
Information Theory

Maneesh Sahani

Gatsby Computational Neuroscience Unit
University College London

March 2020

Quantifying a Code

� How much information does a neural response carry about a stimulus?
� How efficient is a hypothetical code, given the statistical behaviour of the components?
� How much better could another code do, given the same components?
� Is the information carried by different neurons complementary, synergistic (whole is

greater than sum of parts), or redundant?
� Can further processing extract more information about a stimulus?

Information theory is the mathematical framework within which questions such as these can
be framed and answered.

Quantifying a Code

� How much information does a neural response carry about a stimulus?
� How efficient is a hypothetical code, given the statistical behaviour of the components?
� How much better could another code do, given the same components?
� Is the information carried by different neurons complementary, synergistic (whole is

greater than sum of parts), or redundant?
� Can further processing extract more information about a stimulus?

Information theory is the mathematical framework within which questions such as these can
be framed and answered.

Information theory does not directly address:

� estimation (but there are some relevant bounds)
� computation (but “information bottleneck” might provide a motivating framework)
� representation (but redundancy reduction has obvious information theoretic connections)

Uncertainty and Information

Information is related to the removal of uncertainty.

Uncertainty and Information

Information is related to the removal of uncertainty.

S → R → P(S|R)

How informative is R about S?

Uncertainty and Information

Information is related to the removal of uncertainty.

S → R → P(S|R)

How informative is R about S?

P(S|R) =
�
0, 0, 1, 0, . . . , 0

�
⇒ high information?

P(S|R) =
� 1

M
,

1
M
, . . . ,

1
M

�
⇒ low information?

Uncertainty and Information

Information is related to the removal of uncertainty.

S → R → P(S|R)

How informative is R about S?

P(S|R) =
�
0, 0, 1, 0, . . . , 0

�
⇒ high information?

P(S|R) =
� 1

M
,

1
M
, . . . ,

1
M

�
⇒ low information?

But also depends on P(S).

We need to start by considering the uncertainty in a probability distribution → called the
entropy

Uncertainty and Information

Information is related to the removal of uncertainty.

S → R → P(S|R)

How informative is R about S?

P(S|R) =
�
0, 0, 1, 0, . . . , 0

�
⇒ high information?

P(S|R) =
� 1

M
,

1
M
, . . . ,

1
M

�
⇒ low information?

But also depends on P(S).

We need to start by considering the uncertainty in a probability distribution → called the
entropy

Let S ∼ P(S). The entropy is the minimum number of bits needed, on average, to specify the
value S takes, assuming P(S) is known.

Equivalently, the minimum average number of yes/no questions needed to guess S.

Entropy

Entropy

� Suppose there are M equiprobable stimuli: P(sm) = 1/M.

To specify which stimulus appears on a given trial, we would need assign each a
(binary) number. This would take,

Bs ≤ log2 M + 1 [2B ≥ M]

= − log2
1
M

+ 1 bits

Entropy

� Suppose there are M equiprobable stimuli: P(sm) = 1/M.

To specify which stimulus appears on a given trial, we would need assign each a
(binary) number. This would take,

Bs ≤ log2 M + 1 [2B ≥ M]

= − log2
1
M

+ 1 bits

� Now suppose we code N such stimuli, drawn iid, at once.

BN ≤ log2 MN + 1

→ −N log2
1
M

as N → ∞

⇒ Bs → − log2 p bits

This is called block coding. It is useful for extracting theoretical limits. The nervous
system is unlikely to use block codes in time, but may in space.

Entropy

� Now suppose stimuli are not equiprobable. Write P(sm) = pm. Then

P(S1,S2, . . . ,SN) =
�

m

pnm
m [where nm = (# of Si = sm)].

Entropy

� Now suppose stimuli are not equiprobable. Write P(sm) = pm. Then

P(S1,S2, . . . ,SN) =
�

m

pnm
m [where nm = (# of Si = sm)].

As N → ∞ only “typical” sequences, with nm = pmN, have non-zero probability of
occuring; and they are all equally likely. This is called the Asymptotic Equipartition
Property (or AEP).

Entropy

� Now suppose stimuli are not equiprobable. Write P(sm) = pm. Then

P(S1,S2, . . . ,SN) =
�

m

pnm
m [where nm = (# of Si = sm)].

As N → ∞ only “typical” sequences, with nm = pmN, have non-zero probability of
occuring; and they are all equally likely. This is called the Asymptotic Equipartition
Property (or AEP).
Thus,

BN → − log2

�
m pnm

m = −�m nm log2 pm

= −�m pmN log2 pm = −N
�

m

pm log2 pm

� �� �
−H[s]

Entropy

� Now suppose stimuli are not equiprobable. Write P(sm) = pm. Then

P(S1,S2, . . . ,SN) =
�

m

pnm
m [where nm = (# of Si = sm)].

As N → ∞ only “typical” sequences, with nm = pmN, have non-zero probability of
occuring; and they are all equally likely. This is called the Asymptotic Equipartition
Property (or AEP).
Thus,

BN → − log2

�
m pnm

m = −�m nm log2 pm

= −�m pmN log2 pm = −N
�

m

pm log2 pm

� �� �
−H[s]

H[S] = E [− log2 P(S)], also written H[P(S)], is the entropy of the stimulus distribution.

Entropy

� Now suppose stimuli are not equiprobable. Write P(sm) = pm. Then

P(S1,S2, . . . ,SN) =
�

m

pnm
m [where nm = (# of Si = sm)].

As N → ∞ only “typical” sequences, with nm = pmN, have non-zero probability of
occuring; and they are all equally likely. This is called the Asymptotic Equipartition
Property (or AEP).
Thus,

BN → − log2

�
m pnm

m = −�m nm log2 pm

= −�m pmN log2 pm = −N
�

m

pm log2 pm

� �� �
−H[s]

H[S] = E [− log2 P(S)], also written H[P(S)], is the entropy of the stimulus distribution.

Rather than appealing to typicality, we could instead have used the law of large numbers directly:

1

N
log2 P(S1,S2, . . .SN) =

1

N
log2

�

i

P(Si) =
1

N

�

i

log2 P(Si)
N→∞→ E[log2 P(Si)]

Conditional Entropy
Entropy is a measure of “available information” in the stimulus ensemble.

Conditional Entropy
Entropy is a measure of “available information” in the stimulus ensemble. Now suppose we
measure a particular response r which depends on the stimulus according to P(R|S).

How uncertain is the stimulus once we know r?

Conditional Entropy
Entropy is a measure of “available information” in the stimulus ensemble. Now suppose we
measure a particular response r which depends on the stimulus according to P(R|S).

How uncertain is the stimulus once we know r? Bayes rule gives us

P(S|r) = P(r |S)P(S)�
s P(r |s)P(s)

so we can write
H[S|r] = −

�

s

P(s|r) log2 P(s|r)

Conditional Entropy
Entropy is a measure of “available information” in the stimulus ensemble. Now suppose we
measure a particular response r which depends on the stimulus according to P(R|S).

How uncertain is the stimulus once we know r? Bayes rule gives us

P(S|r) = P(r |S)P(S)�
s P(r |s)P(s)

so we can write
H[S|r] = −

�

s

P(s|r) log2 P(s|r)

The average uncertainty in S for r ∼ P(R) =
�

s P(R|s)p(s) is then

H[S|R] =
�

r

P(r)

�
−
�

s

P(s|r) log2 P(s|r)
�
= −

�

s,r

P(s, r) log2 P(s|r)

Conditional Entropy
Entropy is a measure of “available information” in the stimulus ensemble. Now suppose we
measure a particular response r which depends on the stimulus according to P(R|S).

How uncertain is the stimulus once we know r? Bayes rule gives us

P(S|r) = P(r |S)P(S)�
s P(r |s)P(s)

so we can write
H[S|r] = −

�

s

P(s|r) log2 P(s|r)

The average uncertainty in S for r ∼ P(R) =
�

s P(R|s)p(s) is then

H[S|R] =
�

r

P(r)

�
−
�

s

P(s|r) log2 P(s|r)
�
= −

�

s,r

P(s, r) log2 P(s|r)

It is easy to show that:

1. H[S|R] ≤ H[S]

2. H[S|R] = H[S,R]− H[R]

3. H[S|R] = H[S] iff S ⊥⊥ R

Average Mutual Information

A natural definition of the average information gained about S from R is

I[S;R] = H[S]− H[S|R]

Measures reduction in uncertainty due to R.

Average Mutual Information

A natural definition of the average information gained about S from R is

I[S;R] = H[S]− H[S|R]

Measures reduction in uncertainty due to R.

It follows from the definition that

I[S;R] =
�

s

P(s) log
1

P(s)
−
�

s,r

P(s, r) log
1

P(s|r)

=
�

s,r

P(s, r) log
1

P(s)
+
�

s,r

P(s, r) log P(s|r)

=
�

s,r

P(s, r) log
P(s|r)
P(s)

=
�

s,r

P(s, r) log
P(s, r)

P(s)P(r)

= I[R;S]

Average Mutual Information

The symmetry suggests a Venn-like diagram.

H[S|R]
I[S;R]

I[R;S]
H[R|S]

H[S,R]

H[S] H[R]

All of the additive and equality relationships implied by this picture hold for two variables.
Unfortunately, we will see that this does not generalise to any more than two.

Kullback-Leibler Divergence

Another useful information theoretic quantity measures the difference between two
distributions.

KL[P(S)�Q(S)] =
�

s

P(s) log
P(s)
Q(s)

=
�

s

P(s) log
1

Q(s)
� �� �

cross entropy

−H[P]

Excess cost in bits paid by encoding according to Q instead of P.

Kullback-Leibler Divergence

Another useful information theoretic quantity measures the difference between two
distributions.

KL[P(S)�Q(S)] =
�

s

P(s) log
P(s)
Q(s)

=
�

s

P(s) log
1

Q(s)
� �� �

cross entropy

−H[P]

Excess cost in bits paid by encoding according to Q instead of P.

−KL[P�Q] =
�

s

P(s) log
Q(s)
P(s)

≤ log
�

s

P(s)
Q(s)
P(s)

by Jensen

= log
�

s

Q(s) = log 1 = 0

So KL[P�Q] ≥ 0. Equality iff P = Q

Mutual Information and KL

I[S;R] =
�

s,r

P(s, r) log
P(s, r)

P(s)P(r)
= KL[P(S,R)�P(S)P(R)]

Mutual Information and KL

I[S;R] =
�

s,r

P(s, r) log
P(s, r)

P(s)P(r)
= KL[P(S,R)�P(S)P(R)]

Thus:

1. Mutual information is always non-negative

I[S;R] ≥ 0

Mutual Information and KL

I[S;R] =
�

s,r

P(s, r) log
P(s, r)

P(s)P(r)
= KL[P(S,R)�P(S)P(R)]

Thus:

1. Mutual information is always non-negative

I[S;R] ≥ 0

2. Conditioning never increases entropy

H[S|R] ≤ H[S]

Multiple Responses

Two responses to the same stimulus, R1 and R2, may provide either more or less information
jointly than independently.

Multiple Responses

Two responses to the same stimulus, R1 and R2, may provide either more or less information
jointly than independently.

I12 = I[S;R1,R2] = H[R1,R2]− H[R1,R2|S]

R1 ⊥⊥ R2 ⇒ H[R1,R2] = H[R1] + H[R2]

R1 ⊥⊥ R2|S ⇒ H[R1,R2|S] = H[R1|S] + H[R2|S]

Multiple Responses

Two responses to the same stimulus, R1 and R2, may provide either more or less information
jointly than independently.

I12 = I[S;R1,R2] = H[R1,R2]− H[R1,R2|S]

R1 ⊥⊥ R2 ⇒ H[R1,R2] = H[R1] + H[R2]

R1 ⊥⊥ R2|S ⇒ H[R1,R2|S] = H[R1|S] + H[R2|S]

R1 ⊥⊥ R2 R1 ⊥⊥ R2|S
no yes I12 < I1 + I2 redundant

Multiple Responses

Two responses to the same stimulus, R1 and R2, may provide either more or less information
jointly than independently.

I12 = I[S;R1,R2] = H[R1,R2]− H[R1,R2|S]

R1 ⊥⊥ R2 ⇒ H[R1,R2] = H[R1] + H[R2]

R1 ⊥⊥ R2|S ⇒ H[R1,R2|S] = H[R1|S] + H[R2|S]

R1 ⊥⊥ R2 R1 ⊥⊥ R2|S
no yes I12 < I1 + I2 redundant
yes yes I12 = I1 + I2 independent

Multiple Responses

Two responses to the same stimulus, R1 and R2, may provide either more or less information
jointly than independently.

I12 = I[S;R1,R2] = H[R1,R2]− H[R1,R2|S]

R1 ⊥⊥ R2 ⇒ H[R1,R2] = H[R1] + H[R2]

R1 ⊥⊥ R2|S ⇒ H[R1,R2|S] = H[R1|S] + H[R2|S]

R1 ⊥⊥ R2 R1 ⊥⊥ R2|S
no yes I12 < I1 + I2 redundant
yes yes I12 = I1 + I2 independent
yes no I12 > I1 + I2 synergistic

Multiple Responses

Two responses to the same stimulus, R1 and R2, may provide either more or less information
jointly than independently.

I12 = I[S;R1,R2] = H[R1,R2]− H[R1,R2|S]

R1 ⊥⊥ R2 ⇒ H[R1,R2] = H[R1] + H[R2]

R1 ⊥⊥ R2|S ⇒ H[R1,R2|S] = H[R1|S] + H[R2|S]

R1 ⊥⊥ R2 R1 ⊥⊥ R2|S
no yes I12 < I1 + I2 redundant
yes yes I12 = I1 + I2 independent
yes no I12 > I1 + I2 synergistic
no no ? any of the above

Multiple Responses

Two responses to the same stimulus, R1 and R2, may provide either more or less information
jointly than independently.

I12 = I[S;R1,R2] = H[R1,R2]− H[R1,R2|S]

R1 ⊥⊥ R2 ⇒ H[R1,R2] = H[R1] + H[R2]

R1 ⊥⊥ R2|S ⇒ H[R1,R2|S] = H[R1|S] + H[R2|S]

R1 ⊥⊥ R2 R1 ⊥⊥ R2|S
no yes I12 < I1 + I2 redundant
yes yes I12 = I1 + I2 independent
yes no I12 > I1 + I2 synergistic
no no ? any of the above

I12 > max(I1, I2): the second response cannot destroy information.

Multiple Responses

Two responses to the same stimulus, R1 and R2, may provide either more or less information
jointly than independently.

I12 = I[S;R1,R2] = H[R1,R2]− H[R1,R2|S]

R1 ⊥⊥ R2 ⇒ H[R1,R2] = H[R1] + H[R2]

R1 ⊥⊥ R2|S ⇒ H[R1,R2|S] = H[R1|S] + H[R2|S]

R1 ⊥⊥ R2 R1 ⊥⊥ R2|S
no yes I12 < I1 + I2 redundant
yes yes I12 = I1 + I2 independent
yes no I12 > I1 + I2 synergistic
no no ? any of the above

I12 > max(I1, I2): the second response cannot destroy information.

Thus, the Venn-like diagram with three variables is misleading.

Data Processing Inequality

Data Processing Inequality

Suppose S → R1 → R2 form a Markov chain; that is, R2 ⊥⊥ S | R1.

Then,

P(R2,S|R1) = P(R2|R1)P(S|R1)

⇒ P(S|R1,R2) = P(S|R1)

Data Processing Inequality

Suppose S → R1 → R2 form a Markov chain; that is, R2 ⊥⊥ S | R1.

Then,

P(R2,S|R1) = P(R2|R1)P(S|R1)

⇒ P(S|R1,R2) = P(S|R1)

Thus,

H[S|R2] ≥ H[S|R1,R2] = H[S|R1]

⇒ I[S;R2] ≤ I[S;R1]

So any computation based on R1 that does not have separate access to S cannot add
information (in the Shannon sense) about the world.

Data Processing Inequality

Suppose S → R1 → R2 form a Markov chain; that is, R2 ⊥⊥ S | R1.

Then,

P(R2,S|R1) = P(R2|R1)P(S|R1)

⇒ P(S|R1,R2) = P(S|R1)

Thus,

H[S|R2] ≥ H[S|R1,R2] = H[S|R1]

⇒ I[S;R2] ≤ I[S;R1]

So any computation based on R1 that does not have separate access to S cannot add
information (in the Shannon sense) about the world.

Equality holds iff S → R2 → R1 as well. In this case R2 is called a sufficient statistic for S.

Entropy Rate

So far we have discussed S and R as single (or iid) random variables. But real stimuli and
responses form a time series.

Entropy Rate

So far we have discussed S and R as single (or iid) random variables. But real stimuli and
responses form a time series.

Let S = {S1,S2,S3 . . .} form a stochastic process.

H[S1,S2, . . . ,Sn] = H[Sn|S1,S2, . . . ,Sn−1] + H[S1,S2, . . . ,Sn−1]

= H[Sn|S1,S2, . . . ,Sn−1] + H[Sn−1|S1,S2, . . . ,Sn−2] + . . .+ H[S1]

Entropy Rate

So far we have discussed S and R as single (or iid) random variables. But real stimuli and
responses form a time series.

Let S = {S1,S2,S3 . . .} form a stochastic process.

H[S1,S2, . . . ,Sn] = H[Sn|S1,S2, . . . ,Sn−1] + H[S1,S2, . . . ,Sn−1]

= H[Sn|S1,S2, . . . ,Sn−1] + H[Sn−1|S1,S2, . . . ,Sn−2] + . . .+ H[S1]

The entropy rate of S is defined as

H[S] = lim
n→∞

H[S1,S2, . . . ,Sn]

N

or alternatively as
H[S] = lim

n→∞
H[Sn|S1,S2, . . . ,Sn−1]

Entropy Rate

So far we have discussed S and R as single (or iid) random variables. But real stimuli and
responses form a time series.

Let S = {S1,S2,S3 . . .} form a stochastic process.

H[S1,S2, . . . ,Sn] = H[Sn|S1,S2, . . . ,Sn−1] + H[S1,S2, . . . ,Sn−1]

= H[Sn|S1,S2, . . . ,Sn−1] + H[Sn−1|S1,S2, . . . ,Sn−2] + . . .+ H[S1]

The entropy rate of S is defined as

H[S] = lim
n→∞

H[S1,S2, . . . ,Sn]

N

or alternatively as
H[S] = lim

n→∞
H[Sn|S1,S2, . . . ,Sn−1]

If Si
iid∼ P(S) then H[S] = H[S].

If S is Markov (and stationary) then H[S] = H[Sn|Sn−1].

Continuous Random Variables

The discussion so far has involved discrete S and R. Now, let S ∈ R with density p(s). What
is its entropy?

Continuous Random Variables

The discussion so far has involved discrete S and R. Now, let S ∈ R with density p(s). What
is its entropy?

Suppose we discretise with length Δs:

HΔ[S] = −
�

i

p(si)Δs log p(si)Δs

= −
�

i

p(si)Δs(log p(si) + logΔs)

Continuous Random Variables

The discussion so far has involved discrete S and R. Now, let S ∈ R with density p(s). What
is its entropy?

Suppose we discretise with length Δs:

HΔ[S] = −
�

i

p(si)Δs log p(si)Δs

= −
�

i

p(si)Δs(log p(si) + logΔs)

= −
�

i

p(si)Δs log p(si)− logΔs
�

i

p(si)Δs

Continuous Random Variables

The discussion so far has involved discrete S and R. Now, let S ∈ R with density p(s). What
is its entropy?

Suppose we discretise with length Δs:

HΔ[S] = −
�

i

p(si)Δs log p(si)Δs

= −
�

i

p(si)Δs(log p(si) + logΔs)

= −
�

i

p(si)Δs log p(si)− logΔs
�

i

p(si)Δs

= −
�

i

Δs p(si) log p(si)− logΔs

Continuous Random Variables

The discussion so far has involved discrete S and R. Now, let S ∈ R with density p(s). What
is its entropy?

Suppose we discretise with length Δs:

HΔ[S] = −
�

i

p(si)Δs log p(si)Δs

= −
�

i

p(si)Δs(log p(si) + logΔs)

= −
�

i

p(si)Δs log p(si)− logΔs
�

i

p(si)Δs

= −
�

i

Δs p(si) log p(si)− logΔs

→ −
�

ds p(s) log p(s) +∞

Continuous Random Variables

The discussion so far has involved discrete S and R. Now, let S ∈ R with density p(s). What
is its entropy?

Suppose we discretise with length Δs:

HΔ[S] = −
�

i

p(si)Δs log p(si)Δs

= −
�

i

p(si)Δs(log p(si) + logΔs)

= −
�

i

p(si)Δs log p(si)− logΔs
�

i

p(si)Δs

= −
�

i

Δs p(si) log p(si)− logΔs

→ −
�

ds p(s) log p(s) +∞

We define the differential entropy:

h(S) = −
�

ds p(s) log p(s).

Note that h(S) can be < 0, and can be ±∞.

Continuous Random Variables

We can define other information theoretic quantities similarly.

Continuous Random Variables

We can define other information theoretic quantities similarly.

The conditional differential entropy is

h(S|R) = −
�

ds dr p(s, r) log p(s|r)

and, like the differential entropy itself, may be poorly behaved.

Continuous Random Variables

We can define other information theoretic quantities similarly.

The conditional differential entropy is

h(S|R) = −
�

ds dr p(s, r) log p(s|r)

and, like the differential entropy itself, may be poorly behaved.

The mutual information, however, is well-defined

IΔ[S;R] = HΔ[S]− HΔ[S|R]

= −
�

i

Δs p(si) log p(si)− logΔs

−
�

dr p(r)

�
−
�

i

Δs p(si |r) log p(si |r)− logΔs

�

→ h(S)− h(S|R)

as are other KL divergences.

Maximum Entropy Distributions

1. H[R1,R2] = H[R1] + H[R2] with equality iff R1 ⊥⊥ R2.

Maximum Entropy Distributions

1. H[R1,R2] = H[R1] + H[R2] with equality iff R1 ⊥⊥ R2.

2. Let
�

ds p(s)f (s) = a for some function f . What distribution has maximum entropy?

Maximum Entropy Distributions

1. H[R1,R2] = H[R1] + H[R2] with equality iff R1 ⊥⊥ R2.

2. Let
�

ds p(s)f (s) = a for some function f . What distribution has maximum entropy?
Use Lagrange multipliers:

L =

�
ds p(s) log p(s)− λ0

��
ds p(s)− 1

�
− λ1

��
ds p(s)f (s)− a

�

δL
δp(s)

= 1 + log p(s)− λ0 − λ1f (s) = 0

⇒ log p(s) = λ0 + λ1f (s)− 1

⇒ p(s) =
1
Z

eλ1 f (s)

The constants λ0 and λ1 can be found by solving the constraint equations.

Maximum Entropy Distributions

1. H[R1,R2] = H[R1] + H[R2] with equality iff R1 ⊥⊥ R2.

2. Let
�

ds p(s)f (s) = a for some function f . What distribution has maximum entropy?
Use Lagrange multipliers:

L =

�
ds p(s) log p(s)− λ0

��
ds p(s)− 1

�
− λ1

��
ds p(s)f (s)− a

�

δL
δp(s)

= 1 + log p(s)− λ0 − λ1f (s) = 0

⇒ log p(s) = λ0 + λ1f (s)− 1

⇒ p(s) =
1
Z

eλ1 f (s)

The constants λ0 and λ1 can be found by solving the constraint equations.
Thus,

f (s) = s ⇒ p(s) = 1
Z eλ1s. Exponential (need p(s) = 0 for s < T).

f (s) = s2 ⇒ p(s) = 1
Z eλ1s2

. Gaussian.

Maximum Entropy Distributions

1. H[R1,R2] = H[R1] + H[R2] with equality iff R1 ⊥⊥ R2.

2. Let
�

ds p(s)f (s) = a for some function f . What distribution has maximum entropy?
Use Lagrange multipliers:

L =

�
ds p(s) log p(s)− λ0

��
ds p(s)− 1

�
− λ1

��
ds p(s)f (s)− a

�

δL
δp(s)

= 1 + log p(s)− λ0 − λ1f (s) = 0

⇒ log p(s) = λ0 + λ1f (s)− 1

⇒ p(s) =
1
Z

eλ1 f (s)

The constants λ0 and λ1 can be found by solving the constraint equations.
Thus,

f (s) = s ⇒ p(s) = 1
Z eλ1s. Exponential (need p(s) = 0 for s < T).

f (s) = s2 ⇒ p(s) = 1
Z eλ1s2

. Gaussian.

Both results together ⇒ maximum entropy point process (for fixed mean arrival rate) is
homogeneous Poisson – independent, exponentially distributed ISIs.

Channels

We now direct our focus to the conditional P(R|S) which defines the channel linking S to R.

S
P(R|S)−→ R

Channels

We now direct our focus to the conditional P(R|S) which defines the channel linking S to R.

S
P(R|S)−→ R

The mutual information

I[S;R] =
�

s,r

P(s, r) log
P(s, r)

P(s)P(r)
=
�

s,r

P(s)P(r |s) log
P(r |s)
P(r)

depends on marginals P(s) and P(r) =
�

s P(r |s)P(s) as well and thus is unsuitable to
characterise the conditional alone.

Channels

We now direct our focus to the conditional P(R|S) which defines the channel linking S to R.

S
P(R|S)−→ R

The mutual information

I[S;R] =
�

s,r

P(s, r) log
P(s, r)

P(s)P(r)
=
�

s,r

P(s)P(r |s) log
P(r |s)
P(r)

depends on marginals P(s) and P(r) =
�

s P(r |s)P(s) as well and thus is unsuitable to
characterise the conditional alone.

Instead, we characterise the channel by its capacity

CR|S = sup
P(s)

I[S;R]

Thus the capacity gives the theoretical limit on the amount of information that can be
transmitted over a channel. Clearly, this is limited by the properties of the noise.

Joint source-channel coding theorem

The remarkable central result of information theory.

S
encoder−−−−−−−−−−−→ �S channel−−−−−−−−−−−→

CR|�S
R

decoder−−−−−−−−−−−→ �T

Any source ensemble S with entropy H[S] < CR|�S can be transmitted (in sufficiently long
blocks) with Perror → 0.

The proof is beyond our scope.

Some of the key ideas that appear in the proof are:

� block coding
� error correction
� joint typicality
� random codes

The channel coding problem

S
encoder−−−−−−−−−−−→ �S channel−−−−−−−−−−−→

CR|�S
R

decoder−−−−−−−−−−−→ �T

Given channel P(R|�S) and source P(S), find encoding P(�S|S) (may be deterministic) to
maximise I[S;R].

By data processing inequality, and defn of capacity:

I[S;R] ≤ I[�S;R] ≤ CR|�S

By JSCT, equality can be achieved (in the limit of increasing block size).

Thus I[�S;R] should saturate CR|�S .

See homework for an algorithm (Blahut-Arimoto) to find P(�S) that saturates CR|�S for a
general discrete channel.

Entropy maximisation

I[�S;R] = H[R]� �� �
marginal entropy

− H
�
R|�S
�

� �� �
noise entropy

Entropy maximisation

I[�S;R] = H[R]� �� �
marginal entropy

− H
�
R|�S
�

� �� �
noise entropy

If noise is small and “constant” ⇒ maximise marginal entropy ⇒ maximise H
�
�S
�

Entropy maximisation

I[�S;R] = H[R]� �� �
marginal entropy

− H
�
R|�S
�

� �� �
noise entropy

If noise is small and “constant” ⇒ maximise marginal entropy ⇒ maximise H
�
�S
�

Consider a (rate coding) neuron with r ∈ [0, rmax].

h(r) = −
� rmax

0
dr p(r) log p(r)

Entropy maximisation

I[�S;R] = H[R]� �� �
marginal entropy

− H
�
R|�S
�

� �� �
noise entropy

If noise is small and “constant” ⇒ maximise marginal entropy ⇒ maximise H
�
�S
�

Consider a (rate coding) neuron with r ∈ [0, rmax].

h(r) = −
� rmax

0
dr p(r) log p(r)

To maximise the marginal entropy, we add a Lagrange multiplier (µ) to enforce normalisation
and then differentiate

δ

δp(r)

�
h(r)− µ

� rmax

0
p(r)
�
=

�
− log p(r)− 1 − µ r ∈ [0, rmax]

0 otherwise

Entropy maximisation

I[�S;R] = H[R]� �� �
marginal entropy

− H
�
R|�S
�

� �� �
noise entropy

If noise is small and “constant” ⇒ maximise marginal entropy ⇒ maximise H
�
�S
�

Consider a (rate coding) neuron with r ∈ [0, rmax].

h(r) = −
� rmax

0
dr p(r) log p(r)

To maximise the marginal entropy, we add a Lagrange multiplier (µ) to enforce normalisation
and then differentiate

δ

δp(r)

�
h(r)− µ

� rmax

0
p(r)
�
=

�
− log p(r)− 1 − µ r ∈ [0, rmax]

0 otherwise

⇒ p(r) = const for r ∈ [0, rmax]

Entropy maximisation

I[�S;R] = H[R]� �� �
marginal entropy

− H
�
R|�S
�

� �� �
noise entropy

If noise is small and “constant” ⇒ maximise marginal entropy ⇒ maximise H
�
�S
�

Consider a (rate coding) neuron with r ∈ [0, rmax].

h(r) = −
� rmax

0
dr p(r) log p(r)

To maximise the marginal entropy, we add a Lagrange multiplier (µ) to enforce normalisation
and then differentiate

δ

δp(r)

�
h(r)− µ

� rmax

0
p(r)
�
=

�
− log p(r)− 1 − µ r ∈ [0, rmax]

0 otherwise

⇒ p(r) = const for r ∈ [0, rmax]
i.e.

p(r) =
� 1

rmax
r ∈ [0, rmax]

0 otherwise

Histogram Equalisation
Suppose r = s̃ + η where η represents a (relatively small) source of noise. Consider
deterministic encoding s̃ = f (s). How do we ensure that p(r) = 1/rmax?

1
rmax

= p(r) ≈ p(s̃) =
p(s)
f �(s)

⇒ f �(s) = rmax p(s)

⇒ f (s) = rmax

� s

−∞
ds� p(s�)

s̃

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s

Histogram Equalisation

Laughlin (1981)

Gaussian channel

A similar idea of output-entropy maximisation appears in the theory of Gaussian channel
coding, where it is called the water filling algorithm.

Gaussian channel

A similar idea of output-entropy maximisation appears in the theory of Gaussian channel
coding, where it is called the water filling algorithm.

We will need the differential entropy of a (multivariate) Gaussian distribution:

Gaussian channel

A similar idea of output-entropy maximisation appears in the theory of Gaussian channel
coding, where it is called the water filling algorithm.

We will need the differential entropy of a (multivariate) Gaussian distribution:

Let
p(Z) = |2πΣ|−1/2 exp

�
−1

2
(Z − µ)TΣ−1(Z − µ)

�
,

then,

h(Z) = −
�

dZ p(Z)
�
−1

2
log |2πΣ|− 1

2
(Z − µ)TΣ−1(Z − µ)

�

Gaussian channel

A similar idea of output-entropy maximisation appears in the theory of Gaussian channel
coding, where it is called the water filling algorithm.

We will need the differential entropy of a (multivariate) Gaussian distribution:

Let
p(Z) = |2πΣ|−1/2 exp

�
−1

2
(Z − µ)TΣ−1(Z − µ)

�
,

then,

h(Z) = −
�

dZ p(Z)
�
−1

2
log |2πΣ|− 1

2
(Z − µ)TΣ−1(Z − µ)

�

=
1
2

log |2πΣ|+ 1
2

�
dZ p(Z)Tr

�
Σ−1(Z − µ)(Z − µ)T

�

Gaussian channel

A similar idea of output-entropy maximisation appears in the theory of Gaussian channel
coding, where it is called the water filling algorithm.

We will need the differential entropy of a (multivariate) Gaussian distribution:

Let
p(Z) = |2πΣ|−1/2 exp

�
−1

2
(Z − µ)TΣ−1(Z − µ)

�
,

then,

h(Z) = −
�

dZ p(Z)
�
−1

2
log |2πΣ|− 1

2
(Z − µ)TΣ−1(Z − µ)

�

=
1
2

log |2πΣ|+ 1
2

�
dZ p(Z)Tr

�
Σ−1(Z − µ)(Z − µ)T

�

=
1
2

log |2πΣ|+ 1
2

Tr
�
Σ−1Σ

�

Gaussian channel

A similar idea of output-entropy maximisation appears in the theory of Gaussian channel
coding, where it is called the water filling algorithm.

We will need the differential entropy of a (multivariate) Gaussian distribution:

Let
p(Z) = |2πΣ|−1/2 exp

�
−1

2
(Z − µ)TΣ−1(Z − µ)

�
,

then,

h(Z) = −
�

dZ p(Z)
�
−1

2
log |2πΣ|− 1

2
(Z − µ)TΣ−1(Z − µ)

�

=
1
2

log |2πΣ|+ 1
2

�
dZ p(Z)Tr

�
Σ−1(Z − µ)(Z − µ)T

�

=
1
2

log |2πΣ|+ 1
2

Tr
�
Σ−1Σ

�

=
1
2

log |2πΣ|+ 1
2

d (log e)

Gaussian channel

A similar idea of output-entropy maximisation appears in the theory of Gaussian channel
coding, where it is called the water filling algorithm.

We will need the differential entropy of a (multivariate) Gaussian distribution:

Let
p(Z) = |2πΣ|−1/2 exp

�
−1

2
(Z − µ)TΣ−1(Z − µ)

�
,

then,

h(Z) = −
�

dZ p(Z)
�
−1

2
log |2πΣ|− 1

2
(Z − µ)TΣ−1(Z − µ)

�

=
1
2

log |2πΣ|+ 1
2

�
dZ p(Z)Tr

�
Σ−1(Z − µ)(Z − µ)T

�

=
1
2

log |2πΣ|+ 1
2

Tr
�
Σ−1Σ

�

=
1
2

log |2πΣ|+ 1
2

d (log e)

=
1
2

log |2πeΣ|

Gaussian channel – white noise

+�S R

Z ∼ N (0, kz)

Gaussian channel – white noise

+�S R

Z ∼ N (0, kz) I[�S;R] = h(R)− h(R|�S)

Gaussian channel – white noise

+�S R

Z ∼ N (0, kz) I[�S;R] = h(R)− h(R|�S)
= h(R)− h(�S + Z |�S)

Gaussian channel – white noise

+�S R

Z ∼ N (0, kz) I[�S;R] = h(R)− h(R|�S)
= h(R)− h(�S + Z |�S)
= h(R)− h(Z)

Gaussian channel – white noise

+�S R

Z ∼ N (0, kz) I[�S;R] = h(R)− h(R|�S)
= h(R)− h(�S + Z |�S)
= h(R)− h(Z)

⇒ I[�S;R] = h(R)− 1
2

log 2πekz .

Gaussian channel – white noise

+�S R

Z ∼ N (0, kz) I[�S;R] = h(R)− h(R|�S)
= h(R)− h(�S + Z |�S)
= h(R)− h(Z)

⇒ I[�S;R] = h(R)− 1
2

log 2πekz .

Without constraint, h(R) → ∞ and CR|�S = ∞.

Gaussian channel – white noise

+�S R

Z ∼ N (0, kz)

�
�S2
�
≤ P

I[�S;R] = h(R)− h(R|�S)
= h(R)− h(�S + Z |�S)
= h(R)− h(Z)

⇒ I[�S;R] = h(R)− 1
2

log 2πekz .

Without constraint, h(R) → ∞ and CR|�S = ∞.

Therefore, constrain
1
n

n�

i=1

s̃2
i ≤ P.

Gaussian channel – white noise

+�S R

Z ∼ N (0, kz)

�
�S2
�
≤ P

I[�S;R] = h(R)− h(R|�S)
= h(R)− h(�S + Z |�S)
= h(R)− h(Z)

⇒ I[�S;R] = h(R)− 1
2

log 2πekz .

Without constraint, h(R) → ∞ and CR|�S = ∞.

Therefore, constrain
1
n

n�

i=1

s̃2
i ≤ P.

Then, �
R2� =

�
(�S + Z)2

�
=
�
�S2 + Z 2 + 2�SZ

�

Gaussian channel – white noise

+�S R

Z ∼ N (0, kz)

�
�S2
�
≤ P

I[�S;R] = h(R)− h(R|�S)
= h(R)− h(�S + Z |�S)
= h(R)− h(Z)

⇒ I[�S;R] = h(R)− 1
2

log 2πekz .

Without constraint, h(R) → ∞ and CR|�S = ∞.

Therefore, constrain
1
n

n�

i=1

s̃2
i ≤ P.

Then, �
R2� =

�
(�S + Z)2

�
=
�
�S2 + Z 2 + 2�SZ

�
≤ P + kz + 0

Gaussian channel – white noise

+�S R

Z ∼ N (0, kz)

�
�S2
�
≤ P

I[�S;R] = h(R)− h(R|�S)
= h(R)− h(�S + Z |�S)
= h(R)− h(Z)

⇒ I[�S;R] = h(R)− 1
2

log 2πekz .

Without constraint, h(R) → ∞ and CR|�S = ∞.

Therefore, constrain
1
n

n�

i=1

s̃2
i ≤ P.

Then, �
R2� =

�
(�S + Z)2

�
=
�
�S2 + Z 2 + 2�SZ

�
≤ P + kz + 0

⇒ h(R) ≤ h(N (0,P + kz))

Gaussian channel – white noise

+�S R

Z ∼ N (0, kz)

�
�S2
�
≤ P

I[�S;R] = h(R)− h(R|�S)
= h(R)− h(�S + Z |�S)
= h(R)− h(Z)

⇒ I[�S;R] = h(R)− 1
2

log 2πekz .

Without constraint, h(R) → ∞ and CR|�S = ∞.

Therefore, constrain
1
n

n�

i=1

s̃2
i ≤ P.

Then, �
R2� =

�
(�S + Z)2

�
=
�
�S2 + Z 2 + 2�SZ

�
≤ P + kz + 0

⇒ h(R) ≤ h(N (0,P + kz)) =
1
2

log 2πe(P + kz)

Gaussian channel – white noise

+�S R

Z ∼ N (0, kz)

�
�S2
�
≤ P

I[�S;R] = h(R)− h(R|�S)
= h(R)− h(�S + Z |�S)
= h(R)− h(Z)

⇒ I[�S;R] = h(R)− 1
2

log 2πekz .

Without constraint, h(R) → ∞ and CR|�S = ∞.

Therefore, constrain
1
n

n�

i=1

s̃2
i ≤ P.

Then, �
R2� =

�
(�S + Z)2

�
=
�
�S2 + Z 2 + 2�SZ

�
≤ P + kz + 0

⇒ h(R) ≤ h(N (0,P + kz)) =
1
2

log 2πe(P + kz)

⇒ I[�S;R] ≤ 1
2

log 2πe(P + kz)− 1
2

log 2πekz

Gaussian channel – white noise

+�S R

Z ∼ N (0, kz)

�
�S2
�
≤ P

I[�S;R] = h(R)− h(R|�S)
= h(R)− h(�S + Z |�S)
= h(R)− h(Z)

⇒ I[�S;R] = h(R)− 1
2

log 2πekz .

Without constraint, h(R) → ∞ and CR|�S = ∞.

Therefore, constrain
1
n

n�

i=1

s̃2
i ≤ P.

Then, �
R2� =

�
(�S + Z)2

�
=
�
�S2 + Z 2 + 2�SZ

�
≤ P + kz + 0

⇒ h(R) ≤ h(N (0,P + kz)) =
1
2

log 2πe(P + kz)

⇒ I[�S;R] ≤ 1
2

log 2πe(P + kz)− 1
2

log 2πekz =
1
2

log 2πe
�

1 +
P
kz

�

Gaussian channel – white noise

+�S R

Z ∼ N (0, kz)

�
�S2
�
≤ P

I[�S;R] = h(R)− h(R|�S)
= h(R)− h(�S + Z |�S)
= h(R)− h(Z)

⇒ I[�S;R] = h(R)− 1
2

log 2πekz .

Without constraint, h(R) → ∞ and CR|�S = ∞.

Therefore, constrain
1
n

n�

i=1

s̃2
i ≤ P.

Then, �
R2� =

�
(�S + Z)2

�
=
�
�S2 + Z 2 + 2�SZ

�
≤ P + kz + 0

⇒ h(R) ≤ h(N (0,P + kz)) =
1
2

log 2πe(P + kz)

⇒ I[�S;R] ≤ 1
2

log 2πe(P + kz)− 1
2

log 2πekz =
1
2

log 2πe
�

1 +
P
kz

�

CR|�S =
1
2

log 2πe
�

1 +
P
kz

�

The capacity is achieved iff R ∼ N (0,P + kz) ⇒ �S ∼ N (0,P).

Gaussian channel – correlated noise
Now consider a vector Gaussian channel:

+�S = (S1, . . . ,Sd) R = (R1, . . . ,Rd)

Z = (Z1, . . . , Zd) ∼ N (0,Kz)

1
d Tr
�
�S�ST
�
≤ P

Gaussian channel – correlated noise
Now consider a vector Gaussian channel:

+�S = (S1, . . . ,Sd) R = (R1, . . . ,Rd)

Z = (Z1, . . . , Zd) ∼ N (0,Kz)

1
d Tr
�
�S�ST
�
≤ P

Following the same approach as before:

I[�S;R] = h(R)− h(Z) ≤ 1
2

log
�
(2πe)d |Ks̃ + Kz |

�
− 1

2
log
�
(2πe)d |Kz |

�
,

Gaussian channel – correlated noise
Now consider a vector Gaussian channel:

+�S = (S1, . . . ,Sd) R = (R1, . . . ,Rd)

Z = (Z1, . . . , Zd) ∼ N (0,Kz)

1
d Tr
�
�S�ST
�
≤ P

Following the same approach as before:

I[�S;R] = h(R)− h(Z) ≤ 1
2

log
�
(2πe)d |Ks̃ + Kz |

�
− 1

2
log
�
(2πe)d |Kz |

�
,

⇒ CR|S achieved when �S (and thus R) ∼ N , with |Ks̃ + Kz | max given 1
d Tr [Ks̃] ≤ P.

Gaussian channel – correlated noise
Now consider a vector Gaussian channel:

+�S = (S1, . . . ,Sd) R = (R1, . . . ,Rd)

Z = (Z1, . . . , Zd) ∼ N (0,Kz)

1
d Tr
�
�S�ST
�
≤ P

Following the same approach as before:

I[�S;R] = h(R)− h(Z) ≤ 1
2

log
�
(2πe)d |Ks̃ + Kz |

�
− 1

2
log
�
(2πe)d |Kz |

�
,

⇒ CR|S achieved when �S (and thus R) ∼ N , with |Ks̃ + Kz | max given 1
d Tr [Ks̃] ≤ P.

Diagonalise Kz ⇒Ks̃ is diagonal in same basis.

Gaussian channel – correlated noise
Now consider a vector Gaussian channel:

+�S = (S1, . . . ,Sd) R = (R1, . . . ,Rd)

Z = (Z1, . . . , Zd) ∼ N (0,Kz)

1
d Tr
�
�S�ST
�
≤ P

Following the same approach as before:

I[�S;R] = h(R)− h(Z) ≤ 1
2

log
�
(2πe)d |Ks̃ + Kz |

�
− 1

2
log
�
(2πe)d |Kz |

�
,

⇒ CR|S achieved when �S (and thus R) ∼ N , with |Ks̃ + Kz | max given 1
d Tr [Ks̃] ≤ P.

Diagonalise Kz ⇒Ks̃ is diagonal in same basis.

For stationary noise (wrt dimension indexed by d) this can be achieved by a Fourier
transform ⇒ index diagonal elements by ω.

Gaussian channel – correlated noise
Now consider a vector Gaussian channel:

+�S = (S1, . . . ,Sd) R = (R1, . . . ,Rd)

Z = (Z1, . . . , Zd) ∼ N (0,Kz)

1
d Tr
�
�S�ST
�
≤ P

Following the same approach as before:

I[�S;R] = h(R)− h(Z) ≤ 1
2

log
�
(2πe)d |Ks̃ + Kz |

�
− 1

2
log
�
(2πe)d |Kz |

�
,

⇒ CR|S achieved when �S (and thus R) ∼ N , with |Ks̃ + Kz | max given 1
d Tr [Ks̃] ≤ P.

Diagonalise Kz ⇒Ks̃ is diagonal in same basis.

For stationary noise (wrt dimension indexed by d) this can be achieved by a Fourier
transform ⇒ index diagonal elements by ω.

k∗s̃ (ω) = argmax
�

ω

(ks̃(ω) + kz(ω)) such that
1
d

�
ks̃(ω) ≤ P

Water filling
Assume that optimum is achieved for max. input power.

k∗s̃ (ω) = argmax

��

ω

log (ks̃(ω) + kz(ω))− λ

�
1
d

�

ω

ks̃(ω)− P

��

Water filling
Assume that optimum is achieved for max. input power.

k∗s̃ (ω) = argmax

��

ω

log (ks̃(ω) + kz(ω))− λ

�
1
d

�

ω

ks̃(ω)− P

��

⇒ 1
k∗s̃ (ω) + kz(ω)

− λ

d
= 0

Water filling
Assume that optimum is achieved for max. input power.

k∗s̃ (ω) = argmax

��

ω

log (ks̃(ω) + kz(ω))− λ

�
1
d

�

ω

ks̃(ω)− P

��

⇒ 1
k∗s̃ (ω) + kz(ω)

− λ

d
= 0

⇒ k∗s̃ (ω) + kz(ω) = ν (const.)

Water filling
Assume that optimum is achieved for max. input power.

k∗s̃ (ω) = argmax

��

ω

log (ks̃(ω) + kz(ω))− λ

�
1
d

�

ω

ks̃(ω)− P

��

⇒ 1
k∗s̃ (ω) + kz(ω)

− λ

d
= 0

⇒ k∗s̃ (ω) + kz(ω) = ν (const.)

(ks̃ ≥ 0) ⇒ k∗s̃ (ω) = [ν − kz(ω)]
+

Water filling
Assume that optimum is achieved for max. input power.

k∗s̃ (ω) = argmax

��

ω

log (ks̃(ω) + kz(ω))− λ

�
1
d

�

ω

ks̃(ω)− P

��

⇒ 1
k∗s̃ (ω) + kz(ω)

− λ

d
= 0

⇒ k∗s̃ (ω) + kz(ω) = ν (const.)

(ks̃ ≥ 0) ⇒ k∗s̃ (ω) = [ν − kz(ω)]
+

Waterfilling: choose ν so
�

ω

ks̃(ω) = d · P

ν

k
z
(ω)

k
s
(ω)

ω

 k
(ω

)

R is white or decorrelated (within power budget) ⇒variance equalisation.

Decorrelation at the retina
Atick and Redlich (1992) argued that the retina decorrelates natural spatial statistics.

Decorrelation at the retina
Atick and Redlich (1992) argued that the retina decorrelates natural spatial statistics.

RGCs exhibit roughly linear (centre-surround) processing:

ra − �ra� =
�

dx Ds(x − a)� �� �
filter

s(x)����
stimulus

Decorrelation at the retina
Atick and Redlich (1992) argued that the retina decorrelates natural spatial statistics.

RGCs exhibit roughly linear (centre-surround) processing:

ra − �ra� =
�

dx Ds(x − a)� �� �
filter

s(x)����
stimulus

Therefore the correlation (covariance) between cells is

Qr (a, b) =
��

dx dy Ds(x − a)Ds(y − b)s(x)s(y)
�

=

�
dx dy Ds(x − a)Ds(y − b) �s(x)s(y)�� �� �

Qs(x,y)

Decorrelation at the retina
Atick and Redlich (1992) argued that the retina decorrelates natural spatial statistics.

RGCs exhibit roughly linear (centre-surround) processing:

ra − �ra� =
�

dx Ds(x − a)� �� �
filter

s(x)����
stimulus

Therefore the correlation (covariance) between cells is

Qr (a, b) =
��

dx dy Ds(x − a)Ds(y − b)s(x)s(y)
�

=

�
dx dy Ds(x − a)Ds(y − b) �s(x)s(y)�� �� �

Qs(x,y)

Using (spatial) stationarity, we can transform to the Fourier domain:

�Qr (k) = |�Ds(k)|2�Qs(k)

Decorrelation at the retina
Atick and Redlich (1992) argued that the retina decorrelates natural spatial statistics.

RGCs exhibit roughly linear (centre-surround) processing:

ra − �ra� =
�

dx Ds(x − a)� �� �
filter

s(x)����
stimulus

Therefore the correlation (covariance) between cells is

Qr (a, b) =
��

dx dy Ds(x − a)Ds(y − b)s(x)s(y)
�

=

�
dx dy Ds(x − a)Ds(y − b) �s(x)s(y)�� �� �

Qs(x,y)

Using (spatial) stationarity, we can transform to the Fourier domain:

�Qr (k) = |�Ds(k)|2�Qs(k)

and thus output decorrelation requires

|�Ds(k)|2 ∝ 1
�Qs(k)

Decorrelation at the retina
Spatial correlations of natural images fall off with f−2:

�Qs(k) ∝ 1
|k|2 + k2

0

and the optical filter of the eye introduces (crudely) a low-pass term ∝ e−α|k|.
So decorrelation requires

|�Ds(k)|2 ∝ |k|2 + k2
0

e−α|k|

Decorrelation at the retina
Spatial correlations of natural images fall off with f−2:

�Qs(k) ∝ 1
|k|2 + k2

0

and the optical filter of the eye introduces (crudely) a low-pass term ∝ e−α|k|.
So decorrelation requires

|�Ds(k)|2 ∝ |k|2 + k2
0

e−α|k|

But: not all input is signal.

Decorrelation at the retina
Spatial correlations of natural images fall off with f−2:

�Qs(k) ∝ 1
|k|2 + k2

0

and the optical filter of the eye introduces (crudely) a low-pass term ∝ e−α|k|.
So decorrelation requires

|�Ds(k)|2 ∝ |k|2 + k2
0

e−α|k|

But: not all input is signal.
Photodetection introduces noise. Therefore, cascade linear filters:

s + η −−−−−→
Dη

ŝ −−−−−→
Ds

r

with

�Dη(k) =
�Qs(k)

�Qs(k) + �Qη(k)
(Wiener filter)

Decorrelation at the retina
Spatial correlations of natural images fall off with f−2:

�Qs(k) ∝ 1
|k|2 + k2

0

and the optical filter of the eye introduces (crudely) a low-pass term ∝ e−α|k|.
So decorrelation requires

|�Ds(k)|2 ∝ |k|2 + k2
0

e−α|k|

But: not all input is signal.
Photodetection introduces noise. Therefore, cascade linear filters:

s + η −−−−−→
Dη

ŝ −−−−−→
Ds

r

with

�Dη(k) =
�Qs(k)

�Qs(k) + �Qη(k)
(Wiener filter)

Thus the combined RGC filter is predicted to be:

|�Ds(k)|�Dη(k) ∝

�
�Qs(k)

�Qs(k) + �Qη(k)

Decorrelation at the retina

Decorrelation at the retina

Related ideas

� efficient channel utilisation
� output entropy maximisation
� variance equalisation
� redundancy reduction
� decorrelation
� discovery of independent projections or components

