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†aguez@cs.mcgill.ca, ‡jpineau@cs.mcgill.ca

Abstract—The problem of simultaneous localization and
mapping (SLAM) is one of the most studied in the robotics
literature. Most existing approaches, however, focus on scenar-
ios where localization and mapping are the only tasks on the
robot’s agenda. In many real-world scenarios, a robot may
be called on to perform other tasks simultaneously, in addition
to localization and mapping. These can include target-following
(or avoidance), search-and-rescue, point-to-point navigation, re-
fueling, and so on. This paper proposes a framework that
balances localization, mapping, and other planning objectives,
thus allowing robots to solve sequential decision tasks under
map and pose uncertainty. Our approach combines a SLAM
algorithm with an online POMDP approach to solve diverse
navigation tasks, without prior training, in an unknown envi-
ronment.

I. INTRODUCTION

The simultaneous localization and mapping (SLAM) algo-

rithms that have been developed in recent years allow a robot

to map an environment in the absence of global position

information. Generally, the purpose of applying a SLAM

algorithm is to build an accurate map of the environment,

in an autonomous manner or not, that can later be used to

do motion planning under full map observability [1], [2],

[3], [4], [5], [6], [7], [8]. There are several limitations with

that paradigm. An obvious one is that pure map exploration

must take place before the robot can do anything useful in

the environment. This might not be an issue if the robot is

confined to a small bounded working environment that can be

explored quickly before starting a task, or if the robot can

depend on another robot to perform the mapping process.

However, many situations arise in which the robot has no

means of determining the extent of its working environment

a priori, and in which no map is available (e.g. a robot

deployed for a search-and-rescue operation). Furthermore,

in some scenarios, the robot’s working environment may be

task-specific, or can change dynamically. In such settings, it

becomes difficult to justify a separate exploration period to

get a map estimate. Moreover, it might not be possible to let

the robot run freely everywhere in order to map the entire

environment at once; there could be constraints on where the

robot can go at any moment in time.

In an attempt to address some of these challenges, re-

searchers have studied the problem of autonomous explo-

ration for SLAM [9], [10], [11], [12], [13], [14]. However

most of the work in this area focuses on producing ex-

ploration strategies that are designed to efficiently acquire

the map, but are not able to handle parallel tasks, such as

target-following (or avoidance), point-to-point navigation, or

refueling, to name just a few.

Those issues suggest that the mapping process should

be fully integrated with general task planning, providing a

model of the environment which is sufficient for the robot’s

current task list, but which is not acquired at the expense of

these other tasks. This paper proposes a decision-theoretic

framework that is capable of solving a sequential decision-

making task when the map, or part of it, is unavailable. In this

framework, the set of possible tasks is not limited to motion

planning tasks (e.g. reaching a predefined goal location).

Instead, a task is defined in terms of a cost function that

expresses the robot’s task priority.

We frame this problem in the Partially Observable Markov

Decision Process (POMDP) framework. This allows us to

express a broad class of tasks in the context of planning

under map and pose uncertainty. The planning balances the

need for exploration with exploitation of the current model to

solve a task. We conduct planning online at every step. This

implies that no training time is necessary and that the robot’s

task and environment can be modified at any time. The robot

can be dropped in an unknown environment and start acting

immediately towards achieving its current goal; and multiple

goals can be balanced or interleaved automatically.

Our framework can achieve optimal behavior under some

assumptions (e.g. infinite resources). For more complex

scenarios, we leverage well-known approximation techniques

to make our planning algorithm computationally tractable.

We employ a Rao-Blackwellized particle filter (RBPF) to

maintain our posterior distribution over the map and past

trajectories. We select actions at every time step using an

online POMDP search method, and we direct our belief

search using Rapidly-Exploring Random Trees (RRT). Our

approach is evaluated in a rich simulation environment on a

set of contrasting task domains.

II. METHODS

A. Problem Definition

Partially Observable Markov Decision Processes

(POMDPs) provide a rich decision-theoretic framework to

model our planning problem [15]. A POMDP is defined

by a set of states S, a set of actions A, and a set of

observations Z. The transition function T : S×A×S→ [0,∞]
defines the discrete dynamics of the system as a conditional

probability density T (s,a,s′) = p(s′ | s,a), the probability

of the next state s′ given the current state s and an action

a. The observations about the current state are generated

according to an observation function O : S×A×Z→ [0,∞],



where O(s′,a,z) = p(z | s′,a) is the conditional probability

density over the observations given that we enter state s′

after executing action a. If an agent (or robot) is acting

in that environment, a reward function R : S×A→ R can

be defined that specifies the cost/reward obtained by the

agent at each time step. The goal of the robot in that

setting is to find an action selection strategy, denoted by

π, that maximizes its expected sum of discounted rewards.

In order to do that, the robot has to maintain a conditional

probability distribution over its current state, given its

history of observations and actions, {a0,z1, ...,at−1,zt}, and
an initial distribution over states, b0. Formally, we define

a belief state bt(s) = p(st = s | b0,a0,z1, ...,at−1,zt). The

optimal policy π
∗ is defined by the following equation:

π
∗ = argmax

π∈Π

E

[

∞

∑
t=0

γ
t ∑
s∈S

bt(s) ∑
a∈A

R(s,a)π(bt ,a) | b0

]

, (1)

where E[] denotes the mathematical expectation, γ is the

discount factor, and π(bt ,a) is the probability that action a

is executed by policy π for the current belief bt . The optimal

policy can be computed by solving Bellman’s equation [16].

In multi-tasking SLAM, the state space S is the product of

the set of possible maps M, the set of possible trajectories

X, and the set of additional planning states P,

S = M×X×P, (2)

where each pose xi in a trajectory x1:t is defined by (x,y,θ).
We will limit ourselves in this work to a circular holonomic

robot operating in a planar environment. Our map is rep-

resented as an occupancy grid [17]. We consider planning

tasks such as target-following, point-to-point navigation and

the like, which are commonly defined by a set of dis-

crete planning states (the extension to continuous domains

is mathematically straightforward, though computationally

challenging except under simple distributional assumptions,

e.g. linear-Gaussian). An action a = (∆d,θ) is executed

by first rotating in place by an angle of θ and moving

directly forward for a distance d. A local obstacle avoidance

algorithm [18] is used to control the robot during the forward

movement to provide real-time collision avoidance. Other

local actions could be incorporated in our framework such

as a low-level controller to perform a particular local task

(e.g. grab an object).

The observations are obtained from laser readings, l,

collected by a laser range-finder mounted on the robot,

and from the relative odometry measurements, u. The ob-

servation function is defined by p(l,u | m,x1:t+1,at) = p(l |
xt+1,m)p(u | a,xt ,m). Here again, richer measurements can

be incorporated in a straightforward manner.

The state-to-state transition function is defined by p(xt+1 |
m,xt ,a). It is a combination of the robot’s motion model

and the handling of obstacles from the map. We assume the

possibility to sample from that transition function when no

obstacle is present; we do not try to model the position of

the robot when a collision occurs, as we always try to avoid

collisions.

The reward function R : S×A→ R is task dependent. It

could give a positive reward for going to some goal location,

exploring some part of the map, and so forth. Negative

rewards can be incorporated (e.g. for traversing dangerous

zones, for performing expensive maneuvers, etc.)

The prior belief b0(x,m) incorporates a distribution over

the starting position of the robot, and a prior over each grid

cell being occupied (e.g. Pr(mi) = 0.5 in the case of an

unexplored environment). The prior distribution over maps

can be adapted depending on the kind of environment the

robot is expected to visit, or when an approximate or partial

map of the environment is available.

B. State Estimation

The problem of state estimation is to maintain a posterior

distribution over states given the past observations; in our

framework this corresponds to tracking the belief state, bt .

To track the component of the state describing the map and

the pose, we need to solve the SLAM problem. Given the

state representation outlined in the previous section, it is

not possible to do this exactly. Rather, we approximate the

distribution over pose and map using a Rao-Blackwellized

particle filter (RBPF) [2]. The RBPF is a popular particle

filter that takes advantage of the structure of a problem to

reduce the variance of the estimation process. In a RBPF,

each particle represents a possible trajectory x1:t and map m.

The key idea is that the structure of the problem is used to

decompose the posterior over maps and trajectories using the

chain rule and the independence of the map and odometry

measurements given the past trajectory:

p(x1:t ,m | l1:t ,u0:t) = p(m | x1:t , l1:t)p(x1:t | l1:t ,u0:t), (3)

where l1:t is the history of laser observations and u0:t is

the history of odometry measurements. Then the conditional

posterior distribution p(m | x1:t , l1:t) is analytically tractable

and the marginal posterior distribution, p(x1:t | l1:t ,u0:t),
which needs to be estimated, lies in a space of reduced

dimension. We follow the approach in [5], which uses a

Sampling Importance Resampling (SIR) filter to estimate

p(x1:t | z1:t ,u0:t) and to maintain the particles. In that ap-

proach, an improved proposal distribution is used by ap-

proximating the optimal proposal distribution with respect

to the variance of the particle weights under the Markov

assumption. This proposal distribution is computed on the

fly and depends on the particle it is used for. This leads to

a more robust filter compared to approaches that only use a

fixed proposal distribution. Furthermore, resampling of the

importance weights w(i) is only carried out if the effective

number of particles Neff drops below a threshold; where Neff

is defined as

Neff =
1

N

∑
i=1

(w(i))2
, (4)

with N being the number of particles. This improved RBPF

requires fewer particles to accurately update the posterior

based on new observations.



For the task-related planning state, p, we assume that

it can be computed analytically when conditioned on the

map, the past trajectory, and past observations. Therefore

an estimate of p can be associated with each particle of

the RBPF filter. In scenarios where this assumption is not

realistic, a separate particle filter can be associated with

each of the RBPF particles to approximate the planning state

distribution. In the tasks presented in Section III, the planning

state space, P, has some discrete components, that encode

the status of the robot with respect to its different targets,

and some continuous components such as the position of the

other robot. Note that, even if P is finite, the global state

space S on which the planning is executed is continuous and

high-dimensional.

C. Action Selection

Recall that the goal of our framework is to help the

robot select actions that allow an optimal trade-off between

localization, mapping, and task planning. Now that we have

defined a method for estimating the state of the robot and

environment, the only remaining problem is to define the

algorithm used to optimize the policy π. A common method

to select optimal decisions in a POMDP is to rely on an

off line algorithm that finds the best action to execute in

all possible situations before acting in the environment, i.e.

that finds a near-optimal policy π(b,a), for all b and a[19].

In large environments, solving for the entire policy offline

is intractable. Other online POMDP search algorithms only

consider the current situation and search within a limited

horizon for the best plan to execute. Those online methods

scale better to larger problems and have the advantage of

being able to adapt to dynamic environments. We refer the

reader to [20] for a survey on the subject. Yet few online

POMDP methods are able to handle continuous domains.

In [21], a practical online algorithm to tackle Bayesian

reinforcement learning in continuous POMDPs is described

and applied to a simple robotic planning task. At each step,

using the current posterior distribution, their online planning

algorithm samples sequences of actions and observations

to recursively expand a search tree in belief space. They

estimate the value of the leaf nodes using a heuristic and

select the action that maximizes the sum of discounted

rewards over the fixed horizon defined by the tree.

Our planning approach is inspired by this work. In our

case, we maintain the posterior distribution as described

in Section II-B, which implies that our belief updates are

computationally expensive operations. The complexity of the

planning algorithm in [21] is exponential in the depth of the

search tree and depends heavily on the complexity of the

particle filter update; that means that our planning algorithm

would not be computationally tractable if we wanted a deep

search tree. In many environments with obstacles, shallow

search trees will provide poor estimates of global navigation

values. Therefore, we need a method that handles complex

belief representations, while preserving the ability to search

deeply in belief space.

As in [20], [21], we build a search tree in which the top

node is the current belief, and which branches on actions and

observations. We limit the branching factor by sampling a

single observation (at random) from the observation function.

This has the effect of increasing the variance of the search

process, but has substantial computational advantages.

We further limit the branching factor by selecting very few

actions at each node (with the exception of the root node,

where more actions are considered). This pruning operation

can introduce a substantial bias. To limit this bias, in the

context of navigation tasks, it seems important that the pose

estimate of all the reached belief nodes be distributed evenly

in the set of all collision-free poses, Cfree. Thus we need to

decide which actions to select at each belief node in order to

avoid obstacles while preserving the desired spreading effect

over the belief.

Searching for control actions in the belief space is imprac-

tical, so instead we extract the expected map and pose from

the current posterior distribution, and use these to generate

conventional (deterministic, fully observable) search trees in

this expected space. Those search trees are then used as a

heuristic to direct the search in belief space.

Using the particle filter described above, we define the

expected pose and map as follows. Let the probability that

cell m̄xy is occupied be defined, as in [22], by

p(m̄xy | l1:t ,u0:t) =
∫

p(mxy | x1:t , l1:t)p(x1:t | l1:t ,u0:t)dx1:t ,

(5)

p(m̄xy | l1:t ,u0:t)≈
N

∑
i=1

w(i)p(mxy | x
(i)
1:t , l1:t). (6)

The expected pose at step t is defined by

x̄t =
∫

xt p(x1:t | l1:t ,u0:t)dx1:t , (7)

x̄t ≈
N

∑
i=1

w(i)x
(i)
t . (8)

Using this expected pose and map estimate, we can lever-

age existing algorithms for planning in observable, deter-

ministic environments to select the (heuristically) best action

for the current belief. For tasks requiring motion planning,

a good choice to plan in Cfree are the Rapidly-Exploring

Random Trees (RRTs) [23]. They are fast to compute and

are able to cover the space with a small amount of nodes.

We grow M RRTs of K points using the expected map

m̄ and starting from the expected pose x̄t , as extracted from

the current posterior distribution. The operation of growing a

RRT is referred to as BUILD RRT in Alg. 1, and is similar to

the one presented in [23]. We assume this sub-routine returns

a graph G, representing the RRT, that defines collision-free

paths from the current (expected) pose, given the current

(expected) map. We then utilize the paths in the RRTs to

select action branches when recursively expanding the search

tree over belief space.

Given a current belief, in order to go towards an RRT

node at position (x,y), we select an action a = (∆d,θ) that

would move the robot from its expected pose x̄ towards (x,y)
and check (independently for all particles) that this action



does not lead to a collision. We then sample a particle i

according to the current weight distribution and sample the

laser readings l and odometry measurements u that would

be obtained if a was executed in the model defined by the

ith particle. Next, we run a belief update with those new

observations, add the new belief node to the search tree, and

repeat the same steps until x̄ is close enough to (x,y). Those
steps are described in Alg. 3. Throughout the tree expansion

process, we collect the trajectories up to all belief nodes

and backup their estimated rewards to the root. A heuristic

estimate of a belief value is provided by V̂ (). We then apply

the max operator on all the sampled action values Q to obtain

the best action, bestA, to execute.

With the method described above, we are able to achieve

a deeper search with less belief updates, but at the cost

of getting less accurate estimates of the expected value of

each action. However, we believe that this trade-off is well-

adapted for many navigation tasks. Furthermore, because the

planning is done online, the system is able to correct for

errors at a later step.

For cases where the robot’s planning task, represented in

the state space by P, is not of a navigation type, another de-

terministic planning algorithm can be leveraged in a similar

way. For example, when the task deals with discrete entities,

a STRIPS-type planner [24] could be integrated instead of

the RRTs.

Algorithm 1: Online planning algorithm

Input: Belief represented as particles p and weights

w,K,M
Output: bestA

for i = 1 to M do1

Extract m̄ and x̄ from belief represented by p and w2

Gi← BUILD RRT (K, m̄, x̄)3

Create (global) array Q of sampled action values4

Create empty trajectory t, a list of actions5

EVAL TREE PATH(Gi.root,Q, t,0,0, p,w)6

end7

maxQ←−∞8

for i = 1 to |Q| do9

if Qi.q > maxq then10

maxq← Qi.q11

bestA← Qi.a12

end13

end14

Algorithm 2: EVAL TREE PATH

Input: Graph node n, Q, t, q, step, p, w

forall children n′ of n do1

{step′, t ′,q′, p′,w′}←2

EVAL EDGE(Q, t,step, p,w,q,position of n′)

EVAL TREE PATH(n′,Q, t ′,q′,step′, p′,w′)3

end4

Algorithm 3: EVAL EDGE

Input: Q, t, step, p, w, q, target

Extract x̄ from belief represented by p and w.1

while |x̄− target|> ∆d do2

θ ← ANGLE TO TARGET (x̄, target)3

a← (∆d,θ)4

if collision(p,w,a) then5

break6

end7

step← step+18

Sample i based on w distribution9

Sample observation l,u from p(l,u | pi.m, pi.x,a)10

p,w←UpdatePosterior(p,w, l,u)11

V̂ ← V̂ (p,w)12

Add a to t13

Add (t0,q+γ
stepV̂ ) to Q14

q← q+γ
step

N

∑
l=1

w(l)R(p(l),a)
15

Extract x̄ from belief represented by p and w.16

end17

return {step, t,q, p,w}18

D. Dealing with Uncertainty

When computing expected rewards over the search tree,

the uncertainty in the belief should be taken into account

automatically during the decision process. However, the

approximations introduced in the planning process (sparse

sampling of actions, particle filter tracking, finite planning

horizon) can introduce some errors in how the uncertainty

over the expected reward is calculated in this framework.

For example, consider the comparison of two sampled tra-

jectories in the search tree with respect to their distance

to a goal location. If the localization uncertainty at the

end of one trajectory is high but its expected distance

to the goal is smaller than for the other trajectory, then

the first trajectory will be chosen even though the second

trajectory has lower localization uncertainty. Moreover, the

finite planning horizon does not allow the algorithm to realize

the long-term consequence of localization uncertainty for the

decision process. If the localization uncertainty grows too

large so that there are not enough particles to keep track

of all the hypotheses, then considerable errors in the map

can appear, which in turn might translates to poor decision

making and poor rewards.

Therefore, it is helpful to use additional statistics, obtained

while propagating beliefs in the search tree, in order to

handle the uncertainty explicitly. According to [22], the

mean information of the expected map (EMMI) is a robust

measure of uncertainty for RBPFs. While it seems to be

a good candidate for pure state estimation scenarios, it is

too expensive to compute many times, as is required for

planning (in the expansion of the search tree). Instead, we use

a computationally cheaper measure, the standard deviation

σdist of the distance to the expected pose, which we find to



be correlated in most cases to the EMMI. Let σdist be defined

by:

σdist =

√

∫

p(x1:t | l1:t ,u0:t)(xt − x̄t)2dx1:t , (9)

≈

√

N

∑
i=1

w(i)
(

(x
(i)
tx − x̄tx)

2 +(x
(i)
ty − x̄ty)

2 +(α(x
(i)
tθ
− x̄tθ ))2

)

,

(10)

with α a scaling factor to account for the fact that the

angle θ is not in the same unit as the 2D coordinates. We

integrate this into our planning algorithm by pruning paths

that lead to high uncertainty (in visited areas). Moreover, if

the localization uncertainty is already high before planning,

such that σdist > σmax, we force the robot to perform a task

of active localization until an acceptable level of uncertainty

is reached again (σdist < σmin). This is similar to the place-

revisiting and loop-closure actions that occur in autonomous

exploration planning methods [11][22].

III. EXPERIMENTS

We investigate performance of the multi-tasking SLAM

framework on two contrasting task domains. The experi-

ments are performed in the CARMEN [25] and Player/Stage

[26] simulated environments, assuming a Pioneer robot

equipped with a laser range finder with 10m range. Through-

out the experiments, we use the following parameters; the

RBPF has N = 30 particles, the Neff threshold is N/2 and

the grid cell size is 0.1m, we build M = 8 RRTs of K = 150

points each, the distance of each move action is ∆d =
1m. Those parameters are chosen to roughly balance the

computation time with the planning performance on an Intel

Xeon QuadCore 2.66Ghz processor. The planning time to

compute each action is a few seconds. The discount factor

γ is set to 0.99. The active localization parameters are set to

σmax = 0.06 and σmin = 0.015, set according to the number of

particles. In order to save on computations, we approximate

the expected map m̄ and pose x̄ with the most likely map

and pose from the RBPF when constructing the RRT search

trees.

A. Target-Following Experiment

In the first experiment, illustrated in Fig. 1, our robot (in

light gray) needs to be as close as possible to a moving

target (in black), but only when that moving target is in a

certain region of the map, as specified by the black arrows

on Fig. 1(a). This target is modeled as another robot with

identical sensors moving randomly while avoiding obstacles.

Note that this experiment happens in real-time, the target

moves even when our robot pauses to select actions. Our

robot gets a reward of 10− d at every step, with d the

euclidean distance between the two robots, when the moving

target is in the specified region. When the moving target

is not in the specified area, our robot needs to go to fixed

target #1 to collect a reward of 10, then to fixed target #2

where it waits and collects a reward of 10 at every step

(unless the moving target is in the specified area, in which

case the reward is 0). Each action, except for the wait action,

costs −0.1. To simplify the experiment, the robot can observe

the exact position of the moving target at all times. Noise

and motion tracking could be added for a more realistic

experiment.

We assume the task takes place in the California Science

Center (mezzanine level), using a map from the Radish data

set [27]. The position of the targets and the region definition

are represented as clickable objects on the Stage interface

(left column in Fig. 1) and can be changed dynamically

during the experiment. The left column in Fig. 1 shows

the true state of the experiment from the simulator, with

footprints of the robot and moving target from recent history.

The right column in Fig. 1 displays the past trajectory

estimate from the best particle along with its associated map

estimate. The best sampled planning trajectory is displayed

along with the estimated σdist at every step of that planning

trajectory. A video of an experiment similar to the one

in Fig. 1 is attached to this paper [28]. Fig. 2 shows the

evolution of the information of the expected map (EMI)1

and the sum of rewards from that experiment. The EMI of

the map m̄ is defined, like in [22], as:

EMI(m̄) = ∑
x,y

(1−H(m̄xy)) , (11)

where H is the entropy of a random variable. The EMI in-

creases with exploration as long as the trajectory uncertainty

is kept low. The time step of the three snapshots in Fig. 1

are indicated by dotted vertical lines in Fig. 2.

In Fig. 1(a), the moving target is not in the region defined

by the arrows anymore, so our robot goes towards target

#1. Notice that the planned trajectory in the corresponding

Fig. 1(b) goes through target #1 and then in direction of

target #2, but that trajectory is only collision-free in the

current map estimate of the robot. The robot then acquires

more map information and discovers a wall that blocks the

sampled path, so it chooses another path to target #2, as can

be seen in Fig. 1(d). During its travel from target #1 to target

#2, the sum of rewards only decreases (see step 14 to 44 in

Fig. 2) because the robot only gets the negative reward from

the moving actions. However, the EMI increases between

step 26 and 44 because the robot is exploring new parts of

the map to get to target #2. Right after target #2 is reached,

the moving target re-enters the area defined by the arrows,

which causes the robot to start travelling back to that area

in order to follow the other robot (see Fig. 1(e,f)).

B. Active Localization Experiment

This experiment showcases the active localization of the

robot in order to keep the localization uncertainty within

safe margins, as described in Section II-D. To maintain short

planning time, we cannot afford a large number of particles

in our RBPF. Therefore, we are particularly prone to particle

depletion problems in the search process, as a result of losing

the uncertainty in the trajectory estimate. The nodes in the

1Note that the EMI is different from the EMMI defined in Section II-D.



(a) (b)

(c) (d)

(e) (f)

Fig. 1. Target following experiment. In the left column, the real state of the experiment from the simulator is displayed. Our robot is in light gray and the
moving target is in black. The footprints show the recent past positions of the robot and the moving target. The black arrows define the region in which
the moving target needs to be followed. The circled 1 and 2 are the two fixed targets. In the right column is the past trajectory of the robot represented
by the thick black line, the robot represented by an oriented circle, and the best sampled planning trajectory represented by a thin black line. The σdist

estimates are represented by circles along the sampled trajectory. The time steps corresponding to each of these three snapshots are indicated as vertical
dotted lines in Fig. 2.
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Fig. 2. Plot of the EMI and sum of rewards from the multitask experiment in Fig. 1. The vertical dotted lines correspond to the time steps of the three
snapshots in Fig. 2

search tree that most suffer from particle depletion are diffi-

cult to distinguish from nodes at which proper relocalization

is achieved, because most uncertainty measures will look

alike in these situations. For this experiment, we overcome

this problem by directing the robot towards its start position

when selecting paths that reduce σdist. The experiment takes

place in the hospital section map from the Stage simulator.

Good localization is difficult to achieve in this map because

of the presence of long corridors and perfectly straight walls.

In this task, illustrated in Fig. 3, the robot simply needs

to reach a goal location (while mapping and localizing with

sufficient accuracy to achieve this goal). The robot starts on

the left in Fig. 3, and after a short exploration period, the

robot enters the main corridor. At step 20 in Fig. 4, the task is
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Fig. 3. Active localization experiment.

switched to an active localization task because σdist > σmax.

The robot then selects actions to relocalize as can be seen

in Fig. 3(b). At step 33 in Fig. 4, the active localization task

ends because σdist < σmin. The robot is then able to reach

the goal (See Fig. 3(c)).

IV. RELATED WORK

Since SLAM is a challenging problem, much of the

work is on passive approaches that focus on accurate belief

estimation [1], [2], [3], [4], [5], [6], [7], [8]. The problem of

autonomous exploration for SLAM has been visited by sev-

eral researchers that proposed online [9], [10], [11], [12], [13]

and offline [14] approaches. That problem can be considered

a special case of the more general problem of planning under

map and pose uncertainty which we are considering in this

paper. Although our framework can handle autonomous ex-

ploration tasks quite well, we are not attempting to compete

with those approaches since their planning algorithms are

designed specifically for the autonomous exploration task.

Online POMDP planning applied to robot navigation was

explored in [21] and [29], but not in the case of map

uncertainty. Dealing with map uncertainty is a major obstacle

to developing fast and robust planning methods for unknown

and/or dynamic environments, where the planning algorithm

has to deal with the computationally expensive map esti-

mation process and a state space augmented with a high-

dimensional component. Our contribution in that context is to
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Fig. 4. Plot of the sum of rewards and σdist for the active localization
experiment. The upper and lower dotted horizontal lines correspond to the
σmax and σmin values, respectively.

provide a mathematically-principled framework that handles

the map uncertainty and approximation methods to keep

planning tractable.

Our approach of using RRTs in mean space to direct the

belief search is similar in flavor to the Belief RoadMaps

(BRMs) in which probabilistic roadmaps are used to plan in

mean space of an Extended Kalman Filter [30]. Probabilistic

RRTs for autonomous navigation in dynamic environment

have been explored in [31] for local navigation to handle

moving obstacles.

V. CONCLUSION

This paper proposes a novel framework for performing

SLAM when the mapping and localization are not the

primary focus of the robot. We describe a decision-theoretic

framework capable of handling the map and pose uncertainty

in conjunction with an online planning algorithm capable of

solving diverse planning tasks in this setting. The experi-

ments we conducted in simulated settings suggest that our

approach would transfer to a real-world setting with minimal

effort.

However, there are still open research problems relating

to our approach. Most limitations of our work lie in the way

we approximate the decision making process in order to keep

the planning tractable. It would be useful to investigate how

these approximation methods can be refined to improve the

accuracy of the action selection process while conserving

the tractability of the algorithm. Particle depletion problems

could be alleviated by incorporating existing methodology

on the subject such as in [32], but it remains unclear if

this problem can be dealt with effectively within reason-

able computational requirements. Other possible extensions

include dealing with continuous planning states and a more

diverse set of actions and sensors. This would augment the

capabilities of the robot and allow it to learn a richer model

of the environment, though likely at the expense of strong

parametric assumptions.



VI. ACKNOWLEDGMENTS

The authors gratefully acknowledge support from the Nat-

ural Sciences and Engineering Council of Canada (NSERC)
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