= p(r) ≈ p(s̃) =
p(s)
f �(s)

⇒ f �(s) = rmax p(s)

⇒ f (s) = rmax

� s

−∞
ds� p(s�)

s̃
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Histogram Equalisation

Laughlin (1981)
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The capacity is achieved iff R ∼ N (0,P + kz) ⇒ �S ∼ N (0,P).
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Waterfilling: choose ν so
�

ω

ks̃(ω) = d · P

ν

k
z
(ω)

k
s
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ω

 k
(ω

)

R is white or decorrelated (within power budget) ⇒variance equalisation.
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Using (spatial) stationarity, we can transform to the Fourier domain:

�Qr (k) = |�Ds(k)|2�Qs(k)

and thus output decorrelation requires

|�Ds(k)|2 ∝ 1
�Qs(k)
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But: not all input is signal.
Photodetection introduces noise. Therefore, cascade linear filters:

s + η −−−−−→
Dη

ŝ −−−−−→
Ds

r

with

�Dη(k) =
�Qs(k)

�Qs(k) + �Qη(k)
(Wiener filter)

Thus the combined RGC filter is predicted to be:

|�Ds(k)|�Dη(k) ∝

�
�Qs(k)

�Qs(k) + �Qη(k)
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Related ideas

� efficient channel utilisation
� output entropy maximisation
� variance equalisation
� redundancy reduction
� decorrelation
� discovery of independent projections or components


