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Abstract
Bayesian model-based reinforcement learning is a formally elegant approach to
learning optimal behaviour under model uncertainty, trading off exploration and
exploitation in an ideal way. Unfortunately, finding the resulting Bayes-optimal
policies is notoriously taxing, since the search space becomes enormous. In this
paper we introduce a tractable, sample-based method for approximate Bayes-
optimal planning which exploits Monte-Carlo tree search. Our approach outper-
formed prior Bayesian model-based RL algorithms by a significant margin on sev-
eral well-known benchmark problems – because it avoids expensive applications
of Bayes rule within the search tree by lazily sampling models from the current
beliefs. We illustrate the advantages of our approach by showing it working in
an infinite state space domain which is qualitatively out of reach of almost all
previous work in Bayesian exploration.

1 Introduction
A key objective in the theory of Markov Decision Processes (MDPs) is to maximize the expected
sum of discounted rewards when the dynamics of the MDP are (perhaps partially) unknown. The
discount factor pressures the agent to favor short-term rewards, but potentially costly exploration
may identify better rewards in the long-term. This conflict leads to the well-known exploration-
exploitation trade-off. One way to solve this dilemma [3, 10] is to augment the regular state of the
agent with the information it has acquired about the dynamics. One formulation of this idea is the
augmented Bayes-Adaptive MDP (BAMDP) [19, 9], in which the extra information is the posterior
belief distribution over the dynamics, given the data so far observed. The agent starts in the belief
state corresponding to its prior and, by executing the greedy policy in the BAMDP whilst updating
its posterior, acts optimally (with respect to its beliefs) in the original MDP. In this framework, rich
prior knowledge about statistics of the environment can be naturally incorporated into the planning
process, potentially leading to more efficient exploration and exploitation of the uncertain world.
Unfortunately, exact Bayesian reinforcement learning is computationally intractable. Various algo-
rithms have been devised to approximate optimal learning, but often at rather large cost. Here, we
present a tractable approach that exploits and extends recent advances in Monte-Carlo tree search
(MCTS) [17, 21], but avoiding problems associated with applying MCTS directly to the BAMDP.
At each iteration in our algorithm, a single MDP is sampled from the agent’s current beliefs. This
MDP is used to simulate a single episode whose outcome is used to update the value of each node of
the search tree traversed during the simulation. By integrating over many simulations, and therefore
many sample MDPs, the optimal value of each future sequence is obtained with respect to the agent’s
beliefs. We prove that this process converges to the Bayes-optimal policy, given infinite samples. To
increase computational efficiency, we introduce a further innovation: a lazy sampling scheme that
considerably reduces the cost of sampling.
We applied our algorithm to a representative sample of benchmark problems and competitive al-
gorithms from the literature. It consistently and significantly outperformed existing Bayesian RL
methods, and also recent non-Bayesian approaches, thus achieving state-of-the-art performance.1

1Note: an extended version of this paper is available, see reference [15].
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Our algorithm is more efficient than previous sparse sampling methods for Bayes-adaptive planning
[26, 6, 2], partly because it does not update the posterior belief state during the course of each
simulation. It thus avoids repeated applications of Bayes rule, which is expensive for all but the
simplest priors over the MDP. Consequently, our algorithm is particularly well suited to support
planning in domains with richly structured prior knowledge — a critical requirement for applications
of Bayesian reinforcement learning to large problems. We illustrate this benefit by showing that our
algorithm can tackle a domain with an infinite number of states and a structured prior over the
dynamics, a challenging — if not intractable — task for existing approaches.

2 Bayesian RL

We describe the generic Bayesian formulation of optimal decision-making in an unknown MDP,
following [19] and [9]. An MDP is described as a 5-tuple M = 〈S,A,P,R, γ〉, where S is the
set of states, A is the set of actions, P : S × A × S → R is the state transition probability kernel,
R : S × A → R is a bounded reward function, and γ is the discount factor [24]. When all the
components of the MDP tuple are known, standard MDP planning algorithms can be used to estimate
the optimal value function and policy off-line. In general, the dynamics are unknown, and we assume
that P is a latent variable distributed according to a distribution P (P). After observing a history
of actions and states ht = s1a1s2a2 . . . at−1st from the MDP, the posterior belief on P is updated
using Bayes’ rule P (P|ht) ∝ P (ht|P)P (P). The uncertainty about the dynamics of the model can
be transformed into uncertainty about the current state inside an augmented state space S+ = S×H,
where S is the state space in the original problem andH is the set of possible histories. The dynamics
associated with this augmented state space are described by

P+(〈s, h〉, a, 〈s′, h′〉) = 1[h′ = has′]

∫
P
P(s, a, s′)P (P|h) dP, R+(〈s, h〉, a) = R(s, a) (1)

Together, the 5-tuple M+ = 〈S+, A,P+,R+, γ〉 forms the Bayes-Adaptive MDP (BAMDP) for
the MDP problem M . Since the dynamics of the BAMDP are known, it can in principle be solved
to obtain the optimal value function associated with each action:

Q∗(〈st, ht〉, a) = max
π

Eπ

[ ∞∑
t′=t

γt
′−trt′ |at = a

]
(2)

from which the optimal action for each state can be readily derived. 2 Optimal actions in the BAMDP
are executed greedily in the real MDP M and constitute the best course of action for a Bayesian
agent with respect to its prior belief over P . It is obvious that the expected performance of the
BAMDP policy in the MDPM is bounded above by that of the optimal policy obtained with a fully-
observable model, with equality occurring, for example, in the degenerate case in which the prior
only has support on the true model.

3 The BAMCP algorithm

3.1 Algorithm Description

The goal of a BAMDP planning method is to find, for each decision point 〈s, h〉 encountered, the ac-
tion a that maximizes Equation 2. Our algorithm, Bayes-adaptive Monte-Carlo Planning (BAMCP),
does this by performing a forward-search in the space of possible future histories of the BAMDP
using a tailored Monte-Carlo tree search.
We employ the UCT algorithm [17] to allocate search effort to promising branches of the state-action
tree, and use sample-based rollouts to provide value estimates at each node. For clarity, let us denote
by Bayes-Adaptive UCT (BA-UCT) the algorithm that applies vanilla UCT to the BAMDP (i.e.,
the particular MDP with dynamics described in Equation 1). Sample-based search in the BAMDP
using BA-UCT requires the generation of samples from P+ at every single node. This operation
requires integration over all possible transition models, or at least a sample of a transition model P
— an expensive procedure for all but the simplest generative models P (P). We avoid this cost by
only sampling a single transition model Pi from the posterior at the root of the search tree at the

2The redundancy in the state-history tuple notation — st is the suffix of ht — is only present to ensure
clarity of exposition.
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start of each simulation i, and using Pi to generate all the necessary samples during this simulation.
Sample-based tree search then acts as a filter, ensuring that the correct distribution of state successors
is obtained at each of the tree nodes, as if it was sampled from P+. This root sampling method was
originally introduced in the POMCP algorithm [21], developed to solve Partially Observable MDPs.

3.2 BA-UCT with Root Sampling

The root node of the search tree at a decision point represents the current state of the BAMDP.
The tree is composed of state nodes representing belief states 〈s, h〉 and action nodes represent-
ing the effect of particular actions from their parent state node. The visit counts: N(〈s, h〉) for
state nodes, and N(〈s, h〉, a) for action nodes, are initialized to 0 and updated throughout search.
A value Q(〈s, h〉, a), initialized to 0, is also maintained for each action node. Each simulation
traverses the tree without backtracking by following the UCT policy at state nodes defined by
argmaxaQ(〈s, h〉, a) + c

√
log(N(〈s, h〉))/N(〈s, h〉, a), where c is an exploration constant that needs

to be set appropriately. Given an action, the transition distribution Pi corresponding to the current
simulation i is used to sample the next state. That is, at action node (〈s, h〉, a), s′ is sampled from
Pi(s, a, ·), and the new state node is set to 〈s′, has′〉. When a simulation reaches a leaf, the tree is
expanded by attaching a new state node with its connected action nodes, and a rollout policy πro is
used to control the MDP defined by the current Pi to some fixed depth (determined using the dis-
count factor). The rollout provides an estimate of the value Q(〈s, h〉, a) from the leaf action node.
This estimate is then used to update the value of all action nodes traversed during the simulation: if
R is the sampled discounted return obtained from a traversed action node (〈s, h〉, a) in a given sim-
ulation, then we update the value of the action node to Q(〈s, h〉, a) + R−Q(〈s, h〉, a)/N(〈s, h〉, a) (i.e.,
the mean of the sampled returns obtained from that action node over the simulations). A detailed
description of the BAMCP algorithm is provided in Algorithm 1. A diagram example of BAMCP
simulations is presented in Figure S3.
The tree policy treats the forward search as a meta-exploration problem, preferring to exploit re-
gions of the tree that currently appear better than others while continuing to explore unknown or
less known parts of the tree. This leads to good empirical results even for small number of simu-
lations, because effort is expended where search seems fruitful. Nevertheless all parts of the tree
are eventually visited infinitely often, and therefore the algorithm will eventually converge on the
Bayes-optimal policy (see Section 3.5).
Finally, note that the history of transitions h is generally not the most compact sufficient statistic
of the belief in fully observable MDPs. Indeed, it can be replaced with unordered transition counts
ψ, considerably reducing the number of states of the BAMDP and, potentially the complexity of
planning. Given an addressing scheme suitable to the resulting expanding lattice (rather than to a
tree), BAMCP can search in this reduced space. We found this version of BAMCP to offer only a
marginal improvement. This is a common finding for UCT, stemming from its tendency to concen-
trate search effort on one of several equivalent paths (up to transposition), implying a limited effect
on performance of reducing the number of those paths.

3.3 Lazy Sampling

In previous work on sample-based tree search, indeed including POMCP [21], a complete sample
state is drawn from the posterior at the root of the search tree. However, this can be computationally
very costly. Instead, we sample P lazily, creating only the particular transition probabilities that are
required as the simulation traverses the tree, and also during the rollout.
Consider P(s, a, ·) to be parametrized by a latent variable θs,a for each state and action pair. These
may depend on each other, as well as on an additional set of latent variables φ. The posterior over
P can be written as P (Θ|h) =

∫
φ
P (Θ|φ, h)P (φ|h), where Θ = {θs,a|s ∈ S, a ∈ A}. Define

Θt = {θs1,a1 , · · · , θst,at} as the (random) set of θ parameters required during the course of a
BAMCP simulation that starts at time 1 and ends at time t. Using the chain rule, we can rewrite

P (Θ|φ, h) = P (θs1,a1 |φ, h)P (θs2,a2 |Θ1, φ, h) . . . P (θsT ,aT |ΘT−1, φ, h)P (Θ \ΘT |ΘT , φ, h)

where T is the length of the simulation and Θ \ ΘT denotes the (random) set of parameters that
are not required for a simulation. For each simulation i, we sample P (φ|ht) at the root and then
lazily sample the θst,at parameters as required, conditioned on φ and all Θt−1 parameters sampled
for the current simulation. This process is stopped at the end of the simulation, potentially before
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Algorithm 1: BAMCP

procedure Search( 〈s, h〉 )
repeat
P ∼ P (P|h)
Simulate(〈s, h〉,P, 0)

until Timeout()
return argmax

a
Q(〈s, h〉, a)

end procedure

procedure Rollout(〈s, h〉,P, d )
if γdRmax < ε then

return 0
end
a ∼ πro(〈s, h〉, ·)
s′ ∼ P(s, a, ·)
r ← R(s, a)
return r+γRollout(〈s′, has′〉,P, d+1)

end procedure

procedure Simulate( 〈s, h〉,P, d)
if γdRmax < ε then return 0
if N(〈s, h〉) = 0 then

for all a ∈ A do
N(〈s, h〉, a)← 0, Q(〈s, h〉, a))← 0

end
a ∼ πro(〈s, h〉, ·)
s′ ∼ P(s, a, ·)
r ← R(s, a)
R← r + γ Rollout(〈s′, has′〉,P, d)
N(〈s, h〉)← 1, N(〈s, h〉, a)← 1
Q(〈s, h〉, a)← R
return R

end

a← argmax
b

Q(〈s, h〉, b) + c
√

log(N(〈s,h〉))
N(〈s,h〉,b)

s′ ∼ P(s, a, ·)
r ← R(s, a)
R← r + γ Simulate(〈s′, has′〉,P, d+1)
N(〈s, h〉)← N(〈s, h〉) + 1
N(〈s, h〉, a)← N(〈s, h〉, a) + 1

Q(〈s, h〉, a)← Q(〈s, h〉, a) + R−Q(〈s,h〉,a)
N(〈s,h〉,a)

return R
end procedure

all θ parameters have been sampled. For example, if the transition parameters for different states
and actions are independent, we can completely forgo sampling a complete P , and instead draw any
necessary parameters individually for each state-action pair. This leads to substantial performance
improvement, especially in large MDPs where a single simulation only requires a small subset of
parameters (see for example the domain in Section 5.2).

3.4 Rollout Policy Learning

The choice of rollout policy πro is important if simulations are few, especially if the domain does
not display substantial locality or if rewards require a carefully selected sequence of actions to be
obtained. Otherwise, a simple uniform random policy can be chosen to provide noisy estimates.
In this work, we learn Qro, the optimal Q-value in the real MDP, in a model-free manner (e.g.,
using Q-learning) from samples (st, at, rt, st+1) obtained off-policy as a result of the interaction
of the Bayesian agent with the environment. Acting greedily according to Qro translates to pure
exploitation of gathered knowledge. A rollout policy in BAMCP following Qro could therefore
over-exploit. Instead, similar to [13], we select an ε-greedy policy with respect to Qro as our rollout
policy πro. This biases rollouts towards observed regions of high rewards. This method provides
valuable direction for the rollout policy at negligible computational cost. More complex rollout
policies can be considered, for example rollout policies that depend on the sampled model Pi.
However, these usually incur computational overhead.

3.5 Theoretical properties

Define V (〈s, h〉) = max
a∈A

Q(〈s, h〉, a) ∀〈s, h〉 ∈ S ×H.

Theorem 1. For all ε > 0 (the numerical precision, see Algorithm 1) and a suitably cho-
sen c (e.g. c > Rmax

1−γ ), from state 〈st, ht〉, BAMCP constructs a value function at the root

node that converges in probability to an ε′-optimal value function, V (〈st, ht〉)
p→ V ∗ε′ (〈st, ht〉),

where ε′ = ε
1−γ . Moreover, for large enough N(〈st, ht〉), the bias of V (〈st, ht〉) decreases as

O(log(N(〈st, ht〉))/N(〈st, ht〉)). (Proof available in supplementary material)
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By definition, Theorem 1 implies that BAMCP converges to the Bayes-optimal solution asymp-
totically. We confirmed this result empirically using a variety of Bandit problems, for which the
Bayes-optimal solution can be computed efficiently using Gittins indices (see supplementary mate-
rial).

4 Related Work

In Section 5, we compare BAMCP to a set of existing Bayesian RL algorithms. Given limited
space, we do not provide a comprehensive list of planning algorithms for MDP exploration, but
rather concentrate on related sample-based algorithms for Bayesian RL.
Bayesian DP [23] maintains a posterior distribution over transition models. At each step, a single
model is sampled, and the action that is optimal in that model is executed. The Best Of Sampled Set
(BOSS) algorithm generalizes this idea [1]. BOSS samples a number of models from the posterior
and combines them optimistically. This drives sufficient exploration to guarantee finite-sample per-
formance guarantees. BOSS is quite sensitive to its parameter that governs the sampling criterion.
Unfortunately, this is difficult to select. Castro and Precup proposed an SBOSS variant, which pro-
vides a more effective adaptive sampling criterion [5]. BOSS algorithms are generally quite robust,
but suffer from over-exploration.
Sparse sampling [16] is a sample-based tree search algorithm. The key idea is to sample successor
nodes from each state, and apply a Bellman backup to update the value of the parent node from the
values of the child nodes. Wang et al. applied sparse sampling to search over belief-state MDPs[26].
The tree is expanded non-uniformly according to the sampled trajectories. At each decision node, a
promising action is selected using Thompson sampling — i.e., sampling an MDP from that belief-
state, solving the MDP and taking the optimal action. At each chance node, a successor belief-state
is sampled from the transition dynamics of the belief-state MDP.
Asmuth and Littman further extended this idea in their BFS3 algorithm [2], an adaptation of Forward
Search Sparse Sampling [25] to belief-MDPs. Although they described their algorithm as Monte-
Carlo tree search, it in fact uses a Bellman backup rather than Monte-Carlo evaluation. Each Bellman
backup updates both lower and upper bounds on the value of each node. Like Wang et al., the tree
is expanded non-uniformly according to the sampled trajectories, albeit using a different method for
action selection. At each decision node, a promising action is selected by maximising the upper
bound on value. At each chance node, observations are selected by maximising the uncertainty
(upper minus lower bound).
Bayesian Exploration Bonus (BEB) solves the posterior mean MDP, but with an additional reward
bonus that depends on visitation counts [18]. Similarly, Sorg et al. propose an algorithm with a
different form of exploration bonus [22]. These algorithms provide performance guarantees after
a polynomial number of steps in the environment. However, behavior in the early steps of explo-
ration is very sensitive to the precise exploration bonuses; and it turns out to be hard to translate
sophisticated prior knowledge into the form of a bonus.

Table 1: Experiment results summary. For each algorithm, we report the mean sum of rewards and confidence
interval for the best performing parameter within a reasonable planning time limit (0.25 s/step for Double-loop,
1 s/step for Grid5 and Grid10, 1.5 s/step for the Maze). For BAMCP, this simply corresponds to the number
of simulations that achieve a planning time just under the imposed limit. * Results reported from [23] without
timing information.

Double-loop Grid5 Grid10 Dearden’s Maze
BAMCP 387.6 ± 1.5 72.9 ± 3 32.7 ± 3 965.2 ± 73
BFS3 [2] 382.2 ± 1.5 66 ± 5 10.4 ± 2 240.9 ± 46
SBOSS [5] 371.5 ± 3 59.3 ± 4 21.8 ± 2 671.3 ± 126
BEB [18] 386 ± 0 67.5 ± 3 10 ± 1 184.6 ± 35
Bayesian DP* [23] 377 ± 1 - - -
Bayes VPI+MIX* [8] 326 ± 31 - - 817.6 ± 29
IEQL+* [20] 264 ± 1 - - 269.4 ± 1
QL Boltzmann* 186 ± 1 - - 195.2 ± 20
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5 Experiments
We first present empirical results of BAMCP on a set of standard problems with comparisons to
other popular algorithms. Then we showcase BAMCP’s advantages in a large scale task: an infinite
2D grid with complex correlations between reward locations.

5.1 Standard Domains
Algorithms
The following algorithms were run: BAMCP - The algorithm presented in Section 3, implemented
with lazy sampling. The algorithm was run for different number of simulations (10 to 10000) to
span different planning times. In all experiments, we set πro to be an ε-greedy policy with ε = 0.5.
The UCT exploration constant was left unchanged for all experiments (c = 3), we experimented
with other values of c ∈ {0.5, 1, 5} with similar results. SBOSS [5]: for each domain, we varied
the number of samples K ∈ {2, 4, 8, 16, 32} and the resampling threshold parameter δ ∈ {3, 5, 7}.
BEB [18]: for each domain, we varied the bonus parameter β ∈ {0.5, 1, 1.5, 2, 2.5, 3, 5, 10, 15, 20}.
BFS3 [2] for each domain, we varied the branching factor C ∈ {2, 5, 10, 15} and the number of
simulations (10 to 2000). The depth of search was set to 15 in all domains except for the larger grid
and maze domain where it was set to 50. We also tuned the Vmax parameter for each domain — Vmin
was always set to 0. In addition, we report results from [23] for several other prior algorithms.

Domains
For all domains, we fix γ = 0.95. The Double-loop domain is a 9-state deterministic MDP with 2
actions [8], 1000 steps are executed in this domain. Grid5 is a 5× 5 grid with no reward anywhere
except for a reward state opposite to the reset state. Actions with cardinal directions are executed
with small probability of failure for 1000 steps. Grid10 is a 10 × 10 grid designed like Grid5. We
collect 2000 steps in this domain. Dearden’s Maze is a 264-states maze with 3 flags to collect [8].
A special reward state gives the number of flags collected since the last visit as reward, 20000 steps
are executed in this domain. 3

To quantify the performance of each algorithm, we measured the total undiscounted reward over
many steps. We chose this measure of performance to enable fair comparisons to be drawn with
prior work. In fact, we are optimising a different criterion – the discounted reward from the start
state – and so we might expect this evaluation to be unfavourable to our algorithm.
One major advantage of Bayesian RL is that one can specify priors about the dynamics. For the
Double-loop domain, the Bayesian RL algorithms were run with a simple Dirichlet-Multinomial
model with symmetric Dirichlet parameter α = 1

|S| . For the grids and the maze domain, the algo-
rithms were run with a sparse Dirichlet-Multinomial model, as described in [11]. For both of these
models, efficient collapsed sampling schemes are available; they are employed for the BA-UCT and
BFS3 algorithms in our experiments to compress the posterior parameter sampling and the transition
sampling into a single transition sampling step. This considerably reduces the cost of belief updates
inside the search tree when using these simple probabilistic models. In general, efficient collapsed
sampling schemes are not available (see for example the model in Section 5.2).

Results
A summary of the results is presented in Table 1. Figure 1 reports the planning time/performance
trade-off for the different algorithms on the Grid5 and Maze domain.
On all the domains tested, BAMCP performed best. Other algorithms came close on some tasks,
but only when their parameters were tuned to that specific domain. This is particularly evident for
BEB, which required a different value of exploration bonus to achieve maximum performance in
each domain. BAMCP’s performance is stable with respect to the choice of its exploration constant
c and it did not require tuning to obtain the results.
BAMCP’s performance scales well as a function of planning time, as is evident in Figure 1. In con-
trast, SBOSS follows the opposite trend. If more samples are employed to build the merged model,
SBOSS actually becomes too optimistic and over-explores, degrading its performance. BEB cannot
take advantage of prolonged planning time at all. BFS3 generally scales up with more planning
time with an appropriate choice of parameters, but it is not obvious how to trade-off the branching
factor, depth, and number of simulations in each domain. BAMCP greatly benefited from our lazy

3The result reported for Dearden’s maze with the Bayesian DP alg. in [23] is for a different version of the
task in which the maze layout is given to the agent.
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Figure 1: Performance of each algorithm on the Grid5 (a.) and Maze domain (b-d) as a function of planning
time. Each point corresponds to a single run of an algorithm with an associated setting of the parameters. In-
creasing brightness inside the points codes for an increasing value of a parameter (BAMCP and BFS3: number
of simulations, BEB: bonus parameter β, SBOSS: number of samples K). A second dimension of variation
is coded as the size of the points (BFS3: branching factor C, SBOSS: resampling parameter δ). The range of
parameters is specified in Section 5.1. a. Performance of each algorithm on the Grid5 domain. b. Performance
of each algorithm on the Maze domain. c. On the Maze domain, performance of vanilla BA-UCT with and
without rollout policy learning (RL). d. On the Maze domain, performance of BAMCP with and without the
lazy sampling (LS) and rollout policy learning (RL) presented in Sections 3.4, 3.3. Root sampling (RS) is
included.

sampling scheme in the experiments, providing 35× speed improvement over the naive approach in
the maze domain for example; this is illustrated in Figure 1(c).
Dearden’s maze aptly illustrates a major drawback of forward search sparse sampling algorithms
such as BFS3. Like many maze problems, all rewards are zero for at least k steps, where k is the
solution length. Without prior knowledge of the optimal solution length, all upper bounds will be
higher than the true optimal value until the tree has been fully expanded up to depth k – even if a
simulation happens to solve the maze. In contrast, once BAMCP discovers a successful simulation,
its Monte-Carlo evaluation will immediately bias the search tree towards the successful trajectory.

5.2 Infinite 2D grid task

We also applied BAMCP to a much larger problem. The generative model for this infinite-grid
MDP is as follows: each column i has an associated latent parameter pi ∼ Beta(α1, β1) and each
row j has an associated latent parameter qj ∼ Beta(α2, β2). The probability of grid cell ij having
a reward of 1 is piqj , otherwise the reward is 0. The agent knows it is on a grid and is always free
to move in any of the four cardinal directions. Rewards are consumed when visited; returning to the
same location subsequently results in a reward of 0. As opposed to the independent Dirichlet priors
employed in standard domains, here, dynamics are tightly correlated across states (i.e., observing
a state transition provides information about other state transitions). Posterior inference (of the
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Figure 2: Performance of BAMCP as a function of planning time on the Infinite 2D grid task of Section 5.2,
for γ = 0.97, where the grids are generated with Beta parameters α1 = 1, β1 = 2, α2 = 2, β2 = 1 (See
supp. Figure S4 for a visualization). The performance during the first 200 steps in the environment is averaged
over 50 sampled environments (5 runs for each sample) and is reported both in terms of undiscounted (left) and
discounted (right) sum of rewards. BAMCP is run either with the correct generative model as prior or with an
incorrect prior (parameters for rows and columns are swapped), it is clear that BAMCP can take advantage of
correct prior information to gain more rewards. The performance of a uniform random policy is also reported.

dynamics P) in this model requires approximation because of the non-conjugate coupling of the
variables, the inference is done via MCMC (details in Supplementary). The domain is illustrated in
Figure S4.
Planning algorithms that attempt to solve an MDP based on sample(s) (or the mean) of the posterior
(e.g., BOSS, BEB, Bayesian DP) cannot directly handle the large state space. Prior forward-search
methods (e.g., BA-UCT, BFS3) can deal with the state space, but not the large belief space: at every
node of the search tree they must solve an approximate inference problem to estimate the posterior
beliefs. In contrast, BAMCP limits the posterior inference to the root of the search tree and is not
directly affected by the size of the state space or belief space, which allows the algorithm to perform
well even with a limited planning time. Note that lazy sampling is required in this setup since a full
sample of the dynamics involves infinitely many parameters.
Figure 2 (and Figure S5) demonstrates the planning performance of BAMCP in this complex do-
main. Performance improves with additional planning time, and the quality of the prior clearly
affects the agent’s performance. Supplementary videos contrast the behavior of the agent for differ-
ent prior parameters.

6 Future Work
The UCT algorithm is known to have several drawbacks. First, there are no finite-time regret bounds.
It is possible to construct malicious environments, for example in which the optimal policy is hidden
in a generally low reward region of the tree, where UCT can be misled for long periods [7]. Second,
the UCT algorithm treats every action node as a multi-armed bandit problem. However, there is
no actual benefit to accruing reward during planning, and so it is in theory more appropriate to use
pure exploration bandits [4]. Nevertheless, the UCT algorithm has produced excellent empirical
performance in many domains [12].
BAMCP is able to exploit prior knowledge about the dynamics in a principled manner. In principle,
it is possible to encode many aspects of domain knowledge into the prior distribution. An important
avenue for future work is to explore rich, structured priors about the dynamics of the MDP. If this
prior knowledge matches the class of environments that the agent will encounter, then exploration
could be significantly accelerated.

7 Conclusion
We suggested a sample-based algorithm for Bayesian RL called BAMCP that significantly surpassed
the performance of existing algorithms on several standard tasks. We showed that BAMCP can
tackle larger and more complex tasks generated from a structured prior, where existing approaches
scale poorly. In addition, BAMCP provably converges to the Bayes-optimal solution.
The main idea is to employ Monte-Carlo tree search to explore the augmented Bayes-adaptive search
space efficiently. The naive implementation of that idea is the proposed BA-UCT algorithm, which
cannot scale for most priors due to expensive belief updates inside the search tree. We introduced
three modifications to obtain a computationally tractable sample-based algorithm: root sampling,
which only requires beliefs to be sampled at the start of each simulation (as in [21]); a model-free
RL algorithm that learns a rollout policy; and the use of a lazy sampling scheme to sample the
posterior beliefs cheaply.
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Supplementary Material

Proof of Theorem 1 and comments

Consider the BA-UCT algorithm: UCT applied to the Bayes-Adaptive MDP (dynamics are de-
scribed in Equation 1). Let Dπ(hT ) be the rollout distribution of BA-UCT: the probability that
history hT is generated when running the BA-UCT search from 〈st, ht〉, with ht a prefix of hT ,
T − t the effective horizon in the search tree, and π an arbitrary BAMDP policy. Similarly define
the similar quantity D̃π(hT ): the probability that history hT is generated when running the BAMCP
algorithm. The following lemma shows that these two quantities are in fact equivalent.4

Lemma 1. Dπ(hT ) = D̃π(hT ) for all BAMDP policies π : H → A.

Proof. Let π be arbitrary. We show by induction that for all suffix histories h of ht,Dπ(h) = D̃π(h);
but also P (P |h) = P̃h(P) where P (P |h) denotes (as before) the posterior distribution over the
dynamics given h and P̃h(P) denotes the distribution of P at node h when running BAMCP.

Base case: At the root (h = ht, suffix history of size 0), it is clear that P̃ht
(P) = P (P |ht) since we

are sampling from the posterior at the root node and Dπ(ht) = D̃π(ht) = 1 since all simulations
go through the root node.

Step case:
Assume proposition true for all suffices of size i. Consider any suffix has′ of size i+1, where a ∈ A
and s′ ∈ S are arbitrary and h is an arbitrary suffix of size i ending in s. The following relation
holds:

Dπ(has′) = Dπ(h)π(h, a)

∫
P

dP P (P |h)P(s, a, s′) (3)

= D̃π(h)π(h, a)

∫
P

dP P̃h(P)P(s, a, s′) (4)

= D̃π(has′), (5)

where the second line is obtained using the induction hypothesis, and the rest from the definitions.
In addition, we can match the distribution of the samples P at node has′:

P (P |has′) = P (has′| P)P (P)/P (has′) (6)

= P (h| P)P (P)P(s, a, s′)/P (has′) (7)

= P (P |h)P (h)P(s, a, s′)/P (has′) (8)

= ZP (P |h)P(s, a, s′) (9)

= ZP̃h(P)P(s, a, s′) (10)

= ZP̃ha(P)P(s, a, s′) (11)

= P̃has′(P), (12)

where Equation 10 is obtained from the induction hypothesis, Equation 11 is obtained from the
fact that the choice of action at each node is made independently of the samples P . Finally, to
obtain Equation 12 from Equation 11, consider the probability that a sample P arrives at node
has′, it first needs to traverse node ha (this occurs with probability P̃ha(P)) and then, from
node ha, the state s′ needs to be sampled (this occurs with probability P(s, a, s′)); therefore,
P̃has′(P) ∝ P̃ha(P)P(s, a, s′). Z is the normalization constant: Z = 1/

∫
P P(s, a, s

′)P (P |h) =
1/

∫
P P(s, a, s

′)P̃h(P). This completes the induction.

Proof of Theorem 1. The UCT analysis in Kocsis and Szepesvári [17] applies to the BA-UCT algo-
rithm, since it is vanilla UCT applied to the BAMDP (a particular MDP). By Lemma 1, BAMCP

4For ease of notation, we refer to a node with its history as opposed to its state and history as done in the
rest of the paper.
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simulations are equivalent in distribution to BA-UCT simulations. The nodes in BAMCP are there-
fore being evaluated as in BA-UCT, providing the result.

Lemma 1 provides some intuition for why belief updates are unnecessary in the search tree: the
search tree filters the samples from the root node so that the distribution of samples at each node
is equivalent to the distribution obtained when explicitly updating the belief. In particular, the root
sampling in POMCP [21] and BAMCP is different from evaluating the tree using the posterior mean.
This is illustrated empirically in the section below in the case of simple Bandit problems.

BAMCP versus Gittins indices
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Figure S1: Evaluation of BAMCP against the Bayes-optimal policy, for the case γ = 0.95, when choosing
between a deterministic arm with reward 0.5 and a stochastic arm with reward 1 with posterior probability
p ∼ Beta(α, β). The result is tabulated for a range of values of α, β, each cell value corresponds to the
probability of making the correct decision (computed over 50 runs) when compared to the Gittins indices [14]
for the corresponding posterior. The first four tables corresponds to different number of simulations for BAMCP
and the last table shows the performance when acting according to the posterior mean. In this range of α, β
values, the Gittins indices for the stochastic arm are larger than 0.5 (i.e., selecting the stochastic arm is optimal)
for β ≤ α + 1 but also β = α + 2 for α ≥ 6. Acting according to the posterior mean is different than
the Bayes-optimal decision when β >= α and the Gittins index is larger than 0.5. BAMCP is guaranteed
to converges to the Bayes-optimal decision in all cases, but convergence is slow for the edge cases where the
Gittins index is close to 0.5 (e.g., For α = 17, β = 19, the Gittins index is 0.5044 which implies a value
of 0.5044/(1 − γ) = 10.088 for the stochastic arm versus a value of 0.5 + γ × 10.088 = 10.0836 for the
deterministic arm).
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Figure S2: Performance comparison of BAMCP (50000 simulations, 100 runs) against the posterior mean
decision on an 8-armed Bernoulli bandit with γ = 0.99 after 300 steps. The arms’ success probability are all
0.6 except for one arm which has success probability 0.9. The Bayes-optimal result is obtained from 1000 runs
with the Gittins indices [14]. a. Mean sum of rewards after 300 steps. b. Mean sum of discounted rewards after
300 steps.

Inference details for the infinite 2D grid task of Section 5.2
We construct a Markov Chain using the Metropolis-Hastings algorithm to sample from the poste-
rior distribution of row and column parameters given observed transitions, following the notation
introduced in Section 5.2. Let O = {(i, j)} be the set of observed reward locations, each as-
sociated with an observed reward rij ∈ {0, 1}. The proposal distribution chooses a row-column
pair (ip, jp) from O uniformly at random, and samples p̃ip ∼ Beta(α1 + m1, β1 + n1) and
q̃jp ∼ Beta(α2 +m2, β2 + n2), where m1 =

∑
(i,j)∈O 1i=iprij (i.e., the sum of rewards observed

on that column) and n1 = (1 − β2/2(α2 + β2))
∑

(i,j)∈O 1i=ip(1 − rij), and similarly for m2, n2
(mutatis mutandis). The n1 term for the proposed column parameter p̃i has this rough correction
term, based on the prior mean failure of the row parameters, to account for observed 0 rewards on the
column due to potentially low row parameters. Since the proposal is biased with respect to the true
conditional distribution (from which we cannot sample), we also prevent the proposal distribution
from getting too peaked. Better proposals (e.g., taking into account the sampled row parameters)
could be devised, but they would likely introduce additional computational cost and the proposal
above generated large enough acceptance probabilities (generally above 0.5 for our experiments).
All other parameters pi, qj such that i or j is present in O are kept from the last accepted samples
(i.e., p̃i = pi and q̃j = pj for these is and js), and all parameters pi, qj that are not linked to ob-
servations are (lazily) resampled from the prior — they do not influence the acceptance probability.
We denote by Q(p,q → p̃, q̃) the probability of proposing the set of parameters p̃ and q̃ from the
last accepted sample of column/row parameters p and q. The acceptance probability A can then be
computed as A = min(1, A′) where:

A′ =
P (p̃, q̃ |h)Q(p̃, q̃→ p,q)

P (p,q |h)Q(p,q→ p̃, q̃)

=
P (p̃, q̃)Q(p̃, q̃→ p,q)P (h| p̃, q̃)

P (p,q)Q(p,q→ p̃, q̃)P (h|p,q)

=
pm1
ip

(1− pip)n1qm2
jp

(1− qjp)n2
∏

(i,j)∈O 1[i = ip or j = jp](p̃i q̃j)
rij (1− p̃i q̃j)

1−rij

p̃m1
ip

(1− p̃ip)n1 q̃m2
jp

(1− q̃jp)n2
∏

(i,j)∈O 1[i = ip or j = jp](piqj)rij (1− piqj)1−rij
.

The last accepted sampled is employed whenever a sample is rejected. Finally, reward values Rij
are resampled lazily based on the last accepted sample of the parameters pi, qj , when they have not
been observed already. We omit the implicit deterministic mapping to obtain the dynamics P from
these parameters.
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Figure S3: This diagram presents the first 4 simulations of BAMCP in an MDP with 2 actions from state
〈st, ht〉. The rollout trajectories are represented with dotted lines (green for the current rollouts, and greyed
out for past rollouts). 1. The root node is expanded with two action nodes. Action a1 is chosen at the root
(random tie-breaking) and a rollout is executed in P1 with a resulting value estimate of 0. Counts N(〈st, ht〉)
and N(〈st, ht〉, a1), and value Q(〈st, ht〉, a1) get updated. 2. Action a2 is chosen at the root and a rollout is
executed with value estimate 0. Counts and value get updated. 3. Action a1 is chosen (tie-breaking), then s′ is
sampled from P3(st, a1, ·). State node 〈s′, hta1s′〉 gets expanded and action a1 is selected, incurring a reward
of 2, followed by a rollout. 4. The UCB rule selects action a1 at the top, the successor state s′ is sampled from
P4(st, a1, ·). Action a2 is chosen from the internal node 〈s′, hta1s′〉, followed by a rollout using P4 and πro.
A reward of 2 is obtained after 2 steps from that tree node. Counts for the traversed nodes are updated and the
MC backup updates Q(〈s′, hta1s′〉, a1) to R = 0 + γ0 + γ22 + γ30 + · · · = γ22 and Q(〈st, ht〉, a1) to
γ + 2γ3 − γ/3 = 2

3
(γ + γ3).
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...

· · · · · ·

...
Figure S4: A portion of an infinite 2D grid task generated with Beta distribution parameters α1 = 1, β1 = 2
(columns) and α2 = 2, β2 = 1 (rows). Black squares at location (i,j) indicates a reward of 1, the circles
represent the corresponding parameters pi (blue) and qj (orange) for each row and column (area of the circle is
proportional to the parameter value). One way to interpret these parameters is that following column i implies
a collection of 2pi/3 reward on average (2/3 is the mean of a Beta(2, 1) distribution) whereas following any
row j implies a collection of qj/3 reward on average; but high values of parameters pi are less likely than high
values parameters qj . These parameters are employed for the results presented in Figure 2.
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Figure S5: Performance of BAMCP on the Infinite 2D grid task of Section 5.2, for γ = 0.97, as in Figure 2
but where the grids are generated with Beta parameters (a) α1 = 0.5, β1 = 0.5, α2 = 0.5, β2 = 0.5 and (b)
α1 = 0.5, β1 = 0.5, α2 = 1, β2 = 3. In the wrong prior scenario (green dotted line), BAMCP is given the
parameters (a) α1 = 4, β1 = 1, α2 = 0.5, β2 = 0.5 and (b) α1 = 1, β1 = 3, α2 = 0.5, β2 = 0.5. The
behavior of the agent is qualitatively different depending on the prior parameters employed (see supplementary
videos). For example, for the scenario in Figure 2, rewards are often found in relatively dense blocks on the
map and the agents exploits this fact when exploring; for the scenario (b) of this Figure, good rewards rates can
be obtained by following the rare rows that have high qj parameters, but finding good rows can be expensive so
the agent might settle on sub-optimal rows (as in Bandit problems where the Bayes-optimal agent might settle
on sub-optimal arm if it believes it likely is the best arm given past data). It should be pointed out that the actual
Bayes-optimal strategy in this domain is not known — the behavior of BAMCP for finite planning time might
not qualitatively match the Bayes-optimal strategy.

14


