
SAMPLE-BASED SEARCH METHODS

FOR

BAYES-ADAPTIVE PLANNING

ARTHUR GUEZ

DISSERTATION SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
OF

UNIVERSITY COLLEGE LONDON

GATSBY COMPUTATIONAL NEUROSCIENCE UNIT

UNIVERSITY COLLEGE LONDON

2015

DECLARATION

I, Arthur Guez, declare that this thesis was composed by myself,
that the work contained herein is my own except where explicitly
stated otherwise in the text, and that this work has not been sub-
mitted for any other degree or professional qualification except
as specified.

Arthur Guez
February 3, 2015

ABSTRACT

A fundamental issue for control is acting in the face of uncertainty about the en-
vironment. Amongst other things, this induces a trade-off between exploration
and exploitation. A model-based Bayesian agent optimizes its return by main-
taining a posterior distribution over possible environments, and considering all
possible future paths. This optimization is equivalent to solving a Markov Deci-
sion Process (MDP) whose hyperstate comprises the agent’s beliefs about the
environment, as well as its current state in that environment. This corresponding
process is called a Bayes-Adaptive MDP (BAMDP). Even for MDPs with only
a few states, it is generally intractable to solve the corresponding BAMDP ex-
actly. Various heuristics have been devised, but those that are computationally
tractable often perform indifferently, whereas those that perform well are typically
so expensive as to be applicable only in small domains with limited structure.

Here, we develop new tractable methods for planning in BAMDPs based on re-
cent advances in the solution to large MDPs and general partially observable
MDPs. Our algorithms are sample-based, plan online in a way that is focused
on the current belief, and, critically, avoid expensive belief updates during simu-
lations. In discrete domains, we use Monte-Carlo tree search to search forward
in an aggressive manner. The derived algorithm can scale to large MDPs and
provably converges to the Bayes-optimal solution asymptotically. We then con-
sider a more general class of simulation-based methods in which approximation
methods can be employed to allow value function estimates to generalize be-
tween hyperstates during search. This allows us to tackle continuous domains.
We validate our approach empirically in standard domains by comparison with
existing approximations. Finally, we explore Bayes-adaptive planning in envi-
ronments that are modelled by rich, non-parametric probabilistic models. We
demonstrate that a fully Bayesian agent can be advantageous in the exploration
of complex and even infinite, structured domains.

ACKNOWLEDGMENTS

I would like to express my gratitude to Peter Dayan for his exemplary and pas-
sionate supervision. Peter patiently listened to my incomplete ideas and tire-
lessly revised my drafts. Our stimulating discussions not only informed my re-
search directions for this thesis, they planted seeds for countless years of future
investigations. I want to thank equally David Silver, my secondary supervisor,
for his guidance and support. His pragmatism helped me direct my efforts to-
wards reachable objectives, and his knack for deconstructing complex ideas into
its essential components was invaluable. I am grateful to all of the Gatsby Unit
residents for thought-provoking discussions, feedback, and for providing such a
great and friendly environment for research. A special thanks to my office mates
for enduring me (and my noisy keyboard) daily. Most of all, I would like to thank
my family and my wife, Andrée-Anne, for their continuing love and support.

CONTENTS

Declaration . 2
Abstract . 3
Acknowledgments . 4
Table of contents . 5
List of figures . 8
List of tables . 10
List of algorithms . 11

1 Introduction 12
1.1 Acting under Model Uncertainty . 15

1.1.1 Formalization . 15
1.1.2 Finding the Optimal Learning Plan 17

1.2 Bayes-Adaptive Planning . 20
1.2.1 Contrib. 1: The BAMCP Algorithm 21
1.2.2 Contrib. 2: Generalizing BAMCP 23
1.2.3 Contrib. 3: BA Planning with Rich Models 24

1.3 Summary . 25

2 Existing Work 26
2.1 Problem Types . 26

2.1.1 Multi-armed Bandits . 27
2.1.2 MDPs . 29

2.1.2.1 Objectives for EE in MDPs 32
2.1.3 BAMDPs . 38

2.1.3.1 PAC-BAMDP . 43
2.1.4 POMDPs . 44

2.2 Solution Methods . 46
2.2.1 Bandits . 46

2.2.1.1 Regret-based Strategies 46
2.2.1.2 Bayesian Strategies 48

2.2.2 MDPs . 51
2.2.2.1 Dynamic Programming 51
2.2.2.2 Approximate DP 52
2.2.2.3 Learning with Sim-based Methods 52
2.2.2.4 Planning: Online Search 56
2.2.2.5 Exploration-Exploitation 63

CONTENTS 6

2.2.3 POMDPs . 65
2.2.4 BAMDPs . 66

2.2.4.1 Offline Methods 67
2.2.4.2 Online Methods: Sparse Sampling 68
2.2.4.3 Online Methods: Dual Optimism 70
2.2.4.4 Discussion of Existing Methods 71

2.3 Bayesian Models . 72
2.3.1 Flat priors . 74

2.3.1.1 Dirichlet distribution 74
2.3.1.2 Sparse-Dirichlet 75

2.3.2 Structured Priors . 76
2.3.2.1 Finite mixtures . 76
2.3.2.2 Bayesian Non-Parametric 77
2.3.2.3 Models in Thesis 83

2.4 Historical Notes on Bayesian Adaptive Control 83

3 Bayes-Adaptive Monte-Carlo Planning (BAMCP) 86
3.1 BA-UCT with Root Sampling . 88

3.1.1 Root Sampling Example . 91
3.2 Lazy Sampling . 93
3.3 Rollout Policy Learning . 94
3.4 Theoretical Properties . 95

3.4.1 Exact Inference Case . 96
3.4.2 Approximate Inference Case 98

3.5 Possible Misuse of Latent Variable Information 101
3.6 Conclusion . 104

4 BAMCP: Experimental Results 105
4.1 Standard Domains . 106

4.1.1 Description . 106
4.1.2 Results . 108
4.1.3 Experimental Details . 111

4.2 Infinite 2D Grid Task . 112
4.2.1 Problem Description . 113
4.2.2 Inference . 114
4.2.3 Results . 116

4.3 Conclusion . 119

5 Bayes-Adaptive Simulation-based Search 120
5.1 Algorithm . 122
5.2 Analysis . 124
5.3 History Features and Parametric Form for the Q-value 127
5.4 Experimental Results . 129

5.4.1 Bernoulli Bandit . 129
5.4.2 Height map navigation . 130
5.4.3 Under-actuated Pendulum Swing-up 131

5.5 Representing the Value Function 135
5.6 Conclusion . 136

CONTENTS 7

6 Bayes-Adaptive Planning with Rich Statistical Models 138
6.1 Issues with Myopic Forms of Planning 140
6.2 NP Contextual Tasks . 144

6.2.1 Mushroom Task . 145
6.2.1.1 Statistical Model 147
6.2.1.2 Results . 148

6.2.2 NP Bandit Sequence Model 150
6.2.2.1 Model . 151
6.2.2.2 Results . 152

6.2.3 CRP mixture of MDPs . 156
6.2.3.1 Model . 156
6.2.3.2 Results . 158

6.3 Conclusion . 158
Inference Details . 159

7 Discussion 160
7.1 The BAMCP Algorithm . 160
7.2 Bayes-Adaptive Planning with Function Approximation 161
7.3 Bayes-Adaptive Planning with Rich Statistical models 162
7.4 Discussion/Future Work . 162

7.4.1 About the Objective . 163
7.4.2 About Priors . 165
7.4.3 Online Planning . 167

7.4.3.1 Temp. Abstractions 167
7.4.3.2 Meta-Control . 168
7.4.3.3 Memory . 169

7.4.4 About Modeling . 170
7.5 Final Words . 171

References 172

LIST OF FIGURES

1.1 Bayesian bandit example . 18

2.1 Forward-search tree . 57
2.2 Full-Width Search . 58
2.3 Sparse Sampling Search . 60
2.4 Finite mixture model for an MDP 77
2.5 CRP mixture model . 80

3.1 BAMCP diagram . 89
3.2 MDP examples . 91
3.3 BAMCP internal variable tracking 92
3.4 BAMCP applied to Bernoulli bandits 99
3.5 BAMCP applied to 2-armed Bernoulli bandits 100
3.6 The two possible MDPs corresponding to the two settings of θ. . . 102
3.7 BAMDP, nodes correspond to belief(or history)-states. 102
3.8 A problematic search tree. 103

4.1 Standard domains. 107
4.2 Comparison of algorithms in the Grid5 domain. 109
4.3 Comparison of algorithms on Dearden’s Maze domain. 109
4.4 Comparison of BA-UCT variants with BAMCP. 110
4.5 Illustration of the infinite 2D grid task. 113
4.6 BAMCP result in the infinite 2D grid task. 117

5.1 BAMCP vs BAFA on a Bandit problem. 130
5.2 Height map navigation results . 132
5.3 Example runs on the pendulum. 132
5.4 Pendulum comparison results . 133
5.5 Pendulum BAFA results . 135

6.1 Illustration of Example 1 . 141
6.2 Illustration of Example 2. 142
6.3 The two possible payoff structures of Example 3. 143
6.4 Illustration of the mushroom domain 146
6.5 Results on the mushroom dataset 149
6.6 Average rate of exploration TS versus BAMCP 150

LIST OF FIGURES 9

6.7 Illustration of the contextual bandit task 151
6.8 Comparing BAMCP and TS in the non-parametric bandit task . . . 153
6.9 BAMCP performance as a fonction of the concentration parameter 154
6.10 Discounting comparison in contextual bandit task 155
6.11 Drilling task . 156
6.12 Drilling task results . 157

LIST OF TABLES

4.1 Summary of results in standard domains 108

LIST OF ALGORITHMS

1 Bayes-Adaptive Monte-Carlo Planning (BAMCP) algorithm 90

2 Bayes-Adaptive simulation-based search with root sampling 123

I

INTRODUCTION

A key challenge in sequential decision making is to understand how agents1

can learn to collect rewards — and avoid costs — through interactions with the

world. There are two underlying, but interlinked, problems: learning about the

environment (exploring) and gathering rewards (exploiting). The latter problem

is one of planning, given knowledge of the environment. This knowledge takes

the form of a model which provides a way to access, or sample, the dynamics

of the environment so that trajectories can be internally simulated to assist deci-

sion making. For instance, a model of a helicopter’s dynamics reports how the

helicopter’s state (its position, roll, yaw, pitch, etc.) will be modified, perhaps

stochastically, as a function of the controls and other external factors. Given a

model, the agent can plan to select actions that optimize future rewards. Plan-

ning must account for the long-term consequences of actions, which entails the

consideration of, and optimization over, many possible future trajectories; thus,

planning using some assumed model can be rather computationally challeng-

ing (Bertsekas and Tsitsiklis, 1996).

The other problem is learning a model of the environment in the first place (Tol-
1This terminology is borrowed from artificial intelligence. An agent is an abstract autonomous

entity that acts. It could be realized as an animal, a robot, or a computer program. The term
controller is often used instead.

I 13

man, 1948). For instance, the model for the helicopter’s dynamics can be learned

from interaction data. This itself has easy and difficult facets. The easy facet is

supervised learning: given a fixed set of example transitions, the learning task is

to generalize so that the outcome of arbitrary actions in arbitrary situations can

be predicted accurately — a problem that can be addressed with a variety of

statistical methods. The difficult facet is that the data for this supervised learning

depends on the agent’s own choices in the online reinforcement learning (RL)

setting (Sutton and Barto, 1998), which is characterized by a continual closed-

loop interaction with an unknown environment. Furthermore, until it has learned,

the agent will typically be at least somewhat ignorant about how to collect reward,

and so will need to collect information to do this more proficiently.

Since, ultimately, the goal of the agent is to maximize the collection of rewards,

this leads to a blurring between exploiting existing knowledge to collect reward,

and exploring to collect knowledge so as to get future reward. Exploring is gen-

erally costly, at least because of the missed opportunity of collecting rewards

using the readily available knowledge. On the other hand, exploiting can always

be improved in the future with more exploration, especially early on when not

much learning has taken place. As a result, the problem of maximizing reward

under model uncertainty involves a fine balance between these two conflicting

behaviors. Weighing the benefits of exploring against the benefits of exploiting

known sources of rewards is generally referred to as the exploration-exploitation

(EE) trade-off.

This problem is not a theoretical curiosity. An abundance of scenarios exist

in medicine, industry, robotics, policy making, finance, and science that exhibit

the same tension between taking some time to acquire more data, potentially

with some risk and cost attached, and harnessing what is currently known for

generally sub-optimal gains. Animals also face this trade-off when they look for

sources of food, avoid predators, or decide on mating partners; thus, practical

solutions to this EE trade-off, including idiosyncrasies of efficient approximation

schemes, may additionally inform modeling of decision making in animals and

humans (Acuña and Schrater, 2010; Dayan, 2013; Huys and Dayan, 2009).

I 14

The canonical and minimalist example of this trade-off is found in stationary

multi-armed bandit problems (Robbins, 1952) which consist of multiple slot ma-

chines with unknown random payoffs. One machine is on average better than

the others, and the agent can play each machine one at a time to figure this out.

Since repeatedly playing a machine will reduce uncertainty about its mean pay-

off, it will reveal the true value of that machine. Playing all the machines enough

times will ultimately unmask the best machine. But how long should one play

a machine before switching to a more promising one? What is a good strategy

to maximize the overall payoff? How can we incorporate prior beliefs about the

payoff distribution for each arm in the agent’s strategy?

Thanks to decades of work on this problem, we now have a good grasp of the

solutions for bandit problems, at least in some of their simpler forms (Auer et al.,

2002; Gittins and Jones, 1974; Lai and Robbins, 1985) — we will describe the

bandit problem in more details, along with its solutions, in Chapter 2. Never-

theless, unlike more general problems, bandits are stateless (each machine’s

outcomes are independent draws from a fixed distribution). This considerably

simplifies exploration; for example, although the agent could make an unfortu-

nate choice of machine from which to sample, this choice has no ramifications

on the subsequent behavior of the machines. In the more general setting the

agent can be in different states, implying that not all learning data is easily avail-

able at the pull of an arm. Instead, the agent has to navigate states through a

series of actions to reach the part of the state space it would want to explore.

Due to these additional complexities, and in contrast to the bandit case, practical

solutions are still lacking to solve the EE trade-off in the general RL setting.

In this thesis, we take a Bayesian viewpoint where agents can optimally explore

and exploit by following their beliefs about the environment — a setting where

planning in the face of uncertainty is notoriously taxing. We develop new efficient

methods for planning that can scale to previously impractical domains. After

describing more formally the problem of acting under uncertainty, in particular

the Bayesian formulation that we address, we summarize our contributions in

Section 1.2.

I B Acting under Model Uncertainty 15

1.1 A Bayesian Formulation of Acting under Model Un-

certainty

To be precise about the nature of the EE trade-off and the exact RL problem

to be solved, formalization is needed. In Chapter 2, we will introduce the nec-

essary notation, formalisms, and tools we employ in this thesis; they are only

summarized below to motivate our work.

1.1.1 Formalization

A natural way to characterize the agent’s interactions with its environment is as a

Markov Decision Process (MDP). MDPs consist of a set of states, a set of possi-

ble actions, and a transition kernel that stochastically decides a successor state

from a given state and action (Puterman, 1994). In addition, a reward or cost

is associated with each state and action. MDPs are employed to describe both

the true, objective, interactions in the environment and often also the subjective,

simulated, interactions the agent considers when planning with a model of the

environment. The problem for learning arises when some aspects of the transi-

tions (or rewards) are unknown to the agent, implying uncertainty about the best

fixed policy that selects an action in each state for gathering rewards and avoid-

ing costs. In the RL problem, the agent cannot rely on a fixed policy because the

data accumulates over time and may affect which action the agent would want

to select in any given state. Instead, the learning agent’s policy, or EE policy, de-

pends on both the current state and all the past data — it appears non-stationary

when looked only as function of the state. To solve meaningfully the problem of

acting under model uncertainty, it is necessary to ask what exactly constitutes a

good EE policy, and how we should judge one over another.

Although we note the existence of other objectives in Chapter 2, our contributions

focus on the Bayesian setting where we assume that the MDP is drawn from

some known distribution. This distribution may not be the true distribution over

MDPs but it encodes the agent’s prior belief about the possible environments he

I B Acting under Model Uncertainty B Formalization 16

may be in, hence it is subjectively taken as true by the agent. In the light of this

prior distribution over models, Bayesian decision theory prescribes maximizing

the expected discounted sum of rewards, where the discount weighs early re-

wards more heavily than future ones, a problem known as Bayesian stochastic

adaptive control (Bellman and Kalaba, 1959; Kumar, 1985). This is the problem

we address in this thesis. Although the agent faces a learning task, finding the

optimal learning policy is purely a computational task because of the Bayesian

formulation of the problem, which allows the agent 1) to foresee the effect of a fu-

ture observation on its posterior distribution before any observation takes place2

and 2) to evaluate the (subjective) probability of a particular event occurring —

such as the outcome of an action in a given state.

Planning in this Bayesian setting involves reasoning about future potential be-

liefs since future optimal decisions — necessary to determine the current opti-

mal decision — are affected by future beliefs, just in the way that future optimal

decisions are affected by future states in fully-observable domains. Therefore,

the agent’s belief is another form of state, an information state (Bellman and Kal-

aba, 1959), and its dynamics have to be taken into account in order to optimally

learn.

As an example, the bandit problem can be cast in a Bayesian way by assum-

ing a prior distribution on the payoffs for each arm. Deciding which arm to pull

from any given prior distribution so as to maximize the sum of discounted future

rewards can be done in principle by enumerating all possible future interactions

with the arms. Each future interaction trajectory will have a known probability

associated with it according to the agent’s prior. Moreover, each point along a

trajectory can be identified by the information the agent has obtained about the

arms, the information state corresponding to a posterior distribution on the pay-

offs. Since everything is known about these trajectories, the agent can plan (or

optimize) to select the course of action that leads to the best return on average.

An illustration of these trajectories in a simple bandit example is presented in Fig-

ure 1.1. It is worth noting that exploration happens implicitly as a consequence
2This counterfactual reasoning is sometimes called preposterior analysis in statistics.

I B Acting under Model Uncertainty B Finding the Optimal Learning Plan 17

of maximizing rewards in this Bayesian setting. Without introducing any artificial

incentive for exploration, the agent can perceive an uncertain arm as valuable

since many likely trajectories that start by pulling that arm reach an information

state where the arm is likely to be rewarding (for example state A in Figure 1.1).

While there also exist likely trajectories that start by pulling the same arm which

reach states where the arm does not seem rewarding (for example state B in

Figure 1.1), the agent still has the option of exploiting other arms from these

states, thereby mitigating the impact of these more negative trajectories. Com-

bining that information, it may appear attractive to pull the uncertain arm purely

from a reward-maximizing viewpoint; there does not need to be an additional

external mechanism to encourage exploration.3

1.1.2 Finding the Optimal Learning Plan

There exists a special optimization procedure to maximize the sum of discounted

rewards for the case of bandits — using Gittins indices (Gittins and Jones, 1974).

For MDPs in general, one way to compute the optimal learning plan is by solving

an MDP with augmented states, called the Bayes-Adaptive MDP (BAMDP), in

which the corresponding augmented dynamics are known (Duff, 2002; Martin,

1967). The state augmentation is the posterior belief distribution over the dy-

namics, given the data so far observed. In other words, the augmented state

contains both the regular MDP state and the information state. The dynamics of

the BAMDP are known because information evolves according to known rules

and regular states evolve according to this information; to obtain the probability

of a BAMDP transition from a given augmented state, we integrate over all the

possible transition probabilities according to the belief — itself derived from the

information state.

Since everything is known about the BAMDP, it can in principle be solved to

obtain its optimal policy, providing the optimal action for all possible states and

beliefs. The agent starts in the augmented state corresponding to its prior and,
3For example, in Figure 1.1, the blue arm, with the lower prior mean, is actually the optimal

arm to play for a discounting factor of 0.99.

I B Acting under Model Uncertainty B Finding the Optimal Learning Plan 18

0 1
q

p(
q)Prior belief about the probability

of success of each arm.

Play blue arm Play orange arm

Success Failure

Updated
beliefs

A
B

C

Figure 1.1: Example of Bayesian bandit problem with 2 possible arms (blue
and orange), each giving a payoff of 1 (success) or 0 (failure) with some
unknown probability. The initial belief about these probabilities is in the top
plot, which indicates a bit more certainty about the probability of success
of the orange arm. In the center of the figure are all the possible beliefs
that could arise after seeing the outcome of a single action — notice that
the belief about the blue arm is unchanged if the orange arm is played (and
vice versa). Each of these outcomes happens with some known probability
according to the belief. We can recursively consider all future events in the
same way. We only show a selection of 3 possible partial trajectories from
this point where: A the orange arm appears to be worse than the blue arm,
B the blue arm is likely to be worse than the orange arm, C the beliefs
for both arms are relatively similar. Given all these trajectories, the agent
needs to find the best arm to pull at the top to maximize its average sum of
discounted payoffs.

I B Acting under Model Uncertainty B Finding the Optimal Learning Plan 19

by executing the greedy policy in the BAMDP whilst updating its posterior, acts

optimally in the environment with respect to its beliefs. The Bayes-optimal policy

is the optimal policy of the BAMDP: it integrates exploration and exploitation

in an ideal manner with respect to its prior knowledge so as to maximize the

expected discounted sum of rewards. Bayes-Adaptive planning is the process

of computing such an optimal policy.

One attractive feature of the Bayesian framework is that structured prior knowl-

edge can be incorporated into the solution in a principled manner. When such

prior knowledge is available, it is duly reflected in the Bayes-optimal policy and

allows the agent to balance exploration and exploitation in a structured way justi-

fied by its beliefs. For example, such directed exploration may ignore parts of the

environment where reward gains are likely to be low and information useful to

exploiting more surely lucrative regions is unlikely to be obtained. If there are dif-

ferent ways to reach a particularly useful state of knowledge, the Bayes-optimal

policy will select the least expensive way of reaching it, taking into account how

knowledge (in the form of beliefs) evolves based on new observations. By care-

fully prioritizing what to do according to existing beliefs, the Bayesian framework

provides the means to tackle, at least in theory, large and complex unknown

environments in a principled way.

Unfortunately, the exact Bayes-adaptive (BA) solution is computationally in-

tractable. Various algorithms have been devised to approximate optimal learn-

ing, but often at rather large cost. This computational barrier has restricted

Bayesian adaptive control to small domains with simple priors, preventing its the-

oretical advantage to be realized in many potential application domains. In this

thesis, as a step towards practical applications, we directly address the shortage

of practical solutions by introducing new approximation methods for Bayesian

adaptive control that can deal more efficiently with both large state spaces and

complex priors.

I B Bayes-Adaptive Planning 20

1.2 Bayes-Adaptive Planning

Even if the true underlying MDP only contains a small number of states, the

resulting BAMDP contains all possible beliefs over the MDP dynamics. The aug-

mented MDP’s state space is therefore in general infinite, even for the smallest

problems. To tackle the problem of planning in this BAMDP, it is thus natural to

rely on planning techniques that are adapted to large (or infinite) MDPs.

In known environments with available models, there are two main paradigms

for planning. It can be done offline to find the optimal policy for all states; this

requires some preprocessing computation but results in a policy that can then be

executed online with little effort. Alternatively, planning can be carried out online

separately for each visited state. The concept of online planning was inspired by

early tree search techniques for games (Korf, 1990), a setting where the large

number of states often prevents offline planning (for example in the game of

chess).

In the context of MDPs, a powerful notion introduced by Kearns et al. (1999)

is that the complexity of planning offline for all states (which grows linearly with

the state space size) can be contained by planning online with a complexity in-

dependent of the size of the state space — albeit with an exponential cost in

the planning horizon — using a technique called sparse sampling. Simply said,

sparse sampling builds a look-ahead tree of future paths based on sampled

transitions to optimize the policy. It therefore simulates possible futures from the

current state. By sampling transitions rather than considering all possible transi-

tions, the dependence on the size of the state space is avoided but the method

still provably finds a (near-)optimal policy. Another useful aspect of sparse sam-

pling is that it only requires a generative model of the transitions, as opposed to

explicit transition probabilities, further widening the applicability of the method.

One issue with sparse sampling is that it expands the search tree uniformly.

Since the tree grows in an exponential way, this restricts sparse sampling to

small search depths in practice, preventing it from perceiving rewards past a

I B Bayes-Adaptive Planning B Contrib. 1: The BAMCP Algorithm 21

short horizon. Rather than truncating search, the Monte-Carlo tree search

(MCTS) algorithm (Kocsis and Szepesvári, 2006), an extension of sparse sam-

pling, runs simulations from the tree leaves using a sub-optimal policy to obtain

an estimate of the return for longer horizons. In addition, MCTS grows its search

tree in a non-uniform way based on these returns to spend more resources

searching in promising regions. By effectively ignoring entire subtrees, the tree

can be extended much deeper along some trajectories and MCTS avoids wast-

ing resources on unpromising tree branches. As a result, MCTS has been able to

tackle large fully-observable problems where other approaches have failed (Gelly

et al., 2012).

When planning under model uncertainty in a Bayesian setting, the same di-

chotomy between online and offline planning applies (Duff, 2002; Wang et al.,

2005). Computing the Bayes-optimal policy offline requires considering all pos-

sible states and beliefs, while planning online seeks the best action only for the

current state and belief. Therefore, given the infinite augmented state space con-

taining both states and beliefs, online sample-based planning seems particularly

well-suited for Bayes-adaptive planning. The same computational constraints

apply in Partially Observable MDPs, a closely connected problem to Bayesian

adaptive control where the state, and not the dynamics, is partially observed

and where online sample-based planning has been considered with some suc-

cess (Ross et al., 2008; Silver and Veness, 2010).

In this thesis, we present tractable approaches that exploit and extend recent

advances in sample-based online planning in MDPs — such as MCTS — and

Partially Observable MDPs (POMDP) for the problem of BA planning. A common

theme in our approach is to exploit sampling to reduce computational complexity.

1.2.1 Contribution 1: The BAMCP Algorithm

Some existing methods for BA planning, which we will review in Chapter 2, al-

ready take advantage of sparse sampling (Asmuth and Littman, 2011; Ross

and Pineau, 2008; Wang et al., 2005). However, they usually suffer from at

I B Bayes-Adaptive Planning B Contrib. 1: The BAMCP Algorithm 22

least two kinds of intractabilities. First, the large cost of optimizing the search

tree in sparse sampling prevents deep searches — an issue also found in the

fully-observable setting which we highlighted above. Second, another aspect

of intractability not addressed by previous work is the cost of using the genera-

tive model necessary to sample forward trajectories in the BAMDP when plan-

ning. Classically, this requires updating the posterior distribution and generating

BAMDP transitions by integrating the corresponding posterior at each simulation

step. Since these operations can only be carried out cheaply for simple prior

distributions, this severely limits the applicability of online planning methods to

Bayesian adaptive control.

In Chapter 3, we propose an algorithm that extends a version of MCTS for

POMDPs (Silver and Veness, 2010) to the BA setting. Since the BAMDP cor-

responding to a Bayesian adaptive control problem can be viewed as a regular,

albeit large or infinite, MDP, the MCTS algorithm can be applied to plan online.

This leads to a non-uniform expansion of the search tree, using the sampled

returns to guide this process. As in the fully-observable case, this enables more

effective tree searches and addresses the first issue. However, we show that a

naive application of MCTS to the BAMDP is not tractable in general, principally

because it does not address the second issue. We propose a set of principled

modifications to obtain a practical algorithm, which is called BAMCP for ‘Bayes-

Adaptive Monte-Carlo Planner’.

We directly address the second issue of intractable BAMDP transitions by relying

on a different trajectory sampling scheme, one that avoids updating the posterior

belief state when simulating future trajectories. Instead, BAMCP relies on a

single MDP sample from the current posterior for each simulation, and leverages

the sampled model to generate all the MDP transitions for that simulation; thus

avoiding repeated applications of Bayes rule. This method was introduced by

Silver and Veness (2010) in the context of POMDPs. We refer to it as root

sampling because MDP samples are only generated at the root of the search

tree; we also generalize the scope of this method in Chapter 5. To increase

computational efficiency further, we introduce an additional innovation: a lazy

I B Bayes-Adaptive Planning B Contrib. 2: Generalizing BAMCP 23

sampling scheme that only samples the variables in the posterior distribution

that are necessary for a given simulation.

Theoretically, we show that BAMCP converges to the Bayes-optimal solution,

thereby establishing that these computational advantages have a principled

foundation. Moreover, we show that this convergence result holds even when

combined with some forms of approximate inference schemes.

Empirically, we show in Chapter 4 that BAMCP consistently and significantly

outperforms existing Bayesian control methods, and also recent non-Bayesian

approaches, on a representative sample of benchmark problems. We also show

that BAMCP can tackle a domain with an infinite number of states and a struc-

tured prior over the dynamics, a challenging, if not radically intractable, task for

existing approaches.

1.2.2 Contribution 2: Generalizing the BAMCP Algorithm

Tree-search methods optimise the policy by maintaining the expected return, or

value, of the current policy at each tree node (each corresponding to a state,

or an augmented state). One major limitation of MCTS, and other tree-search

algorithms, is that they fail to generalize values between related states, as a

separate value is stored for each distinct path of possible interactions. In the

BA case, algorithms like BAMCP fail not only to generalize values between re-

lated paths, but also to fail to reflect the fact that different partial trajectories can

correspond to the same belief about the environment — since data obtained in

different ways may result in the same belief. As a result, the number of required

simulations grows exponentially with search depth. Worse yet, except in very

restricted scenarios, this lack of generalization renders Monte-Carlo search al-

gorithms effectively inapplicable to BAMDPs with continuous state spaces. To

address this problem, we propose in Chapter 5 a class of efficient simulation-

based algorithms for BA planning which use function approximation to estimate

the value of interaction histories during search. This enables generalization be-

tween different beliefs, states, and actions during planning, and therefore also

I B Bayes-Adaptive Planning B Contrib. 3: BA Planning with Rich Models 24

works for continuous state spaces. These algorithms build on the BAMCP algo-

rithm and exploit value function approximation for generalization across trajecto-

ries, similar to simulation-based search algorithms for MDPs (Silver et al., 2012).

As a crucial step towards this end, we develop a suitable parametric form for the

value function estimates that can generalize appropriately across trajectories,

while remaining invariant to partial reorderings that do not modify beliefs.

Experimental results in Chapter 5 demonstrate the viability of the approach in

continuous domains. They also show that value generalization can lead to more

efficient planning even in discrete domains.

1.2.3 Contribution 3: BA Planning with Rich Models

Given all the computational intractibilities, it is not unfair to question whether the

Bayes-adaptive approach actually has any advantage over simpler alternatives.

Indeed, except for certain types of bandit problems, the literature does not con-

tain any real application of such methods, and published examples have been

restricted to domains where BA planning only leads to marginal improvements

over approaches that plan myopically and more cheaply. We believe the lack of

significant improvements arise partly as a result of fully Bayesian planning being

traditionally coupled with simple priors. For it has not hitherto been possible to

exploit more complex forms of prior knowledge to their full extent in a BA setting

due to computational complexity.

Building on our algorithmic contributions, another objective of this thesis is to

demonstrate the practical power of Bayes-adaptive planning in situations where

rich and structured prior knowledge is available. Thus, in Chapter 6, we provide

two sorts of evidence in its favour. First, we consider non-parametric contex-

tual bandit tasks that contain repetitive structure and require careful exploration.

We show that the Bayes-adaptive policy found by our BAMCP algorithm in these

tasks performs dramatically better than myopic forms of planning and varies with

the prior and the horizon to reflect the changing optimization objective. This

case study illustrates the feasibility of propagating complex beliefs forward in an

I B Summary 25

exploration-exploitation setting to determine an appropriate course of action, and

how this results in superior performance compared to more naive or uninformed

exploration strategies. Second, we show that the benefits of Bayesian inference

with rich models can be squandered by more myopic forms of Bayesian plan-

ning (i.e., planning that does not reason about future beliefs). We illustrate these

modes of failure in the tasks described above as well as in a series of counterex-

amples.

1.3 Summary of Contributions

In this thesis, we provide evidence that our contributed algorithms are particularly

well suited to support BA planning in large domains. This allows us to test BA

planning in complex settings (large number of states, continuous-state spaces,

complex priors, relatively long horizons) and witness the significant advantage

that it can have, in terms of maximizing rewards, against more naive exploration-

exploitation approaches. Unsurprisingly, the advantages of BA planning come

at a computational cost which threatens to hinder their applicability. Our general

strategy to mitigate these costs is to rely on sampling in order to reduce the

effective search dimensions and focus on those that matter.

In more general terms, our thesis is that by relying on sample-based

reinforcement-learning methods, Bayes-adaptive planning can be scaled to real-

istically large problems and lead to significant improvement over more heuristic

methods. Thus, while a popular strategy to handle the exploration-exploration

trade-off has been to approximate the problem to be solved in order to obtain

practical algorithms, we show that it is feasible, and desirable, to directly approx-

imate the solution of the original, but intractable, problem. Chapter 7 discusses

how the contributions in this thesis could be extended with further approximation

strategies to deal with even larger, real-world, domains.

II

EXISTING WORK

This chapter reviews existing work that addresses the problem of acting under

model uncertainty in MDPs, with a particular emphasis on Bayesian methods.

First, in Section 2.1 we present the relevant formalisms for decision making as

a whole (bandit, MDP, POMDP, and BAMDP); then, in Section 2.2, we cover

corresponding solution methods (e.g., Dynamic Programming, RL algorithms,

planning algorithms). Finally, in Section 2.3, we review the existing work that

addresses the Bayesian statistical modeling problem for MDPs.

2.1 Problem Types and Formalisms

Although multi-armed bandit problems are special cases of MDPs, presenting

them first (Section 2.1.1) allows us to formalize the critical different notions of

exploration without getting lost in notation. We then present the more general

MDP formulation, along with corresponding objectives for EE in the MDP setting

(Section 2.1.2). As previously mentioned, the Bayesian formulation of the EE

problem corresponds to an augmented MDP, the BAMDP, which we describe in

II B Problem Types B Multi-armed Bandits 27

Section 2.1.3. Finally, in Section 2.1.4, we draw the link between BAMDPs and

Partially-Observable MDPs, the setting where the state is partially observed.

2.1.1 Multi-armed Bandits

A multi-armed bandit problem is composed of A different slot machines. Pulling

the arm of the a-th machine results in a random reward drawn from a distribution

H(θa) parametrized by θa and with mean µa(θa) associated with that machine.

The payoff sequence for a single arm is formed of identically distributed draws

from H(θa), thus the arms are stateless. The agent chooses an arm at every

step so, if the payoff parameters are known, the agent can act optimally by simply

pulling the arm a∗ with the highest expected payoff, a∗ = argmaxa∈A µa(θa), at

every step.1 Furthermore, the payoff from arms that are not selected on a step

are not revealed to the agent. For example, in Bernoulli bandits, H is simply the

Bernoulli distribution, with its parameter θa = µa being the probability of success

for arm a. Success corresponds to a payoff of 1, and the payoff is 0 otherwise.

For the adaptive control problem, it is assumed that θ = [θ1 . . . θA] is a hidden, or

unknown, variable. Bandit problems do not have the complexity of more general

sequential decision tasks since decisions do not have long-term consequences

(as the system is stateless, only the state of knowledge changes when pulling an

arm). Despite their apparent simplicity, they present many of the complex issues

of exploration-exploitation that appear in more general settings, and their study

is still an active research area.

Thompson (1933) first introduced a bandit problem with two arms and Bernoulli

distributions, motivating it as a decision model to select medical treatments. Rob-

bins (1952) extended the model to more general payoff distributions and showed

that a control law, or allocation rule, could be designed that is guaranteed (with

probability 1) to find the best arm (highest mean) in the limit of infinitely many

interactions.

Rather than only expecting asymptotically optimal behavior, Lai and Robbins
1To simplify notation, we assume there is a unique best arm.

II B Problem Types B Multi-armed Bandits 28

(1985) considered minimizing the rate of growth of the regret (the difference be-

tween the expected total payoff obtained by a strategy and the best possible

achievable total payoff if the identity of the best arm had been known). In that

evaluation scheme, all rewards are accounted for, but the regret is usually an

undiscounted notion (i.e., later losses count as much as early losses). To formal-

ize this notion, let Π̃ be the set of possible adaptive strategies, where each such

policy π̃ ∈ Π̃ is a map from an observed history of past arm pulls and obtained

rewards h = a1r1a2r2 . . . at−1rt−1 (i.e., all the existing data) to the next action at,

π̃ : H → [1, . . . A], with H the set of possible observation sequences. Then, the

expected regret for policy π̃ after n steps in the bandit problem described by θ is:

∆(θ, π̃, n) := nµa∗ − E

[
n∑

m=0

Rm | π̃

]
, (2.1)

where Rm is the random reward obtained at the m-th trial. Lai and Robbins

(1985, Theorem 1) proved that, for any configuration θ of the arms, the regret of

an adaptive policy π̃ (satisfying some minimum efficiency condition) in a bandit

problem is lower-bounded asymptotically:

lim
n→∞

inf ∆(θ, π̃, n) ≥ log(n)
∑
a6=a∗

µa∗ − µa
KL(H(θa)||H(θa∗))

, (2.2)

where KL(H(θ1), H(θ2)) denotes the Kullback-Leibler divergence between the

reward distributions parametrized by θ1 and θ2. In regret-based methods, the

agent competes against the strategy that always pulls the best arm, with an av-

erage payoff of µa∗ per time-step. To achieve a sub-linear regret as a function of

n, the agent must asymptotically only pull a∗. Finding the identity of a∗ requires

the agent to pull all arms (explore), but the agent must be careful to avoid fre-

quently pulling arms that are almost certainly sub-optimal (i.e., different than a∗)

since this increases the regret (exploit). The stochasticity of the feedback (suc-

cess or failure for Bernoulli bandits) means the agent will never be completely

certain of the identity of a∗; therefore it must continue to explore for all finite n.

Exploration does not have to be uniform across arms, finding an efficient way

to allocate exploration between arms is necessary to obtain a competitive regret

II B Problem Types B MDPs 29

rate.

Bellman (1956) adopted a Bayesian approach to the 2-armed Bernoulli bandit

problem, leading to an adaptive control process that could be solved with dy-

namic programming. Here, the Bayesian agent assumes each θa is drawn from

a Beta prior: θa ∼ Beta(αa, βa) for each a, where αa and βa are hyperparam-

eters. The arm that maximizes the expected sum of discounted future payoffs

given the current posterior distribution P ({θa} | h) is selected at each step. This

pushes the Bayesian agent to explore and exploit by following its prior. In do-

ing this, it may ignore arms believed to be inferior, even if they turn out to be

objectively superior. Gittins and Jones (1974) generalized this Bayesian bandit

problem to cover a larger class of payoff distributions and essentially solved the

Bayesian formulation of the bandit problem, as we will describe in the section on

solution methods (Section 2.2).

More recently, bandit problems have been extended to allow for continuous se-

lection of arms (Kleinberg, 2004), a problem related to stochastic optimization,

or to incorporate a context that influences the return of the arms (Langford and

Zhang, 2007). We will be covering a form of contextual bandit problem in a

Bayesian setting in Chapter 6.

2.1.2 Markov Decision Processes

Markov Decision Processes (MDP) constitute a popular and mature formalism

for sequential decision making. The Markov assumption underlying each pro-

cess says that the outcome of an action in a state is independent of past states

and actions. Formally, a discrete-time infinite-horizon Markov Decision Process

is described as a 5-tuple M = 〈S,A,P,R, γ〉, where S is the set of discrete

states, A is the finite set of actions, P : S × A× S → [0, 1] is the state transition

probability kernel, R : S×A→ R is a bounded reward function, and γ < 1 is the

discount factor (Puterman, 1994).

A deterministic stationary MDP policy π is defined as a mapping π : S → A

from states to actions. Although optimal policies in MDPs are generically de-

II B Problem Types B MDPs 30

terministic, it is sometimes useful to consider more general stochastic policies

π : S×A→ [0, 1] — it should be clear from context whether we are referring to a

deterministic or stochastic policy. The value function of a policy π at state s ∈ S

is its expected (discounted) return, defined as:

V π(s) := E

[∞∑
t=0

γtrt | s0 = s, π

]
, (2.3)

where rt is the random reward obtained at time t when following policy π from

state s — E denotes the expectation operator that averages over all possible

paths that policy π implies. V π is the solution of an associated Bellman equation:

V π(s) =
∑
a∈A

π(s, a)

[
R(s, a) + γ

∑
s′∈S
P(s, a, s′)V π(s′)

]
∀s ∈ S. (2.4)

A related quantity is the action-value function of a policy π for executing a partic-

ular action a ∈ A at state s ∈ S before executing π:

Qπ(s, a) := R(s, a) + γ
∑
s′∈S
P(s, a, s′)E

[∞∑
t=1

γt−1rt | s1 = s′, π

]
(2.5)

= R(s, a) + γ
∑
s′∈S
P(s, a, s′)V π(s′) ∀s ∈ S, ∀a ∈ A, (2.6)

implying the relation V π(s) =
∑

a π(s, a)Qπ(s, a). Finding V π, or Qπ, is referred

to as the policy evaluation, or prediction, problem. A policy corresponding to a

particular Q function, that is a policy that selects π(s) = argmaxa∈AQ(s, a), is

called greedy with respect to Q.

The optimal action-value function, denoted Q∗, provides the maximum expected

return Q∗(s, a) that can be obtained after executing action a in state s. It satisfies

the Bellman optimality equation:

Q∗(s, a) = R(s, a) + γ
∑
s′∈S
P(s, a, s′) max

b∈A
Q∗(s′, b) ∀s ∈ S, ∀a ∈ A. (2.7)

The optimal value function, V ∗, is similarly defined and is related to Q∗ as

V ∗(s) = maxa∈AQ
∗(s, a). An optimal policy π∗ achieves the maximum ex-

II B Problem Types B MDPs 31

pected return from all states, and can be obtained from Q∗ as: π∗(s) =

argmaxa∈AQ
∗(s, a), breaking ties arbitrarily.

Undiscounted Formulations

We may also consider undiscounted MDPs (γ = 1) in a finite-horizon setting with

few changes to the notation, since a finite-horizon MDP can be transformed into

a infinite-horizon MDP with an additional state component for the current time

and with a terminal state where the agent stays foreover without accruing any

rewards.

The undiscounted setting combined with an infinite horizon needs to be treated

differently simply because the expected return might turn into an infinite sum of

rewards. One way around this issue is to look at the average reward per step (or

gain) of a policy π from a state s:

ρπ(s) := lim
T→∞

E
[∑T

t=0 rt | s0 = s, π
]

T
. (2.8)

In ergodic MDPs, there is a limiting state distribution independent of the start

state which implies that the average reward of a policy will be the same for all

states; we can then drop the dependence on s and write ρπ := ρπ(s) for any

s.2 The optimal average reward is denoted ρ∗(s) := supπ ρ
π(s); we only need

the weaker condition that all pairs of states are reachable with some positive

probability under some policy (i.e., we need the MDP to be communicating) to

drop the dependence on s for the optimal reward rate.

Optimizing ρπ leads to gain-optimal policies, but gain-optimality is not a satisfying

notion of optimality in itself. Many policies can attain the optimal average reward

rate ρ∗, yet they may take an arbitrarily long time to reach it since there is no

pressure in this objective to quickly converge to the asymptotic rate (Howard,

1960; Schwartz, 1993). Therefore, it is desirable to also optimize the transient
2An MDP is ergodic if the Markov chain induced by any policy is ergodic. An ergodic Markov

chain is one that is recurrent and aperiodic, meaning that every state will be visited infinitely often
without any particular period.

II B Problem Types B MDPs B Objectives for EE in MDPs 32

part of the policy; and one option is to consider the differential value of a policy:

Dπ(s) := lim
T→∞

E

[
T∑
t=0

(rt − ρπ) | s0 = s, π

]
, (2.9)

the average-adjusted expected sum of rewards when running the policy from

state s, which expresses the bias value of starting in s against other states (Ma-

hadevan, 1996; Schwartz, 1993). A policy π∗b is then bias-optimal if 1) ρπ
∗
b = ρ∗

(i.e., it is gain-optimal) and 2) Dπ∗b (s) ≥ Dπ(s) for all s ∈ S and all policies π ∈ Π.

As for the discounted case, we can derive Bellman equations from the differential

value definition. It is worth noting that, for ergodic MDPs, the discounted optimal

policy converges to the bias-optimal policy as γ → 1 (Tsitsiklis and Van Roy,

2002).

Continuous state spaces

MDPs can also be defined more generally with continuous state spaces S, such

as S ⊆ Rn . Summations over states in the equations above need to be re-

placed by integration over the state space, and probability mass functions need

to be replaced with probability densities (under some technical conditions, see

Puterman (1994, Section 2.3) for details).

2.1.2.1 Objectives for Exploration-Exploitation in MDPs

When the model of the dynamics (P) or rewards (R) is unknown or only partially

known, the agent may still interact with the system and can learn to optimize

its behavior over time. In the special case of bandit problems (Section 2.1.1),

optimizing the behavior amounts to searching the most rewarding arm. In MDPs,

optimizing the behavior requires looking for a rewarding policy. While an arm can

be (stochastically) evaluated in bandits in a single step, policies require many

steps of interaction to be evaluated in an MDP. A link to the bandit setting can be

drawn if we consider testing a given policy as a macro-action. The macro-action

is to commit to a given policy in Π for a full episode. By executing a selected

II B Problem Types B MDPs B Objectives for EE in MDPs 33

policy π ∈ Π and by adding all the rewards along the policy’s trajectory, we can

obtain an estimate of the mean return V π — just like selecting an arm gets us

an estimate of the mean payoff in bandits. The EE problem then becomes a

bandit problem with each arm corresponding to a different policy (Deisenroth

et al., 2013; Goschin et al., 2012); however, due to the huge number of possible

policies, it is restrictive and can be costly to only rely on these macro-actions to

act under model uncertainty.

Since the agent is continuously learning about the dynamics from its interaction

with the MDP, we do not want its behavior policy to be stationary. In general,

the learning policy at time step t depends, in addition to the current state, on the

history ht = s0a0r0s1a1r1 . . . st−1at−1rt−1st of past states, actions, and rewards,

which contains all the information that the agent has observed about P and R.3

Therefore, we can write the policy of the agent during learning as π̃ : S×H → A

(or more generally π̃ : S×H×A→ [0, 1] for stochastic policies), whereH denotes

the set of possible histories. Π̃ denotes the set of all history-dependent policies,

we will sometimes refer to them as adaptive policies or exploration-exploitation

(EE) policies.4

We would now like to quantify the policies in Π̃ in terms of their desirability for

the adaptive control problem. As we discussed in more general terms in the in-

troduction, there are different ways to proceed. We formalize different objectives

in the context of MDPs in this section, including the Bayesian objective which is

the focus of this thesis.
3The redundancy in the state-history notation throughout this thesis, namely that the current

state could be extracted from the history, is only present to ensure clarity of exposition.
4Because of its history dependency, in general an EE policy is a non-stationary policy as a

function of the state.

II B Problem Types B MDPs B Objectives for EE in MDPs 34

Non-Bayesian Objectives

— PAC-MDP

One possible demand we might have for an exploration policy is that it produces

a near-optimal policy after a small number of steps in the environment, without

accounting for rewards during the learning period. In other words, we want to

minimize the number of steps from which the adaptive policy does not achieve

a near-optimal return on average, a constraint which also limits the number of

suboptimal actions. To formalize the notion of unaccounted learning steps, we

define the sample complexity of an exploration policy in Definition 1.

Definition 1 (Adapted from Kakade (2003)) Let ht =

s0a0r0s1a1r1 . . . st−1at−1rt−1 be a random path generated by executing a

policy π̃ in an MDP M . For any ε > 0, the sample complexity (of exploration)

of π̃ is the number of timesteps t such that the return of the non-stationary

policy π̃ from step t is not ε-optimal in M from the current state. Formally, let

VM (ht; π̃) be the expected discounted return of policy π̃ in the true MDP from

step t onwards (after having observed ht), then the sample complexity is the

number of time steps for which πt satisfies VM (ht, π̃) < V ∗M (st)− ε.

One way to formalize the objective of low sample complexity is to require the

sample complexity to be polynomial in the parameters of the problem with some

probability. This is described formally in Definition 2.

Definition 2 (Adapted from Strehl et al. (2006)) An algorithm A (inducing an

exploration policy π̃) is said to be PAC-MDP (Probably Approximately Correct

in Markov Decision Processes) if, for any ε > 0 and 0 < δ < 1, the sample

complexity is less than some polynomial in the quantities {|S|, |A|, 1/ε, 1/δ, 1/(1−

γ)} with probability at least 1− δ.

This notion of PAC-MDP has to hold for every MDP the algorithm encounters,

therefore algorithms that satisfy the PAC-MDP property usually rely on large

deviation bounds (e.g., the Chernoff bound) to guarantee enough confidence in

II B Problem Types B MDPs B Objectives for EE in MDPs 35

their estimates. Instead of expecting to perform well in every MDP equally, one

can consider a prior over MDPs and tailor the PAC statement to that prior, so that

bad performance in a rare MDP will be absorbed by the probabilistic nature of the

performance statement (Mannor and Tsitsiklis, 2004). The PAC-MDP objective

can also be defined for the undiscounted setting (Kakade, 2003). More details

on PAC-MDP methods can be found in a recent review of PAC analysis in finite

MDPs (Strehl et al., 2009).

— Regret

Another way to rank policies in Π̃ is to consider their regret. The undiscounted

sum of rewards gathered in T time steps by an exploration policy π̃ in an MDP M

starting from state s is denoted by the random variable X(M, π̃, s, T) =
∑T

t=1 rt,

and the expected average reward of these T steps is simply E[X(M, π̃, s, T)]/T .

As T grows to infinity, we obtain the previously defined average reward (in the EE

setting, we make explicit the dependence on the underlying MDP M) ρπ̃(M, s) =

limT→∞ E[X(M, π̃, s, T)]/T and optimal average reward ρ∗(M) = ρ∗(M, s) =

maxπ̃∈Π̃ ρ
π̃(M, s). Using this notation, as for bandit problems, we can now define

the total regret of an exploration policy in Definition 3.

Definition 3 (Adapted from Jaksch et al. (2010)) The total regret of an ex-

ploration policy π̃ in an MDP M after T steps from state s is defined as

∆(M, π̃, s, T) = Tρ∗(M)−X(M, π̃, s, T).5

The total regret provides an objective to minimize; the quality of a given algorithm

(inducing an exploration policy) is usually presented as an upper bound on the

expected regret rate. The expectation may be taken only over the stochasticity

of the interaction, or may be amortized over a prior over MDPs (Osband et al.,

2013). Sublinear growth in the regret implies that the adaptive control converges

asymptotically to the performance of the optimal policy for the underlying MDP.

As for the bandit setting, it is possible to prove lower bounds on the regret of any
5If we set π̃ = π∗ (the optimal policy if we knew the MDP), then the limit of the expected total

regret simply corresponds to the differential value of π∗ as defined in Equation 2.9.

II B Problem Types B MDPs B Objectives for EE in MDPs 36

EE policy (Jaksch et al., 2010, Theorem 5), in the sense that for any EE policy

there exists an MDP for which the expected regret of that policy is greater than

that lower bound.

Bayesian Objectives

In the Bayesian formulation of optimal behavior in an uncertain MDP, the

Bayesian agent starts with a prior belief over the dynamics P (P,R) of the MDP

M and selects actions so as to maximize its expected discounted return for

an infinite-horizon setting with respect to this prior. Since uncertainty about re-

wards can in most cases be transformed into uncertainty about dynamics — by

adding states that are rewarded differently — we will assume R is known and

so the prior belief is simply written as P (P). Formally, given S, A, R, γ, we de-

fine the expected discounted return J(q, π̃) starting from a start-state distribution

q : S → [0, 1] when following an adaptive policy π̃ ∈ Π̃ as:

J(q, π̃) := E

[∞∑
t=0

γtrt | q, π̃

]
(2.10)

=
∑
s∈S

q(s)

∫
P
P (P)E

[∞∑
t=0

γtrt | s0 = s, π̃,M(P)

]
dP, (2.11)

where M(P) is the MDP 〈S,A,P,R, γ〉. The task is then to find π̃ that maximizes

J(q, π̃) for a starting state distribution q. This is the Bayesian stochastic adaptive

control problem formulated in the language of the MDP formalism.

If the state space is finite, a maximizing adaptive strategy exists, as is made

clear in the following statement.

Definition 4 Given S (finite), A, R, γ, and a prior distribution P (P) over the

dynamics of the MDP M , define the optimal return as

J∗(q) = sup
π̃∈Π̃

J(q, π̃). (2.12)

Martin (1967, Thm. 3.2.1) shows that there exists an EE policy π̃∗ ∈ Π̃ that

II B Problem Types B MDPs B Objectives for EE in MDPs 37

achieves that expected return (i.e., J(q, π̃∗) = J∗(q)) for every q. Any such EE

policy π̃∗ is called a Bayes-optimal policy.6

While there sometimes does not exist a policy that attains the optimal return

(when the sup in Equation 2.12 is not attained in some infinite state spaces), for

any ε > 0 there always exists at least one near-Bayes-optimal policy π̃∗ε such that

J(q, π̃∗ε) > J∗(q) − ε for every q (Bertsekas and Shreve, 1978). For clarity and

since this does not have an impact on our work, we will abuse the nomenclature

and refer to any such near-Bayes-optimal policy as Bayes-optimal for a suitably

small ε (e.g., numerical error), and drop the ε subscript in π̃∗ε .

The choice of the discount factor can greatly affect the optimal adaptive behav-

ior since it plays the crucial role of arbitrating the relative importance of future

rewards. In general, a low γ does not warrant much exploration because future

exploitation will be heavily downweighted. The opposite is true as γ → 1.

Since we are maximizing the expected discounted return in the Bayesian setting,

it is by definition an optimization problem. Unlike the PAC-MDP or regret frame-

work, the objective function prescribes a natural recipe — albeit intractable —

to compute the desired optimal adaptive behavior. Indeed, as Bellman originally

realized, one can consider a completely-observed surrogate MDP, now referred

to as the Bayes-Adaptive MDP, to reframe this optimization problem; we detail

its construction and some of its properties in the following section.

— Bayesian Average Case

It is also possible to consider an average, rather than discounted, reward ob-

jective in a Bayesian setting. One naive objective is to look for EE policies that

optimize their average reward rate according to the following objective:

Ja(q, π̃) :=
∑
s

q(s)ρπ̃(s), (2.13)

6It is worth mentioning that the concept of the Bayes-optimal policy in statistics is the Bayes
procedure, the strategy that minimizes the Bayes risk (the negative expected return of the strat-
egy) and chooses Bayes actions. Usually the setting is more constrained than can be expressed
with MDPs — it focuses on stopping-like problems.

II B Problem Types B BAMDPs 38

where ρπ̃ is defined as in Equation 2.8 — the expectation now also integrates

over possible models according to the prior. However, as pointed out by Ku-

mar (1985), any policy π̃ that eventually self-optimizes (i.e., ultimately achieves

the optimal average reward rate for the true MDP) would be optimal. These self-

optimizing policies (any EE policy achieving sublinear regret would suffice) would

be optimal in this Bayesian setting irrespective of the prior; therefore the objec-

tive Ja does not appear to be desirable. As for MDPs, we can instead further

constrain the EE policy to be bias-optimal through the following objective:

Jb(q, π̃) := E

[∞∑
t=0

(rt − ρ∗) | q, π̃

]
, (2.14)

under some technical conditions to ensure the existence of this objective. This is

essentially a Bayesian view on minimizing regret, where the regret minimization

is informed by a prior, which could also be addressed with an augmented MDP.

However, to the best of our knowledge, this objective has not been explicitly

considered before in the literature, which has largely focused on discounted (or

finite-horizon) problems. In this thesis, we will also focus on the discounted case,

but we will discuss the average case again in the last chapter.

2.1.3 Bayes-Adaptive Markov Decision Processes

Given that the dynamics P ∈ P, where P is the set of all possible models, are only

incompletely known, a Bayesian agent treats them as a latent random variable

which follows a prior distribution P (P). Observations about the dynamics con-

tained in the history ht (at time t) of actions and states: ht = s1a1s2a2 . . . at−1st,7

duly lead to a posterior distribution over P via a likelihood. After observing his-

tory ht from the MDP, the posterior belief over P is updated using Bayes’ rule:

P (P | ht) ∝ P (ht | P)P (P), (2.15)

or in recursive form P (P | ht) ∝ P(st−1, at−1, st)P (P | ht−1).
7Here, the reward function is assumed known so we can leave rewards out from the history.

II B Problem Types B BAMDPs 39

The return of an EE policy π̃, J(q, π̃), depends implicitly on the prior distribution

P (P), which can be thought of as the generative model for the dynamics. The

objective J only captures the return from the start-state distribution when no

data has been observed. It is also useful to consider the return of π̃ for other

distributions corresponding to posterior distributions P (P | h) and for a start-

state distribution centered at some particular state s; we denote this quantity as

V π̃(s, h):

V π̃(s, h) := E

[∞∑
t=0

γtrt | s0 = s, h0 = h, π̃

]
(2.16)

=

∫
P
P (P | h)E

[∞∑
t=0

γtrt | s0 = s, h0 = h, π̃,M(P)

]
dP, (2.17)

As a special case, the return of policy π̃ from a degenerate start-state distribution

qs0 is J(qs0 , π̃) = V π̃(s0, ∅), where qs0(s0) = 1 and qs0(s) = 0 for s 6= s0.

The inner expectation in Equation 2.17 corresponds to the return of applying the

EE policy π̃ (which depends internally on an evolving history starting from h) in

a particular MDP M(P) from state s. Since it will come in handy in the next

derivation, we introduce the shorthand notation for this term:

W (s, h, π̃,P) := E

[∞∑
t=0

γtrt | s0 = s, h0 = h, π̃,M(P)

]
. (2.18)

Notice that the time-indices in the summation need not correspond to absolute

time, since the result of applying a particular policy in an MDP only depends on

the state from the Markov property. Another useful relation to derive the Bayes-

Adaptive MDP follows from Bayes’ rule:

P (P|has′) =
P (s′|ha,P)P (P|h)∫

P P (P|h)P (s′|ha,P)dP
(2.19)

=
P (s′|s, a,P)P (P|h)∫

P P (P|h)P (s′|s, a,P)dP
(2.20)

=
P(s, a, s′)P (P|h)∫

P P (P|h)P(s, a, s′)dP
(2.21)

=
P(s, a, s′)P (P|h)

P̄(s, a, s′, h)
, (2.22)

II B Problem Types B BAMDPs 40

where P̄(s, a, s′, h) ≡
∫
P P (P|h)P(s, a, s′)dP denotes the normalization con-

stant, expressing the marginal probability of transitioning from state s to s′

after executing a under a distribution of dynamics P (P|h). Note also that

P(s, a, s′) = P (s′|s, a,P) by definition of P. Hence, we straightforwardly obtain

the relation:

P(s, a, s′)P (P|h) = P̄(s, a, s′, h)P (P|has′). (2.23)

We are now in a position to describe a dynamic programming solution to the

issue of optimizing π̃. The key observation is that we can expand and reformulate

the expression for the return V to obtain the following recursive relation:

V π̃(s, h) = E

[∞∑
t=0

γtrt |s0 = s, h0 = h, π̃

]

=

∫
P
P (P |h)W (s, h, π̃,P)dP

=

∫
P
P (P |h)

∑
a∈A

π̃(s, h, a)

(
R(s, a)+γ

∑
s′∈S
P(s, a, s′)W (s′, has′, π̃,P)

)
dP

=
∑
a∈A

π̃(s, h, a)

(
R(s, a)+γ

∑
s′∈S

∫
P
P (P |h)P(s, a, s′)W (s′, has′, π̃,P)dP

)

=
∑
a∈A

π̃(s, h, a)

(
R(s, a)+γ

∑
s′∈S
P̄(s, a, s′, h)

∫
P
P (P |has′)W (s′, has′, π̃,P)dP

)

=
∑
a∈A

π̃(s, h, a)

(
R(s, a)+γ

∑
s′∈S
P̄(s, a, s′, h)V π̃(s′, has′)

)
, (2.24)

where we have used definitions and Equation 2.23. This is essentially a Bellman

equation in which we know all of the components.

Equation 2.24 makes clear that the uncertainty about the dynamics of the model

can be transformed into certainty about the current state inside an augmented

state space S+. These augmented states are also called hyperstates. For

this hyperstate to be Markovian, we need it to contain information to compute

P̄(s, a, s′, h). Namely, it needs to contain information about the current state in

addition to sufficient statistics for the current posterior distribution. In particular,

the full history ht is not needed if the posterior distribution can be described fully

II B Problem Types B BAMDPs 41

using lower-dimensional sufficient statistics θt that can be updated at each time

step (i.e., P (P | ht) = P (P | θt)). This means different histories h and h′ may

correspond to the same hyperstate if P (P | h) = P (P | h′). In order to keep the

notation general, we will write the augmented space as S+ = S × H, where S

is the state space in the original problem and H is the set of possible histories.

Nevertheless, the results in the rest of this section apply for any augmented state

space where the history is compressed to sufficient statistics of the belief.

The dynamics associated with this augmented state space are described by

P+(〈s, h〉, a, 〈s′, h′〉) = 1[h′ = has′]

∫
P
P(s, a, s′)P (P | h) dP . (2.25)

The reward function is simply the projected reward function in the original MDP:

R+(〈s, h〉, a) = R(s, a). (2.26)

Together, the 5-tuple M+ = 〈S+, A,P+,R+, γ〉 forms the Bayes-Adaptive MDP

(BAMDP) for the MDP problem M (Duff, 2002). Denote by Π+ the set of policies

in M+, in other words π+ : S+ × A → [0, 1] for π+ ∈ Π+. In general, since

the augmented state space may be smaller than the set of histories, we have

Π+ ⊆ Π̃.

Since the dynamics of the BAMDP are known, it can, in principle, be solved to

obtain the optimal value function associated with each action:

Q∗(〈st, ht〉, a) = max
π+∈Π+

E

[∞∑
t′=t

γt
′−trt′ | at = a, s+

t = 〈st, ht〉, π+,M+

]
(2.27)

from which the optimal action for each state can be readily derived. Optimal

actions in the BAMDP are executed greedily in the real MDP M and constitute

the best course of action for a Bayesian agent with respect to its prior belief over

P. The following statements clarify the relation between general history policies

and BAMDP policies.

Proposition 1 (Bertsekas and Shreve, 1978; Martin, 1967) Let S,A, γ,R and

II B Problem Types B BAMDPs 42

P (P) define a Bayesian adaptive control problem.

i) For any policy π̃ ∈ Π̃, there exists π′ ∈ Π+ such that V π̃(s, h) = V π′(s+),

where s+ is the hyperstate when h has been observed in state s (s+ = 〈s, h〉 in

our notation). In particular, π′ satisfies J(q, π̃) = J(q, π′) for any q.

ii) A deterministic optimal policy of the BAMDP performs as well as the Bayes-

optimal policy, as defined in Definition 4 (When the Bayes-optimal policy does

not exist, then, for any ε > 0, there exists a deterministic policy π′ ∈ Π+ such

that J(q, π′) ≥ J∗(q)− ε for all starting state distributions q).

[see Bertsekas and Shreve (1978, Theorem 2.1) for technical assumptions and

statements.]

This shows that we are not losing anything by only considering and optimizing

EE policies in the BAMDP, i.e. EE policies that are a function of the hyperstate.

So we will call the optimal policy in the BAMDP the Bayes-optimal policy, and we

will not insist on the distinction between Π+ and Π̃ — only Π̃ will be used.

It is obvious that the expected performance of the Bayes-optimal policy in the

MDP M is bounded above by that of the optimal policy obtained with a fully-

observable model, with equality occurring, for example, in the degenerate case

in which the prior only has support on the true model. We can bound the value

of π̃∗ more generally as lying inbetween the average value of an overall best

state-policy applied to all MDPs and the average value of the best state-policy

for each MDP (Van Hee, 1978):

max
π∈Π

∫
P (P | h)V π

P (s)dP ≤ V ∗(〈s, h〉) ≤
∫
P (P | h)V

π∗(P)
P (s)dP, (2.28)

for any s and h, where V π
P is the value function of the policy π ∈ Π in the MDP

with dynamics P and V
π∗(P)
P is the value function of the optimal policy for the

MDP with dynamics P.

The Bayes-optimal policy is stationary as a function of the augmented state, but

evolves over time when observed in the context of the original MDP — as a

function of the state in S only. Since the uncertainty about the dynamics is taken

II B Problem Types B BAMDPs B PAC-BAMDP 43

into account in the optimization of the return, the Bayes-optimal policy integrates

exploration and exploitation optimally. It is worth noting that even though we

refer to exploration and exploitation, actions are rarely actually labeled with one

or the other in this Bayesian setting, it is only an interpretation for actions whose

consequences are more uncertain (explore) or more certainly valuable (exploit).

2.1.3.1 PAC-BAMDP

An approximation to Bayes-optimality introduced by Kolter and Ng (2009), and

later refined by Araya-López et al. (2012) leverages the PAC-MDP formulation to

express a near-Bayesian property after a finite time. Instead of comparing the

performance of the EE policy π̃ against the optimal MDP policy π∗ in a given

environment, as in the PAC-MDP framework, π̃ is compared against the Bayes-

optimal policy π̃∗ under a Bayesian evaluation. The resulting property for an

exploration policy is called the PAC-BAMDP property, it is formally stated below.

Definition 5 (Adapted from (Araya-López et al., 2012)) An algorithm A (induc-

ing an exploration policy π̃) is said to be PAC-BAMDP (Probably Approximately

Correct in Bayes-Adaptive Markov Decision Processes) if, for any ε > 0 and

0 < δ < 1, we have that V π̃(st, ht) > V ∗(st, ht) − ε for all but a polynomial num-

ber of steps in the quantities {|S|, |A|, 1/ε, 1/δ, 1/(1− γ)} with probability at least

1− δ.

PAC-BAMDP algorithms need not be PAC-MDP since they are evaluated as a

function of the belief (Kolter and Ng, 2009). According to Asmuth (2013), the

motivation behind the PAC-BAMDP objective is to provide a mechanism to trade-

off computational complexity against sample complexity, namely by allowing the

planning algorithm to take suboptimal decisions (reducing the computational de-

mand) for a polynomial number of steps (increasing the sample complexity).

However, there is no guarantee that a PAC-BAMDP algorithm produces an EE

policy π̃ that is near-optimal with respect to our Bayesian objective J(q, π̃), since

the sub-optimal decisions may occur for all the steps that matter under the hori-

II B Problem Types B POMDPs 44

zon defined by γ.

We now turn to a setting that generalizes Bayesian adaptive control in MDPs,

namely Partially Observable Markov Decision Processes.

2.1.4 Partially-Observable Markov Decision Processes

When the state of the MDP is not fully observed, but the MDP is known includ-

ing the dynamics P, we obtain a Partially Observable MDP (POMDP) (Astrom,

1965). In addition to the components of an MDP tuple 〈S,A,P,R, γ〉, a POMDP

also contain a set of observations O and a known observation function Z(o | s)

capturing the probability of observing an observation o ∈ O while in state s. Like

the BAMDP for Bayes-adaptive control, a belief-MDP exists for POMDPs where

the augmented state is the belief over states and whose optimal policy is the

best course of action in the POMDP, it balances information-gathering actions

to reduce state uncertainty with more exploitative actions and maximizes the

expected discounted return.8

In the POMDP setting, at time t, the agent receives an observation ot ∈ O

from the current state st according to Z. The agent maintains a belief about

the current state bt(s|h̄t) = P (st = s|h̄t), where h̄t is the history of actions and

observations until time t, ht = a1, o1, . . . at, ot. The agent may start from a fully

observed initial state, but the uncertainty over the states can grow over time if

observations are insufficiently informative to disambiguate the state. The agent

must combine two sources of information to update its belief, the observation

likelihood and the known dynamic model for states:

bt+1(s′|h̄t+1) = P (st+1 = s′ | ht, at, ot+1) ∝
∑
s

bt(s|h̄t)P(s, a, s′)Z(ot+1 | s′).

(2.29)

Just as for the BAMDP (Equation 2.24), the Bellman equation for the belief-MDP
8Confusingly, the semantics of the formalism and corresponding augmented MDP is different

for POMDPs: the POMDP is the formal setting and the belief-MDP is the name of the augmented
MDP. In Bayes-adaptive control, it is the augmented MDP that is called BAMDP.

II B Problem Types B POMDPs 45

is:

V π̄(h̄) =
∑
a∈A

π̄(h̄, a)
∑
s∈S

b(s|h̄)

(
R(s, a) + γ

∑
o∈O

∑
s′∈S
P(s, a, s′)Z(o | s′)V ∗(h̄ao))

)
,

(2.30)

where π̄ is a policy mapping state-beliefs (parametrized here by h̄) to actions.

Here, the augmented state consists of the belief over states, or any sufficient

statistics thereof. As for the BAMDP, nothing is lost by considering policies based

on these augmented states rather than general history policies. In just the same

way that we obtained P+ from Equation 2.24, the augmented dynamics can be

obtained from Equation 2.30: the probability of going from h̄ to h̄ao by performing

action a is
∑

s b(s|h̄)
∑

s′ P(s, a, s′)Z(o | s′).

The similarities between the BAMDP and the POMDP’s belief-MDP are not co-

incidental, the BAMDP is in fact a particular form of a POMDP’s belief-MDP. The

underlying state space of this POMDP is S×P (recall that P is the set of all possi-

ble models). The second component of the state space is static and hidden, and

partially observed through experienced transitions. Planning can be conducted

in the belief space, allowing decisions to be taken in the light of their likely out-

comes in gathering exploitable information about the hidden state. In the case of

BAMDP, such actions gather information about the hidden model P, and uncer-

tainty can only decrease since the hidden model is assumed static. However, the

POMDP is not a discrete POMDP since its state space is continuous (with dis-

crete observations) — because the state contains transition probabilities. Equa-

tion 2.30 makes clear that if S (and O) are finite (i.e., a discrete POMDP), then

computing transitions in the POMDP’s belief-MDP only requires a summation

rather than an integral in the case of the BAMDP (Equation 2.25). Continuous

POMDPs are much less studied (Porta et al., 2006), therefore, as pointed out by

Duff (2002), many classical solutions to POMDPs cannot be directly applied to

the BAMDP.

Lastly, it is possible to combine the ideas behind POMDPs and BAMDPs to con-

sider a setting where both the state and the dynamics are partially observed, giv-

ing rise to a Bayes-Adaptive Partially-Observed MDP (BAPOMDP) (Ross et al.,

II B Solution Methods 46

2011), a complex and poorly-explored problem.

2.2 Solution Methods

We now turn to solution methods for the different decision problems we pre-

sented. First, we review how to address bandit problems in Section 2.2.1. We

treat bandits separately since there exists specific bandit strategies that reflect

their special structure. We then look at the solution methods for more general

MDPs in Section 2.2.2. This leads us to consider solutions to POMDPs and

BAMDPs in Sections 2.2.3-2.2.4 to treat the partial observability in a Bayesian

way. We will see that solutions for BAMDPs rely heavily on solution methods for

MDPs, and sometimes borrow elements from strategies invented for bandits and

POMDPs.

2.2.1 Bandits

We first review regret-minimizing strategies, followed by the bandit strategies for

the Bayesian setting. A large class of solutions, called index-based allocation

policies, assign an index to each arm and select the arm with the largest index

to play at each turn. Choosing the index assigned to each arm depends on the

nature of the bandit problem and the EE objective, and may not be straightfor-

ward to compute.

2.2.1.1 Regret-based Strategies

When introducing the concept of regret, Lai and Robbins (1985) provided index-

based allocation policies that achieve the asymptotic regret lower bound for ban-

dits (Equation 2.2). These policies use a particular form of index that represents

an upper confidence bound on the mean payoff of each arm in the following

sense: the index for arm a can only be smaller than the mean payoff µa with a

probability that scales as 1
n , and the index cannot decrease when the arm is not

II B Solution Methods B Bandits B Regret-based Strategies 47

played. Agrawal (1995) later called policies that satisfies these conditions Up-

per Confidence Bound (UCB) policies and refined the results of Lai and Robbins

(1985); in particular, providing policies that are easier to compute. Indepen-

dently, Kaelbling (1993) introduced the Interval Estimation algorithm that con-

structs confidence intervals based on large deviation bounds, also resulting in an

index policy where indices represent upper confidence bounds. The regret of this

algorithm was only analyzed for Bernoulli bandits and was not shown to reach

Lai’s lower bound, but it was the source of inspiration for work on exploration-

exploitation in reinforcement learning (Meuleau and Bourgine, 1999; Strehl and

Littman, 2005).

The basic mechanism at play with policies that rely on upper confidence bounds

is the optimism in the face of uncertainty principle. If it is possible (according to

some confidence level) that an uncertain arm may be better than a known arm,

then the uncertain arm will be selected to avoid missing the opportunity for a

better payoff. But it is less pressing to resolve uncertainty if the upper confidence

bound of an arm falls below the estimated mean of others, thus avoiding the

unnecessary accumulation of regret by focusing on more promising arms.

The policies introduced by Lai and Robbins (1985) and Agrawal (1995) only

achieve asymptotically optimal regret behavior. Auer et al. (2002) introduced

the UCB1 and UCB2 policies that achieve a logarithmic growth of the regret

uniformly over time and are easy to compute — these policies are improved

further in the work of Auer and Ortner (2010). The UCB1 computes the index of

an arm as:

µ̂a +

√
2 lnn

na
, (2.31)

where µ̂a is the mean payoff estimate of the a-th arm after na pull, with n the

total number of pulls.

Thompson Sampling (Thompson, 1933), the oldest strategy for bandit problems,

assumes a prior distribution over the parameters {µa}. Thompson Sampling

is not an index-based strategy: at each step, it samples the arm parameters

{µa} from the current posterior and chooses the arm to pull greedily based on

II B Solution Methods B Bandits B Bayesian Strategies 48

the sampled means. Optimism is generated because posterior samples are

likely to yield optimistic values where posterior entropy about the mean payoff

is large and that will force the agent to try these arms. Despite its Bayesian

flavor, Thompson Sampling was recently analysed in a frequentist setting and

proven to reach theoretical finite-time regret lower-bounds for multi-armed ban-

dits (Agrawal and Goyal, 2012).9

2.2.1.2 Bayesian Strategies

To find the optimal exploration policy that maximizes the expected return, we

could solve the BAMDP corresponding to the bandit problem as described in

Section 2.1.3, as Bellman proposed when introducing adaptive control pro-

cesses (Bellman and Kalaba, 1959).10 However, when faced with a bandit prob-

lem, a more ingenious path to the solution can be obtained using allocation

indices called Gittins indices (Gittins et al., 1989). The main insight is that an

allocation index can be computed independently for each arm that indicates how

valuable it is to pull at any point, based on an arm’s history of payoffs. These

indices describe an ordering of the arms for every step based on the history, with

the highest scoring arm corresponding to the Bayes-optimal action. The fact that

the arms can be considered in isolation to solve the global exploration problem

is remarkable in itself, and considerably simplifies the solution. However, com-

puting the index for an arm is not trivial.

There exist many theoretical constructions that lead to the Gittins indices, and

most provide a different proof for their optimality and suggest a different algo-

rithm to compute them (Duff, 2002; Weber, 1992). The indices can also be

found in table form for standard payoff distributions, for example in the book by

Gittins et al. (1989). We detail a particular construction to provide some intuitive

meaning to the indices, but we leave out any proof of optimality.
9The bound is only optimal in terms of the dependence on the number of time steps, see

(Agrawal and Goyal, 2012) for details.
10This is a case where we have a prior on R, and not P. As previously mentioned, it is straight-

forward to convert a bandit problem into an equivalent MDP problem with uncertain dynamics by
adding states that correspond to the different payoffs.

II B Solution Methods B Bandits B Bayesian Strategies 49

Consider a single arm a and its associated history of payoffs hat . The value of

playing only this arm according to the current belief corresponds to the mean

estimate (scaled by 1
1−γ), but it can also be written in this recursive form:

Va(h
a
t) = E

[∞∑
t′=t

γt
′−tRa,t

] (
=

1

1− γ
µ̂a(h

a
t)

)
(2.32)

=

∫
(P (Ra,t = r | hat)r + γVa(h

a
t r)) dr, (2.33)

where µ̂a(hat) is the mean of the posterior conditioned on payoff history hat .

For example, in the case that the payoffs are Bernoulli distributed, R can only

take two values and prior uncertainty about the payoff distribution can be repre-

sented using a Beta distribution, which implies a posterior Beta distribution after

some interactions by conjugacy. Assume that the posterior distribution over µa

after observing hat is the distribution Beta(αt, βt), in which case αt and βt are

sufficient statistics that we can substitute for the history. Then, dropping the

time-index for clarity, Equation 2.32 can be rewritten recursively as:

Va(α, β) = P (Ra,t = 0 | α, β) (0 + γVa(α, β + 1)) (2.34)

+ P (Ra,t = 1 | α, β) (1 + γVa(α+ 1, β)) (2.35)

=
βγ

α+ β
Va(α, β + 1) +

α

α+ β
(1 + γVa(α+ 1, β)). (2.36)

Now, for the purpose of constructing the index, let us introduce a retirement

option when playing arm a. At any step t, the agent can decide to opt-out and

get a guaranteed reward M ; a form of stopping problem. We can then compute

the value of the optimal policy in the retirement scheme as a function of M :

V ∗a (α, β;M) = max{M,
βγ

α+ β
V ∗a (α, β + 1;M) +

α

α+ β
(1 + γV ∗a (α+ 1, β;M))}.

(2.37)

The value function depends in a complex (but convex) way on the parameter M

except when M is small enough that V ∗a (ha;M) = Va(h
a) = 1

1−γ µ̂a(ha) or when

M is big enough so that V ∗a (ha;M) = M . It can be proven that the Gittins index

II B Solution Methods B Bandits B Bayesian Strategies 50

for arm a, ga, is linked to that construction in the following way:

ga(h
a) = (1− γ) inf{M | V ∗a (ha;M) = M}. (2.38)

In other words, the Gittins index can be understood as an indifference thresh-

old: the least M such that the value of playing the arm is simply the value of

retiring right away. Nontrivially, this threshold value (i.e., the Gittins index up to

constant rescaling) provides a metric to compare different arms, and playing the

arm with the highest index is exactly equivalent to the optimal exploration pol-

icy’s choice.11 This construction, and its proof of correctness, is due to Whittle

(1980); it is not meant as a computational tool to obtain the Gittins indices. Ef-

ficient algorithms to compute them can be found in the work of Varaiya et al.

(1985), Niño-Mora (2007), or Sonin (2008).

It is known that, for any γ < 1, the Bayes-optimal policy will settle on an arm after

an initial period of exploration and only play that arm thereafter. The probability

that the selected arm a∞ is the optimal one, P (argmaxa µa = a∞ | γ) is less than

1 for all γ < 1:

P (argmax
a

µa = a∞ | γ) < 1 ∀γ < 1, (2.39)

but P (argmaxa µa = a∞ | γ) → 1 almost surely as γ → 1, at least for Bernoulli

bandits (Kelly et al., 1981). This result nicely illustrates the impact of γ on the

exploration-exploitation trade-off: it can be optimal given the uncertainty and

some effective horizon described by γ to accept the loss of not exploiting the

best possible action — since the loss of exploring to find this action is judged

even greater.

Another observation is that the Gittins indices are at least equal to the posterior

mean estimate of the payoff for each arm. This implies that most EE strategies

for both the non-Bayesian and the Bayesian setting can be seen as expressing

optimism over the payoffs of the arms: the policy does not judge an arm by its

estimated mean, but by its mean with an added bonus. The bonus encodes the
11In fact, the result behind the Gittins indices holds for a wide range of dynamics of the arm

in the augmented space, they need not represent the evolution of a posterior distribution (or its
hyperparameters in a conjugate setting), they could be some other known Markov process.

II B Solution Methods B MDPs 51

fact that the estimated mean may grow with more information (the optimism), but

the exact value of that bonus depends heavily on the objective, the horizon, and

past observed data.

2.2.2 MDPs

We first present classical solutions when the MDP is known and tractable. We

then review relevant reinforcement learning and planning algorithms. Finally, we

present solution methods that tackle the exploration-exploitation problem explic-

itly in MDPs.

2.2.2.1 Dynamic Programming

When all the components of the MDP tuple are known — including the model

P — standard dynamic programming algorithms can be used to estimate the

optimal policy off-line, such as Value Iteration (Bellman, 1954) or Policy Itera-

tion (Howard, 1960).

The Value Iteration (VI) algorithm directly exploits the Bellman optimality equa-

tion (Equation 2.7) in an iterative scheme to find the optimal value function. It

starts with an initial value function V0 and successively applies full Bellman back-

ups to the estimate until convergence as follows:

Vi+1(s)← max
a∈A
{R(s, a) + γ

∑
s′∈S
P(s, a, s′)Vi(s

′)} ∀s ∈ S. (2.40)

The Policy Iteration (PI) algorithm combines a policy evaluation step, where the

value function V π (orQπ) for the current policy π is computed (for example based

on the Bellman equation), and a policy improvement step where π is updated

using the computed V π. A greedy improvement step takes the form:

πi+1(s)← argmax
a∈A

Qπi(s, a). (2.41)

More details on these methods can be found in reference texts by Ross (1983)

II B Solution Methods B MDPs B Approximate DP 52

and Puterman (1994).

Even though VI or PI are not always directly applicable, they are the basis for

many algorithms in reinforcement learning that sample or approximate these

steps in various ways. Generalized Policy Iteration (GPI) is a class of methods

that roughly follow the policy iteration idea, but may take an improvement step

before the policy evaluation step is completed (also called optimistic, or modified,

PI) or only take a soft improvement step (this is one facet of policy-gradient

algorithms (Bartlett and Baxter, 2011; Williams, 1992)). Though some of these

GPI algorithms have weaker, fragile, or non-existent theoretical guarantees, their

applicability and empirical performance is typically taken as justifying their use.

2.2.2.2 Approximate Dynamic Programming

If the state space is very large, or continuous, then it is not feasible to represent

the value function exactly and VI and PI cannot be straightforwardly applied. A

common class of solutions approximate the value function using some paramet-

ric form, V π(s;w) = fw(φ(s)), where most commonly the state s is represented

using a feature vector φ(s) and w is a vector of tunable parameters for the func-

tion f . In a linear architecture, this corresponds to:

V π(s;w) = φ(s)Tw. (2.42)

The problem of evaluating or optimizing policies in this context is referred to as

Approximate Dynamic Programming (Bertsekas, 2011a), approximate versions

of VI and PI involve fitting value functions rather than computing them exactly.

2.2.2.3 Learning with Simulation-based Methods

Dynamic programming techniques require the specification of an explicit transi-

tion model, something which may be difficult to obtain in general. Simulation-

methods, or incremental methods, instead rely on traces of experiences with

the environment, or sample paths, to learn the value of a specific policy, or to

II B Solution Methods B MDPs B Learning with Sim-based Methods 53

optimize policies. Since these methods do not construct an explicit model of

the transition, thus they are referred to as model-free reinforcement learning, or

simulation-based, methods. There is a rich literature on these methods; we only

review the algorithms related to the work in this thesis; a survey of the field can

be found in the books of Sutton and Barto (1998) and Bertsekas and Tsitsiklis

(1996) (see also (Szepesvári, 2010) for a more recent treatment).

The traces of experience exploited by model-free methods may not always come

from interactions with some real environment. Even though the learning mecha-

nism itself is model-free, the agent may in fact possess a black-box model from

which it can generate interaction traces for learning, for example in the case

of planning. We will come back to this point when discussing planning in Sec-

tion 2.2.2.4.

Monte-Carlo Evaluation

On-policy Monte-Carlo (MC) policy evaluation solves the prediction problem of

estimating V π for a given policy π by sampling trajectories acquired on policy

and averaging the returns obtained from each state:

V̂ π(s) =
1

N(s)

N(s)∑
n=1

Rn(s), (2.43)

where Rn(s) is the (discounted) return obtained from state s after the n-th visit,

with N(s) visits in total. As N(s)→∞, then V̂ π(s)→ V π(s).

This Monte-Carlo estimate can also straightforwardly be obtained in an incre-

mental way using a MC backup which updates V̂ (s) and N(s) as:

N(s)← N(s) + 1 (2.44)

V̂ π(s)← V̂ π(s) +
(RN(s)(s)− V̂ π(s))

N(s)
, (2.45)

with N and V̂ initialized to 0.

II B Solution Methods B MDPs B Learning with Sim-based Methods 54

Similarly, the MC backup to estimate the action-value function Qπ is

N(s, a)← N(s, a) + 1 (2.46)

Q̂π(s, a)← Q̂π(s, a) +
(RN(s,a)(s, a)− Q̂π(s, a))

N(s, a)
. (2.47)

This is known as the every-visit version of MC evaluation, it provides biased

estimates (for finite sample size) but is more sample efficient than the first-visit

version where each state is updated only with the trajectory corresponding to

the first visit to that state (Singh and Sutton, 1996). First-visit MC is clearly unbi-

ased because it averages independent unbiased estimates of the return. From a

single trajectory, every-visit MC can generate multiple updates for a single state,

these updates are thus not independent and this causes the bias.

In infinite-horizon problems, Monte-Carlo evaluation technically requires waiting

for an infinite trajectory before updating any value. This issue is bypassed ei-

ther by stopping a trajectory at each step with probability γ (and backing up the

undiscounted return), or setting some numerical accuracy to define an effective

horizon.

In the function approximation setting, Monte-Carlo evaluation aims to minimize

the weighted squared loss between the true value function and the estimate V̂ π:

E(w;π) =
1

2
‖V π(s)− V̂ π(s;w)‖2Dπ (2.48)

=
1

2

∑
s∈S
Dπ(s)

(
V π(s)− V̂ π(s;w)

)2
, (2.49)

where Dπ is the stationary state distribution of the policy π. Then on-policy

Monte-Carlo evaluation becomes a stochastic gradient descent algorithm that

finds a local minimum to that loss:

w← w + αt

(
R(s)− V̂ π(s;w)

)
∇wV̂

π(s;w), (2.50)

sinceR(s) is an unbiased estimate of the value V π(s) and the states are sampled

according to Dπ. Here αt is an appropriately decreasing learning rate. The

II B Solution Methods B MDPs B Learning with Sim-based Methods 55

exact version of Monte-Carlo evaluation (Equation 2.45) can be recovered if one

considers a linear architecture with features φ(s)i = 1 if s = i (and 0 otherwise)

and a learning rate specific for each state αN(s) = 1
N(s) .

Monte-Carlo Control

On-policy Monte-Carlo control optimizes the policy by combining Monte-Carlo

policy evaluation with some form of policy improvement (Sutton and Barto,

1998), a form of GPI. One standard version is to run Monte-Carlo evaluation

under some policy πi that guarantees enough exploration, such as an ε-greedy

policy; that is a stochastic policy that chooses an action according to:

πi(s, a) =

1− ε+ ε

|A| if a = argmaxa′ Q̂
πi−1(s, a′),

ε
|A| otherwise.

(2.51)

After a full evaluation (Q̂πi = Qπi), we update πi by choosing the ε-greedy policy

with respect to Qπi . The policy improvement theorem guarantees that we will

find the optimal policy in the class of ε−greedy policy (Sutton and Barto, 1998).

A more practical implementation of that method relies on an optimistic policy

iteration scheme, where the policy is updated after each update in each state

— rather than waiting for the evaluation to complete. It is still an open problem

whether this method converges to the optimal policy, even in the tabular case

(Tsitsiklis, 2003).

Monte-Carlo control can be combined with the function approximation variant of

Monte-Carlo evaluation to deal with imperfect representation (Sutton and Barto,

1998).

Q-learning

Q-learning (Watkins, 1989) is an off-policy control algorithm. It optimizes a pol-

icy, based on the Bellman optimality equation, while following another. This al-

II B Solution Methods B MDPs B Planning: Online Search 56

gorithm relies on bootstrapping to learn: it updates its value based on previous

estimates of the Q value function. The Q-learning update is:

Q̂(st, at)← Q̂(st, at) + α(rt + γmax
b
Q̂(st+1, b)− Q̂(st, at)). (2.52)

If the behavior policy explores sufficiently (it visits every state infinitely often),

and under appropriate learning rate schedules, then Q̂→ Q∗ with probability 1.

It is common practice to combine Q-learning with function approximation, even

though it is known to be divergent in some problems (Baird et al., 1995). Recent

development on gradient temporal-difference methods have started to address

this by proposing a convergent Q-learning variant, but only under quite restrictive

conditions (Maei et al., 2010).

2.2.2.4 Planning: Online Search

Even when the transition model is known, it is not always practical to find the

optimal policy for all states in large MDPs in one fell swoop. Instead, there

are methods that concentrate on searching online for the best action at just

the current state st. This is particularly common for Bayes-Adaptive planning

algorithms. We therefore introduce relevant existing online search methods for

MDPs that are used as building blocks for Bayesian RL algorithms.

Online search methods evaluate a tree of possible future sequences. The root

of the tree is the current state and the tree is composed of state and action

nodes. Each state node, including the root, has as its children all the actions

that are legal from that state. In turn, each action node has as its children all the

successor states resulting from that action. This is illustrated in Figure 2.1. The

goal of the forward search algorithm is recursively to estimate the value of each

state and action node in the tree. Ultimately, the value of each possible action

from the root is used to select the next action in the real environment, and the

process repeats using the new state at the root.

While each state could be in principle uniquely identified with a state node in a

II B Solution Methods B MDPs B Planning: Online Search 57

search graph (there will be cycles in general so it is no longer a tree), in practice

multiple state nodes will often correspond to the same state if each state node

is identified by its path from the root, or by its depth in the tree. When referring

to the value function computed for a state node for a state s at depth d, we will

write Vd(s) in that context.

Past

Planning

Figure 2.1: A part of a forward-search tree in an MDP with 3 states and
2 actions when the agent is in state s. State nodes are represented with
squares, action nodes with circles. The top node is the root node, from
where the agent plans to take the optimal action.

Online, tree-based, search methods may be categorised firstly by the backup

method by which the value of each node is updated, and secondly by the order

in which the nodes of the tree are traversed and backups are applied. Many

planning methods derive from RL methods such as the ones in the previous

sections but applied to the sub-MDP i) which has the current state as starting

state and ii) which contains only the states reachable from the current state

within the planning horizon.

Full-Width Search

Classical online search methods are based on full-width backups, which con-

sider all legal actions and all possible successor states (or rather state nodes),

for example using a Bellman backup,

II B Solution Methods B MDPs B Planning: Online Search 58

Vd(s)← max
a∈A
{R(s, a) + γ

∑
s′∈S
P(s, a, s′)Vd+1(s′)}. (2.53)

An illustration of this back-up is provided in Figure 2.2.

Search efficiency is then largely determined by the order in which nodes are

traversed. One example is ’best-first’, for which the current best is usually deter-

mined according to an optimistic criterion. This leads to an algorithm resembling

A∗ (Hart et al., 1968), which applies in the deterministic case. The search tree

may also be truncated, using knowledge of the most extreme reward and the

discount factor to ensure that this is provably benign (Davies et al., 1998). If one

is prepared to give up guarantees on optimality, an approximate value function

(typically described in the online search literature as a heuristic function or eval-

uation function) can be applied at leaf nodes to substitute for the value of the

truncated subtree.

Figure 2.2: Applying full-width backups to the search tree of Figure 2.1.
The value at a state node is obtained by applying a max operator on the
value of its child action nodes. In turn, the value of an action node is deter-
mined by computing the expected value of its child state nodes, where the
weight of each child is the probability of transition to that node.

II B Solution Methods B MDPs B Planning: Online Search 59

Sample-Based Search

Rather than expanding every tree node completely, sample-based search meth-

ods overcome the curse of dimensionality by just sampling successor states

from the transition distribution. These have the generic advantage over full-width

search that they expend little effort on unlikely paths in the tree and their com-

plexity is usually independent of the size of the state space.

More subtly, sample-based planning does not require an explicit transition model

of the world. Rather, since trajectories are simulated internally through sampling,

a generative model that provides the capacity to sample transitions is sufficient.

Such generative models are often much easier to obtain than explicit transition

models, for example for complex physical systems.

— Sparse Sampling

Sparse Sampling (Kearns et al., 1999) is a sample-based online search algo-

rithm. The key idea is to sample C successor nodes from each action node, and

apply a Bellman backup to these sampled transitions, so as to update the value

of the parent state node from the values of the child nodes:

Vd(s) = max
a∈A
{R(s, a) +

γ

C

∑
s′∈Child(s,a)

Vd+1(s′)Count(s, a, s′)}, (2.54)

where Child(s, a) is the set of successor states sampled from C draws of

P(s, a, ·), and Count(s, a, s′) is the number of times each set element was sam-

pled; this is illustrated in Figure 2.3. The search tree is traversed in a depth-first

manner, and an approximate value function is employed at truncated leaf nodes,

after some pre-defined depth D. Sparse Sampling converges to a near-optimal

policy given an appropriate choice of the parameters C and D.

II B Solution Methods B MDPs B Planning: Online Search 60

Figure 2.3: Applying sparse sampling in the scenario of Figure 2.1, with
C = 2. The max operator is just like in Figure 2.2, the expectation operator
weighs the value of child state nodes according to Count(s, a, s′) (Equa-
tion 2.54).

— FSSS

Although Sparse Sampling concentrates on likely transitions, it does not focus

search on nodes that have relatively high values or returns. In the work of Walsh

et al. (2010), Forward Search Sparse Sampling (FSSS) extends regular Sparse

Sampling by maintaining both lower and upper bounds on the value of each

node:

Ld(s, a) = R(s, a) +
γ

C

∑
s′∈Child(s,a)

Ld+1(s′)Count(s, a, s′), (2.55)

Ud(s, a) = R(s, a) +
γ

C

∑
s′∈Child(s,a)

Ud+1(s′)Count(s, a, s′), (2.56)

Ld(s) = max
a∈A

Ld(s, a), (2.57)

Ud(s) = max
a∈A

Ud(s, a), (2.58)

where Child(s, a) and Count(s, a, s′) are defined as in the previous section.

Whenever a node is created, the lower and upper bounds are initialized ac-

cording to Ld(s, a) = Vmin and Ud(s, a) = Vmax, i.e., the worst and best possible

returns. The tree is traversed in a best-first manner according to these value

bounds, starting from the root for each simulation through the tree. At each state

II B Solution Methods B MDPs B Planning: Online Search 61

node, a promising action is selected by maximising the upper bound on value.

At each action (or chance) node, successor states are selected from a sampled

set of C candidates by maximising the uncertainty (upper minus lower bound).

This effectively prunes branches of the tree that have low upper bounds before

they are exhaustively explored, while still maintaining the theoretical guarantees

of Sparse Sampling.

— Monte-Carlo Tree Search

Despite their theoretical guarantees, in practice, sparse sampling and FSSS both

suffer from the fact that they truncate the search tree at a particular depth, and

so experience bias associated with the approximate value function they use at

the leaves. Monte-Carlo Tree Search (MCTS) provides a way of reducing the

bias by evaluating leaves exactly using the model, but employing a sub-optimal,

rollout policy. More formally, in MCTS, states are evaluated by averaging over

many simulations. Each simulation starts from the root and traverses the current

tree until a leaf is reached, using a tree policy (e.g., greedy action selection)

based on information that has so far been gathered about nodes in the tree.

This results in a (locally) best-first tree traversal, where at each step the tree

policy selects the best child (best according to some exploration criterion) given

the current values in the tree. Rather than truncating the search and relying on a

potentially biased value function at leaf nodes, a different policy, called a rollout

policy (e.g., uniform random) is employed from the leaf node until termination

or a search horizon. Each node traversed by the simulation is then updated by

a Monte-Carlo backup, which simply evaluates that node by the mean outcome

of all simulations that passed through that node. Specifically, the Monte-Carlo

backups update the value of each action node as follows:

Qd(s, a)← Qd(s, a) + (R−Qd(s, a))/Nd(s, a), (2.59)

where R is the sampled discounted return obtained from the traversed action

node s, a at depth d and Nd(s, a) is the visitation count for the action node s, a

II B Solution Methods B MDPs B Planning: Online Search 62

(i.e., the update computes the mean of the sampled returns obtained from that

action node over the simulations).

A particular tree policy for MCTS that has received much attention, and indeed

ultimately underlies our algorithm for the BAMDP in Chapter 3, is the UCT (Upper

Confidence bounds applied to Trees) policy (Kocsis and Szepesvári, 2006). UCT

employs the UCB1 (Upper Confidence Bounds) algorithm (Auer et al., 2002),

designed for multi-armed bandit problems, to select adaptively between actions

at every state node according to:

argmax
a∈A

{Qd(s, a) + c
√

log(Nd(s))/Nd(s, a)}, (2.60)

where c is an exploration constant that needs to be set appropriately and Nd(s)

is the visitation count for the state node s. This tree policy treats the forward

search as a meta-exploration problem, preferring to exploit regions of the tree

that currently appear better than others, while continuing to explore unknown

or less known parts of the tree. This leads to good empirical results even for

small numbers of simulations, because effort is expended where search seems

fruitful. Nevertheless all parts of the tree are eventually visited infinitely often,

and therefore the algorithm can be shown to converge to the optimal policy in

the very long run.

Despite some negative theoretical results showing that UCT can be slow to

find optimal policies in carefully designed counterexample MDPs (Coquelin and

Munos, 2007), UCT has been successful in many large MDP domains (Gelly

et al., 2012).

— Simulation-based Search

Instead of relying on a tree to perform search, Silver et al. (2012) consider more

general simulation-based methods to search the optimal action from a given

state. Simulation-based methods, such as MC-control or Q-learning, learn from

traces of experiences generated from interaction. Most commonly, the interac-

II B Solution Methods B MDPs B Exploration-Exploitation 63

tion is with the real environment. Alternatively, the interaction can be simulated

using a generative model to produce simulated experience. In simulation-based

planning, the agent possesses such a generative model and can therefore sim-

ulate internally these traces of experience necessary for learning. Model-free

RL algorithms can then be used to optimize (or evaluate) the policy given these

interactions with the generative model, with the aim of finding the optimal action

for the current state.

In the work of Silver et al. (2012), to be able to generalize the result of differ-

ent simulated trajectories when planning, the value is represented using value

function approximation rather than in a tree. Monte-Carlo Tree Search is then

a special case for particular choice of state feature φ(s). This is equivalent to

running an RL algorithm (in simulation) on the sub-MDP which has the current

state as a starting state.

2.2.2.5 Exploration-Exploitation

So far, we have focused on ways to learn in MDPs without worrying too much

about the data distribution: the distribution of states and actions encountered

during learning. If that distribution does not cover some states which the optimal

policy π∗ visits, then the optimal policy cannot be learned. If we learn from inter-

actions (either in the true MDP or in a simulated MDP when planning), then we

have to explore in order to obtain the necessary interactions. Otherwise, acting

greedily according to the current learned policy may confine the agent to a par-

ticular region of the state space, hindering learning in other regions. When dis-

cussing MC-control and Q-learning in Section 2.2.2.3, we mentioned exploration

policies such as ε−greedy policies that would visit every state infinitely often.12

Similarly, the same exploration issue arises when searching inside a tree, we dis-

cussed the UCT policy in the context of the MCTS algorithm in Section 2.2.2.4

to address the exploration problem in that context. Using an ε−greedy policy (or

the UCT policy when searching) is a heuristic to ensure exploration of the state
12If the exploration policy is also greedy in the limit, it is sometimes called a Greedy in the Limit

with Infinite Exploration (GLIE) policy (Singh et al., 2000).

II B Solution Methods B MDPs B Exploration-Exploitation 64

space but there are more active ways of going about exploring the environment,

in particular algorithms that address the exploration-exploitation objectives laid

out in Section 2.1.2.1; we review these now.

PAC-MDP

Most PAC-MDP algorithms are model based, they construct an explicit model

of the transitions to decide how to explore-exploit. Algorithms in this class in-

clude E3 (Kearns and Singh, 2002), R-max (Brafman and Tennenholtz, 2003)13,

MBIE (Strehl and Littman, 2005), and MorMax (Szita and Szepesvári, 2010).

For example, MBIE derives optimism for exploration by considering the transi-

tion model leading to the best value within some confidence interval around the

mean. The learned model is usually a frequentist estimate for these algorithms,

but the BOSS algorithm (Asmuth et al., 2009) maintains a Bayesian model of the

transitions to induce optimism and still achieves the PAC-MDP property.

In addition, there is also at least one model-free PAC-MDP algorithm based on

Q-learning, namely the Delayed Q-learning algorithm (Strehl et al., 2006), which

works by following applying a form of Q-learning with greedy action selection

and optimistic initialization for the values and a value bonus.14

Regret

The UCRL2 (Auer et al., 2009) is a similar construction to the MBIE algorithm

(but with undiscounted reward and using different confidence intervals). It en-

sures that the expected total regret scales as Õ(C|S|
√
|A|T log(T)) with high

probability, where T is the horizon and C is the diameter of the MDP (the maxi-

mum average time it takes to go from any two states).

A more recent algorithm, PSRL, was proposed by Osband et al. (2013) for the
13 The results for E3 and R-max were stated a bit less generally in terms of mixing times and

making ergodicity assumptions on the MDP. Kakade (2003) discusses the differences and links to
the PAC-MDP framework.

14A chapter in the work of Li (2009) describes more model-free approaches that are PAC-MDP.

II B Solution Methods B POMDPs 65

episodic setting. It is an extension of Thompson Sampling adapted for MDPs.

One posterior MDP sample is solved at the start of each episode, and its op-

timal policy is applied greedily for a single episode. Since each possible MDP

has a corresponding optimal policy, the algorithm is effectively applying policies

according to the probability that they are optimal. This algorithm achieves an

expected regret under the prior distribution of O(τ |S|
√
|A|T log(|SA|T), with τ

the length of the episode.

As in most other settings, the dependence of the regret bound on the size of the

state space (and the hidden constants) means that a long exploration phase is

necessary before the regret can be stabilized in practice; so far this has limited

the applications of regret-based algorithms to small and finite MDPs.

Expected Return

This is the objective with which we are concerned in this thesis. As we de-

scribed in Section 2.1.3, optimizing the expected return in a Bayesian framework

is equivalent to solving a corresponding BAMDP. Since an BAMDP can be seen

as the belief-MDP corresponding to a continuous POMDP, we first briefly review

generic solution methods for POMDPs in the next section before presenting spe-

cific solution methods for BAMDPs.

2.2.3 POMDPs

Discrete POMDPs have the advantage that the value function of the belief is

a piecewise-linear function, with finitely many hyperplanes for a finite horizon.

This was recognized soon after POMDPs were introduced and led Cassandra

et al. (1994); Monahan (1982); Smallwood and Sondik (1973) to propose solv-

ing methods based on computing the hyperplanes by propagating (and pruning)

them using the Bellman equation. However, these methods suffered from an

explosion in the number of hyperplanes for large state spaces or long horizons.

Point-based algorithms were then proposed where the backups for hyperplanes

II B Solution Methods B BAMDPs 66

are done at pre-selected belief-points only (Pineau et al., 2003; Spaan and Vlas-

sis, 2005). One state-of-the-art POMDP algorithm, SARSOP (Kurniawati et al.,

2008), combines this idea with online planning, it can therefore adapt its belief

points based on the current situation.

While for finite-state POMDPs, the beliefs and hyperplanes can be described

by finite vectors, and therefore the value can be computed using finite sums,

this is no longer the case in continuous POMDPs (and therefore in BAMDPs),

where the finite vectors representing hyperplanes (α-vectors) get replaced by

functions of the state (α-functions) (Porta et al., 2006). A few researchers have

considered tackling the computation of these α-functions by choosing appropri-

ate representations (Duff, 2002; Porta et al., 2006; Poupart et al., 2006), but it

still remains computationally challenging. One solution here is to use a particle-

based representation of the belief to keep a finite-dimensional representation to

be propagated (Thrun, 1999).

Other methods follow the path of forward-search sparse sampling to plan online

(McAllester and Singh, 1999; Ross et al., 2008). The POMCP algorithm of Silver

and Veness (2010) is one recent successful extension of that idea; it plans online

using Monte-Carlo Tree Search in the belief space and avoids explicit belief-

updates during search using a technique we refer to as root sampling. We tailor

and extend this algorithm for BAMDPs in Chapter 3.

2.2.4 BAMDPs

From a practical perspective, solving the BAMDP exactly is computationally in-

tractable, even for small state spaces. First, the augmented state space con-

tains all possible beliefs and is therefore infinite. Second, the transitions of the

BAMDP, described in Equation 2.25, require an integration of transition models

over the posterior. Although this operation can be trivial for some simple proba-

bilistic models (e.g., independent Dirichlet-Multinomial), it is intractable for most

priors of interest. Calculating the posterior distribution itself presents compu-

tational problems; this was realized early on, so that researchers focused on

II B Solution Methods B BAMDPs B Offline Methods 67

conjugate priors to maintain a closed-form expression for the posterior in terms

of the hyperparameters in a single family (Duff, 2002).15

However, certain special cases of the BAMDP are known to be somewhat more

tractable. For example, the celebrated Gittins indices provide a shortcut solution

for bandit problems (Gittins et al., 1989) which we discussed in Section 2.2.1, al-

though calculating these indices remains a challenge in general. Further, the

optimal solution to at least some finite-horizon linear-Gaussian control prob-

lems can be computed exactly (Tonk and Kappen, 2010). Nevertheless, it ap-

pears unlikely that there exists a tractable exact algorithm that can solve general

BAMDPs, justifying a search for sound and efficient approximations.

Three coarse classes of approximation methods have been developed, which

we now review. Note that all of them have analogues in solution methods for

POMDPs.

First are offline methods that toil mightily to provide execution policies that can

be used for any observed augmented state. Second and third are two sets of

online methods that concentrate on just the current augmented state. One set

of methods uses sparse sampling in the full tree of future states and actions

associated with the BAMDP, starting from the current augmented state. The

other samples and solves one or more MDPs from the current posterior over P,

possibly correcting for the bias towards exploitation to which this typically leads.

After describing these classes, we highlight what they currently lack, and so

establish the basis for the central contribution in this thesis.

2.2.4.1 Offline Methods

One idea is to solve the entire BAMDP offline, for every state and belief (or his-

tory). This obviates the need for anything other than a simple value/policy lookup

during execution. However, this avenue for approximation has not led to much

practical success — presumably because of the difficulties associated with the
15In fact, the term conjugate prior was coined in this context of Bayesian decision theory (Raiffa

and Schlaifer, 1961), to obtain an easy description of the posterior as it changes with new data.

II B Solution Methods B BAMDPs B Online Methods: Sparse Sampling 68

size of the BAMDP, including the fact that gargantuan amounts of computation

may be performed to find good policies in parts of the space of histories that are

actually not sampled in practice.

Existing approaches in this class include an actor-critic algorithm (Duff, 2003),

which does learning, and a point-based value iteration algorithm, called BEETLE

(Bayesian Exploration Exploitation Tradeoff in LEarning) (Poupart et al., 2006).

BEETLE builds an approximate policy off-line by exploiting facets of the struc-

ture of the value functions for BAMDPs, which they inherit from their broader,

parent, class of POMDPs. More recently, Wang et al. (2012) propose to solve

an offline POMDP in which they represent the latent dynamics as a discrete

partially-observed state component, where the value of this state component

corresponds to one of K possible models sampled from the prior. Their ap-

proach can fail if the true model is not well-represented in these K sampled

models.

Offline methods are particularly poorly suited to problems with infinite state

spaces.

2.2.4.2 Online Methods: Sparse Sampling

Online methods reduce the dependency on the size of the BAMDP by approxi-

mating the BAMDP solution around the current (augmented) state of the agent

and running a planning algorithm at each step.

One idea is to perform forms of forward search from the current state. Although

these methods concentrate on the current state, the search tree is still large and

it can be expensive to evaluate a given path in the tree. In partial alleviation of

this problem, most approaches rely on some form of sparse, non-uniform, tree

exploration to minimize the search effort (but see also Fonteneau et al., 2013).

While Section 2.2.2.4 described search algorithms for MDPs, here we present

existing extensions to the BAMDP setting.

Wang et al. (2005) applied Sparse Sampling to search online in BAMDPs, ex-

II B Solution Methods B BAMDPs B Online Methods: Sparse Sampling 69

panding the tree non-uniformly according to sampled trajectories. At each state

node, a promising action is selected via Thompson sampling (a model of the

dynamics is drawn from the posterior distribution at the tree node, that sample is

then solved to find the optimal action) to control the exploration of the tree. As in

Sparse Sampling, this fails to exploit information about the real values of nodes in

prioritizing the sampling process (since the action selection based on Thompson

Sampling relies on a myopic value). At each chance (action) node, a successor

belief-state is sampled from the transition dynamics of the BAMDP. Castro and

Precup (2007) also applied Sparse Sampling to define a relevant region of the

BAMDP for the current decision step. This leads to an optimization problem that

is solved using Linear Programming. Ross and Pineau (2008) relied on a vanilla

version of Sparse Sampling for Bayes-adaptive online planning.

Asmuth and Littman’s BFS3 algorithm (Asmuth and Littman, 2011) adapts For-

ward Search Sparse Sampling (Walsh et al., 2010) to the BAMDP (treated as

a particular MDP). Although BFS3 is described as Monte-Carlo tree search, it

in fact uses a Bellman backup rather than Monte-Carlo evaluation. As in FSSS,

each Bellman backup updates both lower and upper bounds on the value of each

node.

Tree Exploration

As mentioned, some of these online methods do not expand the forward-search

tree uniformly, they thus have to deal with a tree exploration problem to decide

where to allocate search resources in order to optimize the tree policy. This is

an internal meta-exploration problem which is treated differently from the main

exploration problem the agent is facing againt the real environment. In particular,

even though the outer EE problem is dealt with in a Bayesian way — which de-

fines the planning problem to be solved, the meta-exploration problem for plan-

ning can be dealt with in frequentist terms if desired or with myopic strategies

(Wang et al., 2005). We will come back to this meta-exploration problem in the

final chapter.

II B Solution Methods B BAMDPs B Online Methods: Dual Optimism 70

2.2.4.3 Online Methods: Dual Optimism

Instead of applying sparse sampling methods in the tree of future states and

actions, an alternative collection of methods derives one or more simpler MDPs

from the posterior at a current augmented state, whose solution is often com-

putationally straightforward. By itself, this leads to over-exploitation: corrections

are thus necessary to generate sufficient exploration. Exploration can be seen

as coming from optimism in the face of uncertainty – actions that have yet to

be tried sufficiently must look more attractive than their current mean. Indeed,

there are various heuristic forms of exploration bonus (Brafman and Tennenholtz,

2003; Dayan and Sejnowski, 1996; Kearns et al., 1999; Meuleau and Bourgine,

1999; Schmidhuber, 1991; Sutton, 1990) that generalize the optimism inherent

in optimal solutions such as Gittins indices.

One such approximation was first derived in the work of Cozzolino et al. (1965),

where the mean estimate of the transition probabilities (i.e., the mean of the

posterior) was employed as a certainty equivalence approximation. Solving the

corresponding mean MDP induces some form of optimism, but it is not always

sufficient to drive exploration. This idea was revisited and linked to reinforcement

learning formulations by Dayan and Sejnowski (1996).

Another way to induce optimism is to exploit the variance in the posterior when

sampling MDPs at an augmented state. One of these approaches is the

Bayesian DP algorithm (Strens, 2000). At each step (or after every couple of

steps), a single model is sampled from the posterior distribution over transition

models, and the action that is optimal in that model is executed. Although a pop-

ular approach in practice, no known theoretical guarantee relates it formally to

the Bayes-optimal solution. In the Bandit case, this reduces to Thompson Sam-

pling. Similar to Thompson Sampling in bandits, optimism is generated because

solving posterior samples is likely to yield optimistic values in some unknown

parts of the MDP (where posterior entropy is large) and that will force the agent

to visit these regions. The PSRL algorithm (Osband et al., 2013) that addresses

the regret objective in Section 2.2.2.5 is derived from the Bayesian DP algo-

II B Solution Methods B BAMDPs B Discussion of Existing Methods 71

rithm, the difference is a formalized resampling criterion to obtain good regret

guarantees. The Best Of Sampled Set (BOSS) algorithm generalizes this idea

(Asmuth et al., 2009). BOSS samples a number of models from the posterior

and combines them optimistically. This drives sufficient exploration to guarantee

some finite-sample performance guarantees; however, again, these theoretical

guarantees cannot be easily related to the Bayes-optimal solution. BOSS can be

quite sensitive to its parameter that governs the sampling criterion, which can be

difficult to select. Castro and Precup proposed a variant, referred to as SBOSS,

which provides a more effective adaptive sampling criterion (Castro and Precup,

2010).

One can also see certain non-Bayesian methods in this light. For instance,

Bayesian Exploration Bonus (BEB) solves the posterior mean MDP, but with an

additional reward bonus that depends on visitation counts (Kolter and Ng, 2009).

This bonus is tailored such that the method satisfies the PAC-BAMDP property

presented in Section 2.1.3.1.16 A more recent approach is the BOLT algorithm,

which merges ideas from BEB and BOSS, enforces optimism in the transitions

by (temporarily) adding fictitious evidence that currently poorly-known actions

lead to currently poorly-known states (Araya-López et al., 2012). BOLT also has

the PAC-BAMDP property.

2.2.4.4 Discussion of Existing Methods

Despite the recent progress in approximation algorithms, tackling large domains

remains out of computational reach for existing Bayesian RL methods. This is

especially true for domains where the posterior inference is not trivial, which

is commonplace in large domains whose structure is only appropriately cap-

tured with rich priors. Unfortunately, it is exactly in these structured domains

that Bayesian methods should shine, since they have the statistical capacity to

take advantage of the priors — we will come back to this point in the section on

Bayesian models (Section 2.3).
16A close variant of BEB is proven to be PAC-BAMDP in the work of Araya-López et al. (2012).

II B Bayesian Models 72

Indeed, methods that tackle the BAMDP directly such as forward-search meth-

ods can deal better with large state spaces but they suffer from the repeated

computation of the BAMDP dynamics inside the search tree for most priors. As

previously mentioned, to compute a single BAMDP transition in Equation 2.25,

one needs to apply Bayes’ rule and perform an integration over all possible mod-

els. This can be done cheaply for simple priors, but can be rather expensive for

arbitrary priors.

On the other hand, the optimism-based methods of Section 2.2.4.3 are attrac-

tive because they appear more tractable — since they are dealing with smaller

MDPs instead of tackling the BAMDP directly. However, it turns out to be hard

to translate sophisticated prior knowledge into the form of a bonus — existing

methods are only compatible with simple Dirichlet-Multinomial models. More-

over, the behavior in the early steps of exploration can be very sensitive to the

precise parameter inducing the optimism.

2.3 Bayesian Models for MDPs

A key aspect of the exploration-exploitation problem is that agents can shape

their uncertainty using prior knowledge about the class of environments they

expect to encounter; in a Bayesian framework, this is naturally provided by a

prior distribution over the transition model. Models embody inductive biases,

allowing appropriately confident inferences to be drawn from limited observa-

tions. The structure present in the prior distribution is reflected in the opti-

mal Bayesian learning strategy, it allows for, or justifies, complex, hyperopic

exploration-exploitation strategies. Indeed, the confident inferences of a model

in low-data regimes not only concern actually observed data, they also apply,

counter-factually, to future data. With such models, a fully-Bayesian agent can

be more selective about the data it wants to acquire. If it can foresee future tra-

jectories that are likely to decrease the uncertainty about certain useful aspects

of the dynamics quickly, then it can realize that these might have a dramatic ad-

vantage over others. Conversely, a fully-Bayesian agent only equipped with an

II B Bayesian Models 73

uninformative prior might not find a justification to explore much, or only do so

in some undirected way — since it is less clear to where any trajectory actu-

ally leads. Intuitively, we can expect an agent engaging in an environment that

is likely under his prior to perform better than an uninformed agent and, con-

versely, a poor match between the prior and the environment is likely to result in

low performance.17

From a purely Bayesian perspective, the prior distribution for an agent is se-

lected since it exactly encodes a pre-existing subjective belief. However, when

faced with the task of designing an agent for a class of environments, a trade-off

arises between accuracy of modeling and computation. In practical terms, the

designer’s prior belief about the environment needs to be encoded in the agent

in a way that correctly reflects the belief structure — requiring some form of

compact description, and inference must be somewhat tractable in order to get

a handle on the posterior distribution after seeing some data. Selecting more

computationally convenient priors usually negatively affects the accuracy of the

modeling, thus a pragmatic Bayesian balances the exactness and computational

aspects of its prior distribution based on the agent’s resource constraints and

other practical matters.

Because of the immense impact that the prior distribution can have on the be-

havior in a Bayesian adaptive control scenario, finding informative and tractable

prior distributions about a given class of environments to encode prior knowl-

edge is a crucial part of a Bayes-adaptive solution to an exploration-exploitation

problem. There is a huge range of possible models for MDPs. In fact, the en-

tire Bayesian toolbox can be leveraged and specific choices will depend on the

application domain. Thus, rather than trying to be comprehensive, this section

presents some of the useful building blocks for designing MDP priors that we

employ in this thesis. These can then be assembled in various ways to express

different inductive biases.
17In fact, the consequences of maladaptive priors have been poorly investigated in the control

setting, but they are at least explored in computational psychiatry (Huys and Dayan, 2009; Huys
et al., 2014) as well as in the experimental results of this thesis.

II B Bayesian Models B Flat priors 74

2.3.1 Flat priors

Early work on Bayesian control of Markov chains focused on simple flat models,

such as independent Dirichlet-Multinomial priors, where each state transition is

modeled independently.

2.3.1.1 Dirichlet distribution

The Dirichlet distribution is a multi-dimensional generalization of the Beta distri-

bution; it is the conjugate distribution of the multinomial distribution. As a distribu-

tion on the simplex, it is a natural choice to express beliefs over the probabilities

of finitely many outcomes such as the transitions from one state to others for a

given action.

The probability density function of the Dirichlet distribution (denoted Dir) with a

N -dimensional parameter vector α, αi > 0 ∀i, is:

P (p | α) ∝
∏N
i=1 Γ(αi)

Γ(
∑N

i=1 αi)

N∏
i=1

pαi−1
i . (2.61)

If α is a vector composed of identical entries, then the distribution is symmetric

and we can replace the parameter vector by a single scalar α; we will focus on

the symmetric case from here on.

Given independent observations (n1, n2, . . . , nN), as counts observed for each

component, the posterior distribution on p is also a Dirichlet distribution:

p | (n1, n2, . . . , nN), α ∼ Dir(α+ n1, α+ n2, . . . , α+ nN), (2.62)

since

P (p | (n1, n2, . . . , nN),α) ∝ P ((n1, n2, . . . , nN) | p))P (p | α) (2.63)

∝
N∏
i=1

p
(α+ni)−1
i (2.64)

II B Bayesian Models B Flat priors B Sparse-Dirichlet 75

Using the Dirichlet distribution, a simple prior for the MDP dynamics is the fol-

lowing generative model:

Pas ∼ Dir(α) ∀s ∈ S, a ∈ A, (2.65)

where α is usually set to αi = 1
|S| , and N = |S|. In this prior, transition probabili-

ties are independent for each state and action. Samples from this prior distribu-

tion produce MDPs with little structure, except for what can be explicitly coded

in the α parameters. Nevertheless, this has been the staple prior in past work

on Bayes-Adaptive planning, due to its simplicity and conjugacy to an obvious

likelihood (Duff, 2002; Martin, 1967).

2.3.1.2 Sparse-Dirichlet distribution

In many MDPs, only a subset of states have a non-zero probability of being

reached from a given state. A vanilla Dirichlet distribution does not encode that

knowledge, so it can be an inappropriate prior when the number of states is

large. The Sparse-Dirichlet distribution (Friedman and Singer, 1999) is a hierar-

chical prior that incorporates a sparseness assumption on the random probability

vector.

In this construction the set V of non-zero components is chosen first. This is

achieved by sampling a number of non-zero components k (e.g., from a geo-

metric distribution) followed by choosing uniformly a set V of size k among the

N indices. Then, a regular Dirichlet distribution restricted to set V is consid-

ered as the distribution over probability vectors — probabilities corresponding to

elements not in V are set to zero. We refer to this construction as Sparse-Dir(α).

As for the Dirichlet distribution, we can straightforwardly define a prior over MDP

transition probabilities by independently assigning a Sparse-Dirichlet prior to

each state-action pair:

Pas ∼ Sparse-Dir(α) ∀s ∈ S, a ∈ A. (2.66)

II B Bayesian Models B Structured Priors 76

Posterior inference can be done in closed form (see (Friedman and Singer, 1999)

for details), albeit at rather greater computational cost than for the vanilla Dirich-

let distribution. This distribution was employed in the context of MDP exploration

in the work of Strens (2000).

2.3.2 Structured Priors

Many researchers have considered powerful statistical models in the context

of sequential decision making (Deisenroth and Rasmussen, 2011; Lazaric and

Ghavamzadeh, 2010; Wingate et al., 2011), including in exploration-exploitation

settings (Asmuth et al., 2009; Doshi-Velez et al., 2010; Huys and Dayan, 2009;

Ross and Pineau, 2008; Tziortziotis et al., 2013), though rarely in combination

with Bayes-Adaptive planning. Structured priors usually introduce latent vari-

ables that may represent some underlying relation between state variables and

allow for generalization when learning the transition probabilities associated with

different states and actions.

2.3.2.1 Finite mixtures

One powerful way of adding relations between states is to consider a finite mix-

ture model. The generative model is simple: a random mixture proportion π

decides to which component m a state s (or more generally a subset of states)

belongs. Each component m is represented by a vector of parameters θm. The

transition probabilities from any state s can then be obtained based on the value

of θm, either deterministically or through another random process. This genera-

tive model can be written as:

π ∼ Dir(α) (2.67)

θm ∼ H ∀m ∈ 1 . . .M (2.68)

zs,a ∼ Categorical(π) ∀s ∈ S, a ∈ A (2.69)

Pas ∼ F (θzs,a) ∀s ∈ S, a ∈ A, (2.70)

II B Bayesian Models B Structured Priors B Bayesian Non-Parametric 77

where H is a base distribution on component parameters and F is a distribution

which specifies how θ leads to low-level transition probabilities. This is illustrated

in the plate diagram in Figure 2.4.

Figure 2.4: Plate diagram for a finite mixture of MDP dynamics. The transi-
tion probabilities for each state and action are obtained from a correspond-
ing parameter vector θ. The mixture weights π that decide the assignment
of state-action pairs to parameters is obtained from a Dirichlet distribution.

Here, posterior inference of P given the observed transition data is often in-

tractable, and so is typically performed by a sample-based approximate Markov

Chain Monte-Carlo (MCMC).

2.3.2.2 Bayesian Non-Parametric Models

Bayesian non-parametric models provide a more flexible form of prior knowl-

edge (Orbanz and Teh, 2010). They carefully parameterize how structure is

expected to repeat, and so allow the posterior to become more complex as evi-

dence accumulates with extra observations. Non-parametric models have been

considered in the context of control before (Asmuth et al., 2009; Asmuth, 2013;

Deisenroth and Rasmussen, 2011; Doshi-Velez, 2009) but with an emphasis on

modeling the data rather than planning. Here, we describe two such models

that have been employed to define priors over MDPs. One process, the Dirich-

let Process, provides a conjugate distribution over discrete distributions with an

unbounded number of components. The other, the Gaussian Process, provides

a distribution over real-valued functions. After presenting each process, we dis-

cuss how they can be employed for MDP modeling.

II B Bayesian Models B Structured Priors B Bayesian Non-Parametric 78

Dirichlet Process

The Dirichlet distribution can be extended to incorporate an unbounded number

of components. The outcome is the Dirichlet process (DP), a distribution on ran-

dom probability measures (Ferguson, 1973). A Dirichlet process is parametrized

by a base measure H on some (measurable) space Θ, and a concentration pa-

rameter α > 0, denoted DP(α,H). The concentration α encodes the relation

between a measure sampled from DP(α,H) and the base measure H. While H

can be an arbitrary continuous distribution, a sample G ∼ DP(α,H) is a discrete

distribution — only countably many elements of Θ have positive support in G.

The Dirichlet process can be defined in relation to the Dirichlet distribution. In

turn, this establishes the conjugacy of the Dirichlet process. If we observe a set

{θ1, . . . , θN} drawn independently from G, and G ∼ DP(α,H), then:

G | {θ1, . . . , θN} ∼ DP

(
α+N,

1

α+N

(
αH +

N∑
n=1

δθn

))
, (2.71)

where δx is a dirac delta function centered at x.

This above characterization of the DP is useful theoretically, however it is not

constructive. In particular, it does not provide a sampling mechanism. The fol-

lowing Chinese Restaurant Process construction solves this issue through an-

other more practical characterization of the DP.

— Chinese Restaurant Process

Taking the limiting case of the posterior DP as N → ∞, it appears that all the

probability mass gets gradually shifted to existing atoms (the observed θs), with

the role of the base measure H vanishing. For this reason, it is not surprising

that one can view a DP sample G ∼ DP (α,H) as an infinite mixture of atoms

sampled from the base measure:

G(θ) = P (θ | G) =

∞∑
m=0

πmδ(θ, θm), (2.72)

II B Bayesian Models B Structured Priors B Bayesian Non-Parametric 79

where {πn} are the mixture weights and {θn} are the corresponding atoms.

These mixture weights can be sampled directly, through a stick-breaking pro-

cess. Instead of sampling the mixture weights explicitly, we can directly obtain

the observations arising from that infinite mixture through the Chinese Restau-

rant Process.

Formally, the Chinese Restaurant Process (CRP) is a distribution on partitions,

it provides another way to sample observations from a DP (Aldous, 1985). If

we have N observations θ1, . . . , θN , composed of M ≤ N unique atoms {θm},

then sampling a new observation amounts to picking the label zN+1 of the new

observation between 1 and M + 1, where the first M labels correspond to the

observed unique atoms, and the last label correspond to an unseen atom.

In the CRP, this is viewed as customers arriving to sit in a restaurant. The first

customer sits at the first table. The second customer has the choice between

sitting at the first table (z2 = 1), or sitting at a new table (z2 = 2). In general,

the N -th customer that comes in finds M occupied tables, and can sit on either

one or choose to sit at a new empty table. The probability of the N -th customer

choosing table m is:

P (zN = m | z1, . . . , zN−1, α) =

Nm
α+N m = 1, . . . ,M

α
α+N m = M + 1

(2.73)

where Nm is the number of customers already sitting at the m-th table and α > 0

is the concentration parameter. We denote such process to obtain the z variables

as CRP(α).

Each table in the CRP is like a cluster, or partition, each of which can be as-

sociated with an atom θ ∼ H to obtain a DP. Indeed, if we sample the cluster

assignment {zn}∞n=1 ∼ CRP(α), and sample θm ∼ H ∀m ∈ Z+, then the random

sequence θz1 , θz2 , . . . can also be equivalently expressed as observations from

θ ∼ G, with G ∼ DP(α,H).

II B Bayesian Models B Structured Priors B Bayesian Non-Parametric 80

CRP Mixture for MDP modeling

It is straightforward to define a mixture model from a DP:

G ∼ DP(α,H) (2.74)

θn ∼ G (2.75)

xn ∼ F (θn), (2.76)

where F (θ) is some distribution with parameter θ.

Using the CRP, the same mixture model can be equivalently expressed as:

{zn}∞n=1 ∼ CRP(α) (2.77)

θm ∼ H ∀m ∈ Z+ (2.78)

xn ∼ F (θzn), (2.79)

Here, one can map each xn (or θn) to some state transition probabilities Pas , or

we may use some other deterministic map from the {xn} set to P in order to

encode our prior knowledge about the MDP dynamics. This mixture model is

illustrated in a plate diagram in Figure 2.5.

Figure 2.5: Plate diagram for a CRP mixture model for MDP dynamics,
with a hyperprior on the concentration parameter, α ∼ Gamma(a, b). In the
pictured diagram, the set of xn gives rise to the transition dynamics P, the
observations would then be obtained from P; this is the setting in Chapter 6
for N →∞.

For inference, it is convenient to pick a distribution H that is conjugate to the

likelihood distribution F . Gibbs sampling can then be employed to resample a

II B Bayesian Models B Structured Priors B Bayesian Non-Parametric 81

cluster assignment based on others, and resample the cluster parameters based

on observations and cluster assignments. More details can be found in the report

by Griffiths and Ghahramani (2005). Since α may not be known, we can add an

hyperprior on it, α ∼ Gamma(a, b), and infer it from data.

In the work of Doshi-Velez (2009), a hierarchical Dirichlet Process is used to

allow for an unbounded number of states in a POMDP and infer the size of the

state space from data. This is referred as the iPOMDP model — this model is

itself an extension of the infinite Hidden Markov Model (iHMM) model (Beal et al.,

2001). The iPOMDP model is used in a online forward-search planning scheme,

albeit of rather limited depth and tested on modestly-sized problems. In the work

of Asmuth et al. (2009), a CRP mixture is employed to model state clustering in

combination with the BOSS algorithm.

Gaussian Processes

Gaussian processes (GP) form a powerful family of priors on functions. As in

the Dirichlet process, they are defined by considering finite aspects of what is,

in this case, a distribution over uncountably many objects. A Gaussian process

is a set of random variables, one for each element of the function domain X, for

which any finite subset is distributed according to a multivariate normal distribu-

tion (Rasmussen, 2006).

A GP, denoted GP(m,K), is specified by a mean function m : X → R and a

covariance function K : X × X → R. Let a function f be drawn from a GP,

f ∼ GP(m,K). Then, given any vector x of points in X, the random function at

these points f(x) is distributed according to f(x) ∼ N (m(x),K(x,x)); K(x,x) is

the covariance kernel : a matrix with entries corresponding to all the cross-terms

K(xi,xj).

A regression model with a GP prior can be seen as a Bayesian linear regression

model, with a Gaussian prior on the weights, and (up to) an infinite number

of features (from Mercer’s Theorem, covariance kernels can be represented in

terms of a dot product between feature vectors).

II B Bayesian Models B Structured Priors B Bayesian Non-Parametric 82

Posterior inference in GPs can be carried out in closed form (for a normally

distributed noise model), though it requires a computationally expensive matrix

inversion. Given a set of observations f(x), we can obtain posterior predictions

for f(x∗) by first writing down the joint distribution:

 f(x)

f(x∗)

 ∼ N

m(x)

m(x∗)

 ,
 K(x,x) K(x,x∗)

K(x∗,x) K(x∗,x∗)

 , (2.80)

and then applying equations for conditioning a multivariate normal:

f(x∗) | f(x) ∼ N (µ∗,Σ∗) , (2.81)

where

µ∗ = m(x∗) +K(x∗,x)K(x,x)−1(f(x)−m(x)), (2.82)

Σ∗ = K(x∗,x∗)−K(x∗, x)K(x,x)−1K(x,x∗). (2.83)

GPs for MDP modeling

One popular use of GPs in the context of MDP dynamics is to model continuous

dynamical systems with independent GPs for each dimension and for each ac-

tion (Deisenroth and Rasmussen, 2011; Deisenroth et al., 2009). The difference

in each state dimension sit+1 − sit is modeled as GP(mi
a,Kia) for a given action a,

where the domain of the random function is the state space S. Of course, GPs

are not be restricted to fill this role in modeling MDP dynamics; they can also

capture certain non-linear mappings between latent variables.

Deisenroth and Rasmussen (2011) employ Gaussian Processes to infer models

of the dynamics from limited data, with excellent empirical performance. How-

ever, the uncertainty that the GP captures was not explicitly used for exploration-

exploitation-sensitive planning. This is addressed by Jung and Stone (2010), but

with heuristic planning based on uncertainty reduction.

II B Bayesian Models B Structured Priors B Models in Thesis 83

2.3.2.3 MDP Models in this Thesis

In the experimental chapter for the BAMCP algorithm (Chapter 4), we use the

Dirichlet and Sparse-Dirichlet priors for standard discrete domains as well as a

custom prior for an infinite binary grid. In Chapter 5, we rely on GP priors to

model uncertain continuous dynamics. Finally, in Chapter 6, we make use of a

CRP mixture to model an infinite sequence of related contextual tasks.

2.4 Historical Notes on Bayesian Adaptive Control

The formulation of adaptive control has its roots in statistics in the context of

experimental design. During the second world war, Wald and his colleagues

developed the sequential analysis formalism for statistical testing in the context

of industrial quality control (Wald, 1945). Rather than analysing a fixed-size

sample of observations towards accepting or rejecting an hypothesis, Wald and

his group recognized the advantage of deciding sequentially whether to acquire

more observations, or stop and make as reliable a decision as possible based

on the available data without the cost of additioning sampling.18 They formalized

a general procedure called the Sequential Probability Ratio Test (SPRT), which

looks at the likelihood ratio between competing hypotheses and stops acquir-

ing observations when this ratio crosses some boundary.19 Arrow et al. (1949)

focused on the Bayesian formulation of the sequential analysis problem initially

posed by Wald. They relied on a backward induction argument to explicitly derive

a procedure that depends on the posterior distribution to minimize the expected

cost (called the average risk); and then observed that the resulting optimal se-

quential procedure (which Wald called Bayes solution) was in fact a SPRT for

some carefully selected boundaries — they provide a computational procedure
18Fienberg (2006) reports that a navy officer made the observation that he could perceive the

best of two firing procedures well before the end of a scheduled test, and asked Wald and his
group whether this could be made into a formal procedure.

19In a frequentist setting, the boundaries can be chosen to correspond to the desired power for
a hypothesis test, Wald and Wolfowitz (1948) proved that the SPRTs were the tests, among all
tests, that required the fewest observations on average for the corresponding hypothesis testing
task. Arrow et al. (1949) also proved the same result with a different approach.

II B Historical Notes on Bayesian Adaptive Control 84

to compute such boundaries in a simple hypothesis testing scenario involving

two Bernoulli distributions.20 At around the same time, Turing, with the assis-

tance of Good, was using a similar sequential testing technique to help decipher

enigma codes at Bletchey park (Good, 1979). Independently, Barnard also had

developed a related sequential procedure for a different military task (Barnard,

1946). Although Bayesian statistics was still in its infancy at the time, their work

had a Bayesian flavor, since prior information played a crucial role in the deci-

sions (namely, a prior on the letter frequency in German for the case of Turing).

Another early formalization of sequential Bayesian decision theory inspired by

Wald’s work is found in the work of Raiffa and Schlaifer (1961).

Following the formulation of dynamic programming in the fifties, Bellman consid-

ered the problem of optimal adaptive control in more general settings when the

transition probabilities of a system are unknown, i.e., the adaptive control pro-

cess (Bellman and Kalaba, 1959). He showed how it could be transformed into

a dynamic programming problem with an augmented state, or hyperstate, that

contains both the system’s physical state and the current state of knowledge, just

like the BAMDP of the previous section. This approach was formalized further

and extended by Howard and his students in the years that followed (Cozzolino

et al., 1965; Martin, 1967; Silver, 1963). In particular, the formalism of Markov

chains was employed, so this field of study came to be known as Bayesian con-

trol of Markov Chains. The book by Martin (1967) summarizes these results and

highlights the importance of conjugate distributions such as the Dirichlet distribu-

tion (then called “matrix beta”), since they give rise to closed-form belief updates

with little computational overhead — a useful property when considering long

sequences of belief updates.

At about the same time as Bellman, Fel’dbaum (1960) recognized the dual role
20It is interesting to note that Wald was careful to only present the use of prior distributions as a

proof instrument for SPRTs (“We are aware of the fact that many statisticians believe that in most
problems of practical importance either no a priori probability exists, or that even where it exists
the statistical decision must be made in ignorance of it; in fact we share this view. Our introduction
of the a priori probability distribution is a purely technical device for achieving the proof which has
no bearing on statistical methodology [...]”, excerpt from Wald and Wolfowitz (1948)) while Arrow
et al. (1949) had a more Bayesian view of the sequential decision task in mind and said ”It may be
remarked that the problem of optimum sequential choice among several actions is closely allied to
the economic problem of the rational behavior of an entrepreneur under conditions of uncertainty.”

II B Historical Notes on Bayesian Adaptive Control 85

that control actions could have in a closed-loop adaptive setting, he highlighted

the tension between “investigative” (probing) control and “directive” (cautious)

control in what he called dual control systems, and also considered using dy-

namic programming to solve the problem. This started a body of work in the

control literature to understand which systems have actions with this dual role

and how to solve them, but also to try to categorize which systems are “neu-

tral” (no active learning is needed, this is true for example of a known, partially

observed, linear systems with quadratic costs, see for example the work of Bar-

Shalom and Tse (1974)).

Kumar (1985) surveys the early work on stochastic adaptive control (pre-1985),

separating Bayesian from non-Bayesian approaches to the problem. Despite

the many developments in Bayesian adaptive control in these early years, re-

searchers still could not solve problems with more than a few states, and hit a

wall in terms of scalability. Meanwhile, efficient computational methods were be-

ing developed to solve Markov Decision Processes, in particular in the field of re-

inforcement learning. Duff saw an opportunity to leverage these methods for the

Bayesian control of Markov chains. His thesis coined the term Bayes-Adaptive

Markov Decision Process to refer to the extended dynamic programming prob-

lem in the language of MDPs and studied different reinforcement-learning algo-

rithm applied to it (Duff, 2002).

III

BAYES-ADAPTIVE MONTE-CARLO

PLANNING (BAMCP)

OUTLINE
This chapter contains the description and analysis of the Bayes-
Adaptive Monte-Carlo Planning (BAMCP) algorithm, an online
sample-based algorithm for planning in BAMDPs with discrete
MDP states. This includes a discussion of root sampling, and
some simulations that illustrate BAMCP’s convergence and its
internal workings.

III 87

The goal of Bayes-adaptive planning method is to find, for each decision point

〈s, h〉 encountered, the action a that at least approximately maximizes the future

expected return (i.e., find the Bayes-optimal EE policy π̃∗(s, h)). Our algorithm,

Bayes-Adaptive Monte-Carlo Planning (BAMCP), does this online by performing

a forward search in the space of possible future histories of the BAMDP using a

tailored Monte-Carlo tree search.

We employ the UCT algorithm, as presented in Section 2.2.2.4, to allocate

search effort to promising branches of the state-action tree, and use sample-

based rollouts to provide value estimates at each node. For clarity, let us denote

by Bayes-Adaptive UCT (BA-UCT) the algorithm that applies vanilla UCT to the

BAMDP (i.e., the particular MDP with dynamics described in Equation 2.25).

Sample-based search in the BAMDP using BA-UCT requires the generation of

samples from P+ for every step of each simulation — an expensive procedure

for all but the simplest generative models P (P). We avoid this cost by only sam-

pling a single transition model P i from the posterior at the root of the search

tree at the start of each simulation i, and using P i to generate all the necessary

samples during this simulation. Sample-based tree search then acts as a filter,

ensuring that the correct distribution of state successors is obtained at each of

the tree nodes, as if it was sampled from P+. This root sampling method was

originally introduced in the POMCP algorithm (Silver and Veness, 2010), devel-

oped to solve discrete-state POMDPs.

Combining BA-UCT with a version of root sampling forms the basis of the pro-

posed BAMCP algorithm; this is detailed in Section 3.1. In addition, BAMCP

also takes advantage of lazy sampling to reduce sampling complexity at the

root; this is detailed in Section 3.2. Finally, BAMCP integrates rollout learning

to improve the rollouts online; this is detailed in Section 3.3. In Section 3.4, we

show that BAMCP converges to the Bayes-optimal solution. In Section 3.5, we

warn against using aspects of the sampling in the models to inform BAMCP’s

search, showing that planning building blocks cannot quite be mixed in arbitrary

ways.

III B BA-UCT with Root Sampling 88

Following this chapter, we conduct an extensive comparative empirical analysis

of BAMCP in Chapter 4.

3.1 BA-UCT with Root Sampling

The root node of the search tree at a decision point represents the current state

of the BAMDP. The tree is composed of state nodes representing belief states

〈s, h〉 and action nodes representing the effect of particular actions from their

parent state node. The visit counts: N(〈s, h〉) for state nodes, and N(〈s, h〉, a)

for action nodes, are initialized to 0 and updated throughout search. A value,

Q(〈s, h〉, a), which is initialized to 0, is also maintained for each action node.

Each simulation traverses the tree without backtracking by following the UCT

policy at state nodes defined by argmaxa{Q(〈s, h〉, a)+c
√

log(N(〈s, h〉))/N(〈s, h〉, a)},

where c is an exploration constant that needs to be set appropriately. Given an

action, the transition distribution P i corresponding to the current simulation i is

used to sample the next state. That is, at action node (〈s, h〉, a), s′ is sampled

from P i(s, a, ·), and the new state node is set to 〈s′, has′〉.

When a simulation reaches a leaf, the tree is expanded by attaching a new state

node with its connected action nodes, and a rollout policy πro is used to control

the MDP defined by the current P i. This policy is followed to some fixed total

depth (determined using the discount factor). The rollout provides an estimate

of the value Q(〈s, h〉, a) from the leaf action node. This estimate is then used to

update the value of all action nodes traversed during the simulation: if R is the

sampled discounted return obtained from a traversed action node (〈s, h〉, a) in a

given simulation, then we update the value of each action node to Q(〈s, h〉, a) +

(R−Q(〈s, h〉, a))/N(〈s, h〉, a) (i.e., the mean of the sampled returns obtained from that

action node over the simulations).

A detailed description of the BAMCP algorithm is provided in Algorithm 1. A dia-

gram example of BAMCP simulations is presented in Figure 3.1. In Section 3.4,

we show BAMCP eventually converges to the Bayes-optimal policy.

III B BA-UCT with Root Sampling 89

Tree policy

Rollout
 policy

0

Past

Planning

1.

Tree policy

Rollout
 policy

0 0

Past

Planning

2.

Tree policy

Rollout
 policy

Past

Planning

0 0

3.

2

Tree policy

Rollout
 policy

Past

Planning

0 0

4.

2

Figure 3.1: This diagram presents the first 4 simulations of BAMCP in an
MDP with 2 actions from state 〈st, ht〉. The rollout trajectories are repre-
sented with dotted lines (green for the current rollouts, and greyed out for
past rollouts). 1. The root node is expanded with two action nodes. Action
a1 is chosen at the root (random tie-breaking) and a rollout is executed in P1

with a resulting value estimate of 0. Counts N(〈st, ht〉) and N(〈st, ht〉, a1),
and value Q(〈st, ht〉, a1) get updated. 2. Action a2 is chosen at the root and
a rollout is executed with value estimate 0. Counts and value get updated.
3. Action a1 is chosen (tie-breaking), then s′ is sampled from P3(st, a1, ·).
State node 〈s′, hta1s′〉 gets expanded and action a1 is selected, incurring
a reward of 2, followed by a rollout. 4. The UCB rule selects action a1
at the top, the successor state s′ is sampled from P4(st, a1, ·). Action a2
is chosen from the internal node 〈s′, hta1s′〉, followed by a rollout using
P4 and πro. A reward of 2 is obtained after 2 steps from that tree node.
Counts for the traversed nodes are updated and the MC backup updates
Q(〈s′, hta1s′〉, a1) to R = 0 + γ0 + γ22 + γ30 + · · · = 2γ2 and Q(〈st, ht〉, a1)
to γ + 2γ3 − γ/3 = 2

3 (γ + γ3).

III B BA-UCT with Root Sampling 90

Algorithm 1: BAMCP

procedure Search(〈s, h〉)
repeat
P ∼ P (P|h)
Simulate(〈s, h〉,P, 0)

until Timeout()
return argmax

a
Q(〈s, h〉, a)

end procedure

procedure Rollout(〈s, h〉,P, d)
if γdRmax < ε then

return 0
end
a ∼ πro(〈s, h〉, ·)
s′ ∼ P(s, a, ·)
r ← R(s, a)
return
r+γRollout(〈s′, has′〉,P, d+1)

end procedure

procedure Simulate(〈s, h〉,P, d)
if γdRmax < ε then return 0
if N(〈s, h〉) = 0 then

for all a ∈ A do
N(〈s, h〉, a)← 0,
Q(〈s, h〉, a))← 0

end
a ∼ πro(〈s, h〉, ·)
s′ ∼ P(s, a, ·)
r ← R(s, a)
R← r + γ Rollout(〈s′, has′〉,P, d)
N(〈s, h〉)← 1, N(〈s, h〉, a)← 1
Q(〈s, h〉, a)← R
return R

end

a← argmax
b

Q(〈s, h〉, b)+c
√

log(N(〈s,h〉))
N(〈s,h〉,b)

s′ ∼ P(s, a, ·)
r ← R(s, a)
R← r + γ
Simulate(〈s′, has′〉,P, d+1)
N(〈s, h〉)← N(〈s, h〉) + 1
N(〈s, h〉, a)← N(〈s, h〉, a) + 1

Q(〈s, h〉, a)← Q(〈s, h〉, a) + R−Q(〈s,h〉,a)
N(〈s,h〉,a)

return R
end procedure

Finally, note that the history of transitions h is generally not the most compact

sufficient statistic of the belief in fully observable MDPs. It can, for instance, be

replaced with unordered transition counts ψ, considerably reducing the number

of states of the BAMDP and, potentially the complexity of planning. BAMCP can

search in this reduced search space, which takes the form of an expanding lattice

rather than a tree. We found this version of BAMCP to offer only a marginal

improvement — though some domains may benefit from it more than others.

This is a common finding for MCTS, stemming from its tendency to concentrate

search effort on one of several equivalent paths (up to transposition), implying a

limited effect on performance of reducing the number of those paths.

III B BA-UCT with Root Sampling B Root Sampling Example 91

3.1.1 Root Sampling at Work in a Simple Example

We illustrate the workings of BAMCP, in particular root sampling, in a simulated

example that showcases a crucial component of Bayes-adaptivity.

Consider a simple prior distribution on two MDPs (P0 and P1), illustrated in Fig-

ure 3.2, where P (P = P0) = P (P = P1) = 1
2 . The MDPs are episodic and

stop at the leaves, and an episode starts in s0. From state s1 or s2, any ac-

tion has an expected reward of 0 under the prior distribution over MDPs. Nev-

ertheless, the outcome of a transition from action a0 in state s0 carries infor-

mation about the identity of the MDP, and allows a Bayes-adaptive agent to

take an informed decision in state s1 or s2. Using Bayes-rule, we have that

P (P = P0|s0a0s1) ∝ P (s1|P = P0, s0a0)P (P = P0) = 0.8.

s0

+2
s3 p = 1

a0

−2
s4 p = 1

a1

s1 p = 0.8

−2
s4 p = 1

a0

+2
s3 p = 1

a1

s2 p = 0.2

a0

0
s5 p = 1

a1

(a)P = P0

s0

−2
s4 p = 1

a0

+2
s3 p = 1

a1

s1 p = 0.2

+2
s3 p = 1

a0

−2
s4 p = 1

a1

s2 p = 0.8

a0

0
s5 p = 1

a1

(b)P = P1

Figure 3.2: The two MDPs of Section 3.1.1, with prior probability P (P =
P0) = P (P = P1) = 1

2 . Differences between the two MDPs are highlighted
in blue.

III B BA-UCT with Root Sampling B Root Sampling Example 92

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−1

0

1

2

V
a

lu
e

V (s 0)

V ∗(s 0)

V (s 0a0s 1)

V ∗(s 0a0s 1)

0 5 10

x 10
4

−1

0

1

2

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−2

−1.5

−1

−0.5

V
a

lu
e

Q̂(s 0a0s 1, a1)

Q ∗(s 0a0s 1, a1)

0 5 10

x 10
4

−2

−1.5

−1

−0.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

Number of simulations

P
ro

b
a

b
ili

ty

P̃ s 0a 0s 1
(P = P 1)

P (P = P 1|s 0a0s 1)

P̃ s 0a 0s 1
(P = P 0)

P (P = P 0|s 0a0s 1)

0 5 10

x 10
4

0

0.2

0.4

0.6

0.8

1

Figure 3.3: Tracking of different internal variables of BAMCP for the ex-
ample of Section 3.1.1 with γ = 0.9. BAMCP is run at the starting state
for a number of simulations (x-axis) and with c = 20. The first two rows
show the evolution of values at tree nodes corresponding to different his-
tories, along with target values as computed in Equation 3.2. The bot-
tom row shows the evolution of P̃s0a1s1(P = P0) = 1 − P̃s0a1s1(P = P1),
the empirical distribution of MDPs seen going through tree node 〈s0a1s1〉
(i.e., 1

N(〈s0a1s1〉)
∑N(〈s0a1s1〉)
i=0 1[Pi = P0]). (Left) The first 2000 simulations

(Right) Zoomed out view of 100,000 simulations, displaying empirical con-
vergence to target values.

We can therefore compute the optimal values:1

V ∗(h = s0a0s1) = max

2P (P = P0|h)− 2P (P = P1|h)

2P (P = P1|h)− 2P (P = P0|h)

(3.1)

= 2 · 0.8− 2 · 0.2 = 1.2 (= V ∗(h = s0a0s2))

V ∗(h = s0) = max{0, 1.2γ} = 1.2γ. (3.2)

We now simulate BAMCP on this simple example for the first decision in state s0.

With root sampling, BAMCP only samples either P0 or P1 with equal probability
1For ease of notation, we sometimes refer to a node with its history only, as opposed to its

state and history as in the rest of the thesis.

III B Lazy Sampling 93

at the root of the tree, and does not perform any explicit posterior update inside

the tree. Yet, as suggested by Lemma 1, we expect to find the correct distribution

P (P = P0|s0a0s1) of samples of P at the tree node 〈s0a0s1〉. Moreover, BAMCP

should converge to the optimal values V ∗ according to Theorem 1. This is what

is observed empirically in Figure 3.3.

In the second row of Figure 3.3, we observe that Q̂(s0a0s1, a1) is slower to con-

verge compared to other values. This is because time is ticking more slowly for

this non-optimal node (i.e., a small fraction of simulations reach this node) so the

value stays put for many simulations.

3.2 Lazy Sampling

In previous work on sample-based tree search, indeed including POMCP (Silver

and Veness, 2010), a complete sample state is drawn from the posterior at the

root of the search tree. However, this can be computationally very costly. In-

stead, we sample P lazily, generating only the particular transition probabilities

that are required as the simulation traverses the tree, and also during the rollout.

Consider P(s, a, ·) to be parametrized by a latent variable θs,a for each state

and action pair. These may depend on each other, as well as on an ad-

ditional set of latent variables φ. The posterior over P can be written as

P (Θ|h) =
∫
φ P (Θ|φ, h)P (φ|h), where Θ = {θs,a|s ∈ S, a ∈ A}. Define

Θt = {θs1,a1 , · · · , θst,at} as the (random) set of θ parameters required during

the course of a BAMCP simulation that starts at time 1 and ends at time t. Using

the chain rule, we can rewrite

P (Θ|φ, h) =P (θs1,a1 |φ, h) (3.3)

P (θs2,a2 |Θ1, φ, h) (3.4)

... (3.5)

P (θsT ,aT |ΘT−1, φ, h) (3.6)

P (Θ \ΘT |ΘT , φ, h) (3.7)

III B Rollout Policy Learning 94

where T is the length of the simulation and Θ \ ΘT denotes the (random) set of

parameters that are not required for a simulation. For each simulation i, we sam-

ple P (φ|ht) at the root and then lazily sample the θst,at parameters as required,

conditioned on φ and all Θt−1 parameters sampled for the current simulation.

This process is stopped at the end of the simulation, typically long before all θ

parameters have been sampled. For example, if the transition parameters for

different states and actions are independent, we can simply draw any necessary

parameters individually for each state-action pair encountered during a simula-

tion. In general, transition parameters are not independent for different states,

but dependencies are likely to be structured. For example, the MDP dynamics

could arise from a mixture model where φ denotes the mixture component and

P (φ|h) specifies the posterior mixture proportion. Then, if the transition param-

eters θ are conditionally independent given the mixture component, sampling

φi at the root for simulation i allows us to sample the required parameters θs,a

independently from P (θs,a|φi, h) just when they are required during the i-th sim-

ulation. This leads to substantial performance improvement, especially in large

MDPs where a single simulation only requires a small subset of parameters (see

for example the domain in Section 4.2 for a concrete illustration). This lazy sam-

pling scheme is not limited to shallow latent variable models; in deeper models,

we can also benefit from conditional independencies to save on sampling oper-

ations for each simulation by sampling only the necessary latent variables — as

opposed to sampling all of φ.

3.3 Rollout Policy Learning

The choice of rollout policy πro is important if simulations are few, especially if

the domain does not display substantial locality or if rewards require a carefully

selected sequence of actions to be obtained. Otherwise, a simple uniform ran-

dom policy can be chosen to provide noisy estimates. In this work, we learn Qro,

the optimal Q-value in the real MDP, in a model-free manner, using Q-learning,

from samples (st, at, rt, st+1) obtained off-policy as a result of the interaction of

III B Theoretical Properties 95

the BAMCP agent with the MDP at time t. For each real transition (st, at, rt, st+1)

observed, we update

Qro(st, at)← Qro(st, at) + α(rt + γmax
a

Qro(st+1, a)−Qro(st, at)), (3.8)

where α is some learning rate parameter; this is the standard Q-learning

rule (Watkins, 1989). Acting greedily according to Qro translates to pure ex-

ploitation of gathered knowledge. A rollout policy in BAMCP following Qro could

therefore over-exploit. Instead, similar to the work of Gelly and Silver (2007), we

select an ε-greedy policy with respect to Qro as our rollout policy πro. In other

words, after t steps in the MDP, we have updated Qro t times and we use the

following stochastic rollout policy for all MCTS simulations at the t + 1 decision

step:

πro(s, a) =

1− ε+ ε

|A| if a = argmaxa′ Qro(s, a
′)

ε
|A| otherwise,

(3.9)

where πro(s, a) is the probability of selecting action a when in the MDP state s

(i.e., history is ignored) during a rollout. This biases rollouts towards observed

regions of high rewards. This method provides valuable direction for the rollout

policy at negligible computational cost. More complex rollout policies can be

considered, for example rollout policies that depend on the sampled model P i or

on the history ht. However, these usually incur computational overhead, which

may be less desired than running more simulations with worse estimates.

3.4 Theoretical Properties

In this section, we show that BAMCP converges to the Bayes-optimal policy. We

first present theoretical results in the case that exact posterior inference can be

conducted to obtain posterior samples of the dynamics (Section 3.4.1), we then

extend the convergence guarantee to the case where approximate inference

(MCMC-based) is necessary to produce posterior samples (Section 3.4.2).

III B Theoretical Properties B Exact Inference Case 96

3.4.1 Exact Inference Case

The main step is proving that root sampling does not alter the behavior of BA-

UCT. Our proof is an adaptation of the POMCP proof by Silver and Veness

(2010). We then provide some intuition and some empirical evidence of conver-

gence on simple Bandit problems — where the Bayes-optimal solution is known.

Consider the BA-UCT algorithm: UCT applied to the Bayes-Adaptive MDP (its

dynamics are described in Equation 2.25). Let Dπ̃ be the rollout distribution of

BA-UCT: Dπ̃(hT) is the probability that history hT is generated when running the

BA-UCT search from 〈st, ht〉, with ht a prefix of hT , T − t the effective horizon

in the search tree, and π̃ is an arbitrary EE policy. Similarly define the quantities

D̃π̃(hT): the probability that history hT is generated when running the BAMCP

algorithm, and P̃h(P): the distribution of P at node h when running BAMCP. The

following lemma shows that these rollout statistics are the same under BAMCP

as BA-UCT.

Lemma 1 Dπ̃(hT) = D̃π̃(hT) for all EE policies π̃ : H → A.

Proof Let π̃ be arbitrary. We show by induction on the horizon that for all suffix

histories h of ht, (a) Dπ̃(h) = D̃π̃(h); and (b) P (P|h) = P̃h(P), where P (P|h)

denotes (as before) the posterior distribution over the dynamics given h.

Base case: At the root (h = ht, suffix history of size 0), it is clear that P̃ht(P) =

P (P|ht) since we are sampling from the posterior at the root node and Dπ̃(ht) =

D̃π̃(ht) = 1 since all simulations go through the root node.

Step case:

Assume proposition true for all suffices of size j. Consider any suffix has′ of size

j + 1, where a ∈ A and s′ ∈ S are arbitrary and h is an arbitrary suffix of size j

III B Theoretical Properties B Exact Inference Case 97

ending in s. The following relation holds:

Dπ̃(has′) = Dπ̃(h)π̃(h, a)

∫
P

dP P (P|h)P(s, a, s′) (3.10)

= D̃π̃(h)π̃(h, a)

∫
P

dP P̃h(P)P(s, a, s′) (3.11)

= D̃π̃(has′), (3.12)

where the second line is obtained using the induction hypothesis, and the rest

from the definitions. In addition, we can match the distribution of the samples P

at node has′:

P (P|has′) = P (has′|P)P (P)/P (has′) (3.13)

= P (h|P)P (P)P(s, a, s′)/P (has′) (3.14)

= P (P|h)P (h)P(s, a, s′)/P (has′) (3.15)

= ZP (P|h)P(s, a, s′) (3.16)

= ZP̃h(P)P(s, a, s′) (3.17)

= ZP̃ha(P)P(s, a, s′) (3.18)

= P̃has′(P), (3.19)

where Equation 3.17 is obtained from the induction hypothesis, Equation 3.18

is obtained from the fact that the choice of action at each node is made

independently of the samples P. Finally, to obtain Equation 3.19 from Equa-

tion 3.18, consider the probability that a sample P arrives at node has′, it

first needs to traverse node ha (this occurs with probability P̃ha(P)) and then,

from node ha, the state s′ needs to be sampled (this occurs with probability

P(s, a, s′)); therefore, P̃has′(P) ∝ P̃ha(P)P(s, a, s′). Z is the normalization

constant: Z = 1/(
∫
P dP P(s, a, s′)P (P|h)) = 1/(

∫
P dP P(s, a, s′)P̃h(P)). This completes

the induction. �

The proof of Lemma 1 does not make explicit the use of lazy sampling, since

this method for realizing the values of relevant random variables does not affect

III B Theoretical Properties B Approximate Inference Case 98

the rollout distribution and so does not affect what is being computed, only how.

Define V (〈s, h〉) = max
a∈A

Q(〈s, h〉, a) ∀〈s, h〉 ∈ S ×H. We now show that BAMCP

converges to the Bayes-optimal solution.

Theorem 1 For all ε > 0 (the numerical precision, see Algorithm 1) and a suit-

ably chosen c (e.g. c > Rmax
1−γ), from state 〈st, ht〉, BAMCP constructs a value

function at the root node that converges in probability to an ε′-optimal value

function, V (〈st, ht〉)
p→ V ∗ε′ (〈st, ht〉), where ε′ = ε

1−γ . Moreover, for large enough

N(〈st, ht〉), the bias of V (〈st, ht〉) decreases as O(log(N(〈st, ht〉))/N(〈st, ht〉)).

Proof The UCT analysis by Kocsis and Szepesvári (2006) applies to the

BA-UCT algorithm, since it is vanilla UCT applied to the BAMDP (a particular

MDP). It also applies for arbitrary rollout policies, including the one developed in

Section 3.3. By Lemma 1, BAMCP simulations are equivalent in distribution to

BA-UCT simulations. The nodes in BAMCP are therefore evaluated exactly as

in BA-UCT, providing the result. �

Lemma 1 provides some intuition for why belief updates are unnecessary in the

search tree: the search tree filters the samples from the root node so that the

distribution of samples at each node is equivalent to the distribution obtained

when explicitly updating the belief. In particular, the root sampling in POMCP

(Silver and Veness, 2010) and thus BAMCP is different from evaluating the tree

using the posterior mean. This is illustrated empirically in Figures 3.4 and 3.5 in

the case of simple Bandit problems.

3.4.2 Approximate Inference Case

In Theorem 1, we made the implicit assumption that BAMCP is provided with

true samples drawn iid from the posterior. However, most sophisticated priors

will require some form of approximate sampling scheme (see, for example, the

task in Section 4.2 and the domain in Chapter 6), such as Markov Chain Monte

Carlo (MCMC), which generally deliver correlated posterior samples after the

III B Theoretical Properties B Approximate Inference Case 99

Bayes−optimal BAMCP Posterior Mean

160

180

200

220

240

260

U
nd

is
co

un
te

d
su

m
of

re
w

ar
ds

(a)
Bayes−optimal BAMCP Posterior Mean

55

60

65

70

75

80

D
is

co
un

te
d

su
m

of
re

w
ar

ds

(b)

Figure 3.4: Performance comparison of BAMCP (50000 simulations, 100
runs) against the posterior mean decision on an 8-armed Bernoulli bandit
with γ = 0.99 after 300 steps. The arms’ success probabilities are all 0.6
except for one arm which has success probability 0.9. The Bayes-optimal
result is obtained from 1000 runs with the Gittins indices (Gittins et al.,
1989). a. Mean sum of rewards after 300 steps. b. Mean sum of dis-
counted rewards after 300 steps.

chain converges to the stationary distribution (Neal, 1993). Thus, it is necessary

to extend the proof of convergence of BAMCP to deal with samples of this nature.

Theorem 2 Let ε > 0. When using an approximate sampling procedure based

on a MCMC chain with stationary distribution P (P|ht) (e.g., Metropolis-Hastings

or Gibbs sampling) to produce a sample sequence P1,P2, . . . at the root node

of BAMCP, the value V (〈st, ht〉) found by BAMCP at the root node converges

in probability to an ε-optimal value function. In other words, V (〈st, ht〉)
p→

V ∗ε (〈st, ht〉) where |V ∗ε (〈st, ht〉)− V ∗(〈st, ht〉)|< ε.

Proof Let ε > 0 be the chosen numerical accuracy of the algorithm. We can

choose a finite depth T for the search tree as a function of ε, rmax, and γ that

guarantees the total return after depth T amounts to less than ε. Now consider

any leaf Q-node i of that tree, with mean value µin = 1
n

∑n
m=1 rm after n simu-

lations, where rm is the reward obtained from this node at the m-th simulation

going through that node. Since UCB1 is used throughout the tree, exploration

III B Theoretical Properties B Approximate Inference Case 100

5 10 15 20

5

10

15

20
BAMCP − Number of simulations: 5000

α

β

5 10 15 20

5

10

15

20
BAMCP − Number of simulations: 250000

α

β

5 10 15 20

5

10

15

20
BAMCP − Number of simulations: 2500000

α

β

5 10 15 20

5

10

15

20
BAMCP − Number of simulations: 5000000

α

β

5 10 15 20

5

10

15

20
Posterior mean decision

α

β

Probability of correct decision

0 0.2 0.4 0.6 0.8 1

Figure 3.5: Evaluation of BAMCP against the Bayes-optimal policy, for the
case γ = 0.95, when choosing between a deterministic arm with reward 0.5
and a stochastic arm with reward 1 with posterior probability p ∼ Beta(α, β).
The result is tabulated for a range of values of α, β, each cell value corre-
sponds to the probability of making the correct decision (computed over 50
runs) when compared to the Gittins indices (Gittins et al., 1989) for the cor-
responding posterior. The first four tables corresponds to different number
of simulations for BAMCP and the last table shows the performance when
acting according to the posterior mean. In this range of α, β values, the
Gittins indices for the stochastic arm are larger than 0.5 (i.e., selecting the
stochastic arm is optimal) for β ≤ α + 1 but also β = α + 2 for α ≥ 6.
Acting according to the posterior mean is different from the Bayes-optimal
decision when β > α and the Gittins index is larger than 0.5. BAMCP is
guaranteed to converge to the Bayes-optimal decision in all cases, but con-
vergence is slow for the edge cases where the Gittins index is close to 0.5
(e.g., For α = 17, β = 19, the Gittins index is 0.5044 which implies a value
of at most 0.5044/(1 − γ) = 10.088 for the stochastic arm versus a value
between 10 and 0.5 + γ × 10.088 = 10.0836 for the deterministic arm).

III B Possible Misuse of Latent Variable Information 101

never ceases and this guarantees that n → ∞ (see for example (Kocsis and

Szepesvári, 2006, Thm. 3)).

Root sampling filtering (Lemma 1) still holds despite the approximate sampling at

the root node; since it is a statement about the distribution of samples, not about

the order in which these samples arrive. Therefore, the distribution of dynamics

at node i converges to the right stationary distribution P (P|hi), where hi is the

history corresponding to node i. Asymptotic results on Markov Chains (Law of

large numbers for Markov Chains) guarantee us that µin → µi a.s., where µi is

the true expected reward at leaf node i.

Given convergence at the leaves, we can work our way up the tree by backward

induction to show that the values at each node converge to their (near-)optimal

values. In particular the value at the root converges to an ε−optimal value. �

3.5 Possible Misuse of Latent Variable Information: a

Counter-Example

When planning in a BAMDP using a sample-based forward-search algorithm

such as BAMCP, it could be tempting to use the knowledge available in the sam-

pler when producing samples (such as the value of latent variables in the model)

to take better planning decisions. For example, when generating a sample P i of

the dynamics according to a posterior distribution P (P|h) which can be written

as
∫
θ P (P|θ)P (θ|h), P i might have been generated by sampling θi from P (θ|h)

before sampling P i from P (P|θi). Since the value of θ is available and contains

high-level information, one natural question is to ask whether the search can be

informed by the value of θ.

Here, we outline one incorrect way of using the latent variable value during

search. Suppose we would want to split our search tree on the value of θ (this

would occur implicitly if we were constructing history features based on the value

of θ), we provide below a simple counter-example that shows that this is not a

III B Possible Misuse of Latent Variable Information 102

valid search approach.

Consider a simple prior distribution on two 5-state MDPs, illustrated in Figure 3.6,

where P (θ = 0|h0) = P (θ = 1|h0) = 1
2 , and P (P|θ) is a delta function on the

illustrated MDP.

s0

+2
s3 p = 1

a0

−2
s4 p = 1

a1

s1 p = 1

a0

+1
s2 p = 1

a1

(a) θ = 0

s0

−2
s4 p = 1

a0

+2
s3 p = 1

a1

s1 p = 1

a0

+1
s2 p = 1

a1

(b) θ = 1

Figure 3.6: The two possible MDPs corresponding to the two settings of θ.

h0 = s0

+2s3

1
2

1
2

a0

−2s4

1
2

1
2

a1

s1

a0

+1
s2

a1

Figure 3.7: BAMDP, nodes correspond to belief(or history)-states.

There are 2 deterministic actions (a0, a1) in each MDP, the episode length is 1

or 2 steps. The only difference between the two MDPs is the outcome of taking

action a0 and a1 in state s1, as illustrated in Figure 3.6, so that a0 is rewarding

when θ = 0 and costly when θ = 1, and vice-versa for a1. All the rewards are

obtained from executing any action at any of the terminal states (s2, s3, s4).

Observing the first transition is not informative, which implies that the posterior

distribution is unchanged after the first transition: P (P|h0) = P (P|h0a0s1) =

P (P|h0a1s2). The BAMDP corresponding to this problem is illustrated in Fig-

ure 3.7.

III B Possible Misuse of Latent Variable Information 103

At history-state h0 = s0, the Bayes-optimal Q values can easily be computed:

Q∗(h0, a1) = γ, (3.20)

Q∗(h0a0s1, a0) = 0 + γ (2 · P (s3|h0a0s1a0)− 2 · P (s4|h0a0s1a0)) (3.21)

= γ(1− 1) = 0, (3.22)

Q∗(h0a0s1, a1) = 0 + γ (2 · P (s3|h0a0s1a0)− 2 · P (s4|h0a0s1a0)) (3.23)

= γ(1− 1) = 0, (3.24)

Q∗(h0, a0) = 0 + γmax
a

Q∗(h0a0s1, a) = 0, (3.25)

which implies that a1 = π∗(h0) for any γ. We used the fact that P (s3|h0a0s1a0) =

P (θ = 0|h0a0s1a0) · P (s3|θ = 0, s1a0) + P (θ = 1|h0a0s1a0) · P (s3|θ = 1, s1a0) =

1
2 · 1 + 1

2 · 0 = 1
2 , and similarly for P (s4|h0a0s1a0).

Note that, since belief updates only occur at the terminal states, forward-search

with or without root sampling will be equivalent. They both would construct a

search tree as in Figure 3.7 and compute the right value and right decision.

The problem comes in if we decide to split our search tree at chance nodes

based on the value of θ in the generated samples going down the tree. For

example, after taking action a0 in state s0, we would be using either an MDP

for which θ = 0 w.p 0.5 or an MDP for which θ = 1 w.p. 0.5. Since multiple

values of θ go through the node h0a0, we would branch the tree as illustrated

in Figure 3.8. This search tree is problematic because the value computed for

Q∗(h0, a0) becomes 2 · γ2, which is larger than Q∗(h0, a1) = γ for any γ > 0.5.

Therefore, the policy that is computed at the root is no longer Bayes-optimal.

h0 = s0

+2
s3

a0

−2
s4

a1

θ = 0, s1

+2
s3

a0

−2
s4

a1

θ = 1, s1

a0

+1
s2

a1

Figure 3.8: A problematic search tree.

III B Conclusion 104

By branching on the latent variable value, we are creating spurious observations:

we are implying that the latent variable from the past will be observed in the

future, which is not the case.

To summarize, the Bayes-adaptive policy to be optimized must be a function of

future histories (i.e., things we will actually observe in the future), and cannot be

a function of future unobserved latent variables. Ignoring this causes problems

in simple domains such as the one illustrated above, but similar scenarios would

occur in more complex latent variable models for the same reasons.

3.6 Conclusion

We have introduced a sample-based algorithm based on MCTS that performs

Bayes-adaptive planning in discrete domains, which we called BAMCP. We

started from the BA-UCT algorithm (i.e., UCT applied to the BAMDP) and,

through a series of principled modifications, obtained an asymptotically Bayes-

optimal planning algorithm that has the potential to scale to large domains. In

the next chapter, we evaluate empirically the performance of BAMCP.

IV

BAMCP: EXPERIMENTAL

RESULTS

OUTLINE
This chapter contains an empirical evaluation of the BAMCP al-
gorithm. We first present results of BAMCP on a set of stan-
dard problems with comparisons to other popular algorithms.
We then showcase BAMCP’s advantages in a large scale task:
an infinite 2D grid with complex correlations between reward lo-
cations.

IV B Standard Domains 106

We applied BAMCP to a representative sample of benchmark problems and

competitive algorithms from the literature. It consistently and significantly out-

performed existing Bayesian RL methods, and also recent non-Bayesian ap-

proaches, thus achieving state-of-the-art performance.

Further, BAMCP is particularly well suited to support planning in large domains

in which richly structured prior knowledge makes lazy sampling both possible

and effective. This offers the prospect of applying Bayesian RL at a realistically

complex scale. We illustrate this possibility by showing that BAMCP can tackle a

domain with an infinite number of states and a structured prior over the dynam-

ics, a challenging, if not radically intractable, task for existing approaches. This

example exploits BAMCP’s ability to use Markov chain Monte Carlo methods for

inference associated with the posterior distribution over models.

4.1 Standard Domains

The following algorithms were run on the standard domains: BAMCP, SBOSS,

BEB, BFS3. Details about their implementation and parametrization can be

found in Section 4.1.3. In addition, we report results from the work by Strens

(2000) for several other algorithms.

4.1.1 Description

For all the following domains, we fix γ = 0.95.

• The Double-loop domain is a 9-state deterministic MDP with 2 actions

(Dearden et al., 1998), 1000 steps are executed in this domain. It is illus-

trated in Figure 4.1a.

• Grid5 is a 5 × 5 grid with a reset state in one corner, and a single reward

state diametrically opposite to the reset state. Actions in cardinal directions

are executed with small probability of failure (pfailure = 0.2) for 1000 steps.

IV B Standard Domains B Description 107

• Grid10 is a 10 × 10 grid designed in the same way as Grid5. We collect

2000 steps in this domain.

• Dearden’s Maze is a 264-states maze with 3 flags to collect Dearden et al.

(1998). A special state provides reward equivalent to the number of flags

collected since the last visit. 20000 steps are executed in this domain1. It

is illustrated in Figure 4.1b.

log with respect to mix . These expecta-
tions do not have closed-form solutions, but can be approxi-
mated by numerical integration, using formulas derived fairly
straightforwardly from Theorem 3.5.
To summarize, in this section we discussed two possible

ways of updating the estimate of the values. The first, mo-
ment update leads to an easy closed form update, but might
become overly confident. The second, mixture update, is
more cautious, but requires numerical integration.

4 Convergence
We are interested in knowing whether our algorithms con-
verge to optimal policies in the limit. It suffices to show that
the means converge to the true Q-values, and that the
variance of the means converges to 0. If this is the case, then
both the Q-value sampling and the myopic-VPI strategies
will, eventually, execute an optimal policy.
Without going into details, the standard convergence proof

[15] for Q-learning requires that each action is tried infinitely
often in each state in an infinite run, and that 0
and 0

2 where is the learning rate. If
these conditions are met, then the theorem shows that the
approximate Q-values converge to the real Q-values.
Using this theorem,we can show that whenwe usemoment

updating, our algorithm converges to the correct mean.
Theorem 4.1: If each action is tried infinitely often in
every state, and the algorithm uses moment updating, then
the mean converges to the true Q-value for every state
and action .
Moreover, for moment updating we can also prove that the

variance will eventually vanish:
Theorem 4.2: If each action is tried infinitely often in
every state, and the algorithm uses the moment method to
update the posterior estimates, then the variance Var
converges to 0 for every state and action .
Combining these two results, we see that with moment

updating, the procedure will converge on an optimal policy
if all actions are tried eventually often. This is the case when
we select actions by Q-value sampling.
If we select actions using myopic-VPI, then we can no

longer guarantee that each action is tried infinitely often.
More precisely, myopic VPI might starve certain actions and
hence we cannot apply the results from [15]. Of course, we
can define a “noisy” version of this action selection strategy
(e.g., use a Boltzmann distributionover the adjusted expected
values), and this will guarantee convergence.
At this stage, we do not yet have counterparts to Theo-

rems 4.1 and 4.2 for mixture updating. Our conjecture is
that the estimated mean does converge to the true mean, and
therefore similar theorems holds.

5 Experimental Results
We have examined the performance of our approach on sev-
eral different domains and compared it with a number of
different exploration techniques. The parameters of each al-
gorithm were tuned as well as possible for each domain. The
algorithms we have used are as follows:
Semi-Uniform Q-learning with semi-uniform random ex-
ploration.

1 2 3 4 5a,0 a,0 a,0
a,10

a,0
b,2

b,2
b,2 b,2

b,2

(a) Task 1 [11].

a,0
b,0

b,0 1
2

3
4

0

5
6

7
8

a,b,0

a,b,0

a,b,0

a,0

a,0 a,0

b,0

b,0

a,b,2 a,b,1

(b) Task 2 [14].

F

S F G

F
(c) Task 3. A navigation problem. is the start state. The
agent receives a reward upon reaching based on the number
of flags collected.

Figure 3: The three domains used in our experiments.

Boltzmann Q-learning with Boltzmann exploration.
Interval Q-learning using Kaelbling’s interval-estimation
algorithm [10].

IEQL+ Meuleau’s IEQL+ algorithm [11].
Bayes BayesianQ-learning as presented above, using either
Q-value sampling or myopic-VPI to select actions, and
either Moment updating or Mixture updating for value
updates. These variants are denotedQS, VPI,Mom,Mix,
respectively. Thus, there are four possible variants of the
Bayesian Q-Learning algorithm, denoted, for example, as
VPI Mix.

We tested these learning algorithms on three domains:
Chain This domain consists of the chain of states shown in
Figure 3(a). It consists of six states and two actions
and . With probability 0.2, the agent “slips”and actually
performs the opposite action. The optimal policy for this
domain (assuming a discount factor of 0.99) is to do ac-
tion everywhere. However, learning algorithms can get
trapped at the initial state, preferring to follow the –loop
to obtain a series of smaller rewards.

Loop This domain consists of two loops, as shown in Figure
3(b). Actions are deterministic. The problem here is that a
learning algorithm may have already converged on action
for state 0 before the larger reward available in state 8 has
been backed up. Here the optimal policy is to do action
everywhere.

(a)

1 2 3 4 5a,0 a,0 a,0 a,0

b,2
b,2
b,2
b,2

b,2 a,10

Figure 1. The “Chain” problem

6.1 Problem Descriptions

Figure 1 shows the 5-state “Chain” problem. The arcs are
labeled with the actions that cause that state transition,
and the associated rewards. However the agent has only
abstract actions { }2,1 available. Usually abstract action 1
causes real-world action a to take place, and abstract
action 2 causes real-world action b. With probability 0.2,
the agent “slips” and its action has the opposite effect.
The optimal behavior is to always choose action 1 (even
though this sometimes results in the transitions labeled
with b). Once state 5 is reached, a reward of 10 is usually
received several times before the agent slips, and starts
again at state 1. This problem requires effective
exploration and accurate estimation of discounted reward.

Figure 2 shows the “Loop” problem which involves two
loops of length 5 joined at a single start state. Two actions
are available and transitions are deterministic. Taking
action a repeatedly causes traversal of the right loop,
yielding a reward of 1 for every 5 actions taken.
Conversely, taking action b repeatedly causes traversal of
the left loop, yielding a reward of 2 for every 5 actions
taken. This problem requires a difficult compromise
between exploration and exploitation.

Figure 3 shows the “Maze” problem. The agent can move
left, right, up or down by one square in the maze. If it
attempts to move into a wall, its action has no effect. The
problem is to move from the start (top-left) to the goal
(top-right) collecting the flags on the way. When it
reaches the goal, the agent receives a reward equal to the
number of flags collected, and is returned to the start
immediately. The problem is made more difficult by
assuming that the agent occasionally “slips” and moves in

a direction perpendicular to that intended (with
probability 0.1). There are 33 reachable locations in the
maze (including the goal) and there are up to 8
combinations for status of the flags at any time. This
yields 264 discrete states. The agent was given limited
layout information (identifying the immediate successors
of each state) in order to reduce the complexity of the
posterior distribution for the Bayesian DP approach.

6.2 Results

The experimental results show accumulated totals of
reward received over learning phases which consist of
1000 steps for Chain and Loop, and 20000 steps for
Maze. Averages were taken over 256 runs for Chain and
Loop, and 16 runs for Maze. Table 1 summarizes
comparative performance after 1, 2, and 8 phases of
learning. (Note that these results are pessimistic in that
they show the rewards actually received during learning
rather than the rewards which could be received with the
instantaneous greedy policy.) In the Bayesian DP method,
a new hypothesis (for the MDP) was drawn each time the
system entered the starting state. In Maze, a new
hypothesis was also obtained every 24 steps because there
is no guarantee that the agent will return to the start in
finite time.

An optimal deterministic policy would yield average
rewards of 3677 in Chain and 400.0 in Loop. The optimal
policy for Maze is not obvious due to the effect of
slipping. Without slipping, the optimal policy would yield
2143. I estimate that the true optimal policy with slipping
would yield between 1860 and 1900.

The results show that the dynamic programming
approaches are significantly better than the primitive
learning approaches for these problems, except for Loop
where Q-learning also eventually achieves near-optimal
performance. The Bayesian approach is significantly
better than the Heuristic DP after 8 phases of Loop and
Maze, and performs similarly for Chain. Heuristic DP is
significantly better than Bayesian DP in phases 1 and 2 of
Maze, but this is at a cost of worse performance in later

0

1

4

2

3

a,0 a,b,0

a,b,2

a,b,0

a,b,0

5

8

6

7

b,0b,0

a,b,1

b,0

b,0

a,0

a,0
a,0

Figure 2. The “Loop” problem.

Figure 3. The “Maze” problem.(b)

Figure 4.1: Two of the standard domains described in Section 4.1: a) The
Double-loop domain, b) Dearden’s maze. Figures from the work of Strens
(2000).

To quantify the performance of each algorithm, we measured the total undis-

counted reward over many steps. We chose this measure of performance to

enable fair comparisons to be drawn with prior work. In fact, we are optimising a

different criterion – the discounted reward from the start state – and so we might

expect this evaluation to be unfavourable to our algorithm.

Although one major advantage of Bayesian RL is that one can specify priors

about the dynamics, for these domains, we used rather generic priors to enable

comparisons with previous work. For the Double-loop domain, the Bayesian RL

algorithms were run with a simple Dirichlet-Multinomial model with symmetric

Dirichlet parameter α = 1
|S| . For the grids and the maze domain, the algorithms

were run with a sparse Dirichlet-Multinomial model, as described by Friedman

and Singer (1999). For both these models, efficient collapsed sampling schemes

are available; they are employed for the BA-UCT and BFS3 algorithms in our ex-
1The result reported for Dearden’s maze with the Bayesian DP alg. by Strens (2000) is for a

different version of the task in which the maze layout is given to the agent.

IV B Standard Domains B Results 108

periments to compress the posterior parameter sampling and the transition sam-

pling into a single transition sampling step. This considerably reduces the cost

of belief updates inside the search tree when using these simple probabilistic

models. Unfortunately, efficient collapsed sampling schemes are not available in

general (see for example the model in Section 4.2).

4.1.2 Results

A summary of the results is presented in Table 4.1. Figures 4.2 and 4.3 report

the planning time/performance trade-off for the different algorithms on the Grid5

and Maze domain.

Double-loop Grid5 Grid10 Dearden’s Maze
BAMCP 387.6 ± 1.5 72.9 ± 3 32.7 ± 3 965.2 ± 73
BFS3 382.2 ± 1.5 66 ± 5 10.4 ± 2 240.9 ± 46
(Asmuth and Littman, 2011)
SBOSS 371.5 ± 3 59.3 ± 4 21.8 ± 2 671.3 ± 126
(Castro and Precup, 2010)
BEB 386 ± 0 67.5 ± 3 10 ± 1 184.6 ± 35
(Kolter and Ng, 2009)
Bayesian DP* 377 ± 1 - - -
(Strens, 2000)
Bayes VPI+MIX* 326 ± 31 - - 817.6 ± 29
(Dearden et al., 1998)
IEQL+* 264 ± 1 - - 269.4 ± 1
(Meuleau and Bourgine, 1999)
QL Boltzmann* 186 ± 1 - - 195.2 ± 20

Table 4.1: Experiment results summary. For each algorithm, we report the mean
sum of rewards and confidence interval for the best performing parameter within
a reasonable planning time limit (0.25 s/step for Double-loop, 1 s/step for Grid5
and Grid10, 1.5 s/step for the Maze). For BAMCP, this simply corresponds to the
number of simulations that achieve a planning time just under the imposed limit.
* Results by Strens (2000) reported without timing information.

On all the domains tested, BAMCP performed best. Other algorithms came

close on some tasks, but only when their parameters were tuned to that specific

domain. This is particularly evident for BEB, which required a different value of

exploration bonus to achieve maximum performance in each domain. BAMCP’s

performance is stable with respect to the choice of its exploration constant (c = 3)

and it did not require fine tuning to obtain the results.

IV B Standard Domains B Results 109

10−3 10−2 10−1 100
10

20

30

40

50

60

70

80

90

10−3 10−2 10−1 100
10

20

30

40

50

60

70

80

90

10−3 10−2 10−1 100
10

20

30

40

50

60

70

80

90

Average Time per Step (s)

10−3 10−2 10−1 100
10

20

30

40

50

60

70

80

90

S
um

of
R
ew

ar
ds

af
te
r1

00
0
st
ep
s BAMCP

BEB

BFS3

SBOSS

Figure 4.2: Performance of each algorithm on the Grid5 domain as a func-
tion of planning time. Each point corresponds to a single run of an algo-
rithm with an associated setting of the parameters. Increasing brightness
inside the points codes for an increasing value of a parameter (BAMCP and
BFS3: number of simulations, BEB: bonus parameter β, SBOSS: number
of samples K). A second dimension of variation is coded as the size of the
points (BFS3: branching factor C, SBOSS: resampling parameter δ). The
range of parameters is specified in Section 4.1.3.

10−1 100
0

100

200

300

400

500

600

700

800

900

1000

1100

Average Time per Step (s)

U
nd

is
co

un
te

d
su

m
of

re
w

ar
ds

af
te

r2
00

00
st

ep
s

BAMCP (BA−UCT+RS+LS+RL)
BEB
BFS3
SBOSS

Figure 4.3: Performance of each algorithm, as in Figure 4.2 but on Dear-
den’s Maze domain (RS = Root Sampling, LS = Lazy Sampling, RL = Roll-
out Learning).

IV B Standard Domains B Results 110

(a)

10−1 100
0

100

200

300

400

500

600

700

800

900

1000

1100
BA−UCT + RL
BA−UCT

U
nd
is
co
un
te
d
su
m
of
re
w
ar
ds

af
te
r2

00
00

st
ep
s

Average Time per Step (s)

(b)

10
−1

10
0

0

100

200

300

400

500

600

700

800

900

1000

1100

BA−UCT + RS + RL

BA−UCT + RS

(c)

10−1 100
0

100

200

300

400

500

600

700

800

900

1000

1100
BA−UCT + RS + LS + RL (BAMCP)
BA−UCT + RS + LS

Figure 4.4: Evolution of performance from BA-UCT to BAMCP on Dear-
den’s Maze domain. BAMCP is present on all plots for comparison, as also
displayed in Figure 4.3. a. Performance of vanilla BA-UCT with and without
rollout policy learning (RL) presented in Section 3.3. b. Performance of BA-
UCT with Root Sampling (RS), as presented in Section 3.1, and with and
without rollout learning. c. Performance of BA-UCT with Root Sampling
and Lazy Sampling (LS), as presented in Section 3.2. With the addition of
rollout policy learning, this is the BAMCP algorithm.

IV B Standard Domains B Experimental Details 111

BAMCP’s performance scaled well as a function of planning time, as is evident

in Figures 4.2 and 4.3. In contrast, SBOSS follows the opposite trend. If more

samples are employed to build the merged model, SBOSS actually becomes

too optimistic and over-explores, degrading its performance. BEB cannot take

advantage of prolonged planning time at all. The performance of BFS3 generally

improves with more planning time, given an appropriate choice of parameters,

but it is not obvious how to trade-off the branching factor, depth, and number of

simulations in each domain. BAMCP greatly benefited from our lazy sampling

scheme in the experiments, providing a 35× speed improvement over the naive

approach in the maze domain for example; this is illustrated in Figure 4.4.

Dearden’s maze aptly illustrates a major drawback of forward search sparse

sampling algorithms such as BFS3. Like many maze problems, all rewards are

zero for at least k steps, where k is the solution length. Without prior knowl-

edge of the optimal solution length, all upper bounds will be higher than the

true optimal value until the tree has been fully expanded up to depth k – even

if a simulation happens to solve the maze. In contrast, once BAMCP discov-

ers a successful simulation, its Monte-Carlo evaluation will immediately bias the

search tree towards the successful trajectory.

Figure 4.4 confirms that, even on a moderate-sized domain with a simple prior

(Independent Sparse Dirichlet-Multinomial), BAMCP amply benefits from root

sampling, lazy sampling, and rollout learning. For more complex priors, as in the

following section, BA-UCT becomes computationally intractable. Root sampling

and lazy sampling are then mandatory components.

4.1.3 Experimental Details

All algorithms below were implemented in C++ with code components shared

across algorithms as much as possible:

• BAMCP - The algorithm presented in Section 3.1, implemented with root

sampling, lazy sampling, and rollout learning. The algorithm was run for

different number of simulations (10 to 10000) to span different planning

IV B Infinite 2D Grid Task 112

times. In all experiments, we set πro to be an ε-greedy policy with ε = 0.5.

The UCT exploration constant was left unchanged for all experiments (c =

3). We experimented with other values of c ∈ {0.5, 1, 5} with similar results.

• SBOSS (Castro and Precup, 2010): for each domain, we varied the num-

ber of samples K ∈ {2, 4, 8, 16, 32} and the resampling threshold parame-

ter δ ∈ {3, 5, 7}.

• BEB (Kolter and Ng, 2009): for each domain, we varied the bonus param-

eter β ∈ {0.5, 1, 1.5, 2, 2.5, 3, 5, 10, 15, 20}.

• BFS3 (Asmuth and Littman, 2011) for each domain, we varied the branch-

ing factor C ∈ {2, 5, 10, 15} and the number of simulations (10 to 2000). The

depth of search was set to 15 in all domains except for the larger grid and

maze domain where it was set to 50. We also tuned the Vmax parameter for

each domain — Vmin was always set to 0.

Code for these experiments can be found online on the author’s website, or

directly by following this GitHub link https://github.com/acguez/bamcp.

4.2 Infinite 2D Grid Task

It is perhaps not unfair to characterize all the domains in the previous section as

being of very limited scale. Indeed, this can be seen as a correct reflection of the

state of the art of Bayesian RL. However, BAMCP, because of its root-based lazy

sampling, can be applied to considerably larger and more challenging domains.

We therefore designed a new problem that is well beyond the capabilities of prior

algorithms since it has an infinite and combinatorially structured state space,

and an even more challenging belief space. Although still abstract, this new task

illustrates something of BAMCP’s power.

https://github.com/acguez/bamcp

IV B Infinite 2D Grid Task B Problem Description 113

...

· · · · · ·

...

Figure 4.5: A portion of an infinite 2D grid task generated with Beta dis-
tribution parameters α1 = 1, β1 = 2 (columns) and α2 = 2, β2 = 1 (rows).
Black squares at location (i,j) indicates a reward of 1, the circles represent
the corresponding parameters pi (blue) and qj (orange) for each row and
column (area of the circle is proportional to the parameter value). One way
to interpret these parameters is that following column i implies a collection
of 2pi/3 reward on average (2/3 is the mean of a Beta(2, 1) distribution)
whereas following any row j implies a collection of qj/3 reward on average;
but high values of parameters pi are less likely than high values parameters
qj . These parameters are employed for the results presented in Figure 4.6-
c).

4.2.1 Problem Description

The new problem is a class of complex MDPs over an infinite grid. In a

draw of a particular MDP, each column i has an associated latent parame-

ter pi ∼ Beta(α1, β1) and each row j has an associated latent parameter

qj ∼ Beta(α2, β2). The probability of grid cell ij having a reward of 1 is piqj ,

otherwise the reward is 0. The agent knows it is on a grid and is always free to

move in any of the four cardinal directions. Rewards are consumed when visited;

returning to the same location subsequently results in a reward of 0. As opposed

to the independent Dirichlet priors employed in standard domains, here, dynam-

ics are tightly correlated across states (i.e., observing a state transition provides

information about other state transitions).

The domain is illustrated in Figure 4.5. Although the uncertainty appears to

concern the reward function of the MDP rather than the dynamics, it can be

viewed formally as uncertainty in the dynamics when the state is augmented

IV B Infinite 2D Grid Task B Inference 114

with a binary variable that indicates whether a reward is present.2

Formally, since rewards disappear after one visit, the description of the state in

the MDP needs to include information about the state of all the rewards (for ex-

ample in the form of a set of grid locations previously visited) in addition to the

position of the agent on the infinite grid. A state s is therefore the combination

of the current agent’s location (i, j), the unordered set of previously visited loca-

tions V , and the binary variable R = rij . The dynamics P then deterministically

updates the position of the agent and the visited locations based on the agent’s

action, and updates R according to the reward map. The known reward function

is then simply R(s, a) = s(R) for all a (i.e., as described before, the agent gets a

reward in position ij if rij = 1).

4.2.2 Inference

Posterior inference (of the dynamics P) in this model requires approximation

because of the non-conjugate coupling of the variables. To see this, consider

the posterior probability of a particular grid cell kl having a reward of 1 (denote

this event rkl = 1), then

P (rkl = 1|O) =

∫
pk,ql

pkql P (pk, ql|O) dpkdql, (4.1)

where O = {(i, j)} is the set of observed reward locations, each associated with

an observed reward rij ∈ {0, 1}. Sampling rkl is straightforward given access to

posterior samples of pk and ql. However, the posterior distribution on pk and ql,
2In fact, the BAMDP framework can be straightforwardly extended to deal with more general,

partially-observed, reward functions (Duff, 2002).

IV B Infinite 2D Grid Task B Inference 115

P (pk, ql|O), cannot be easily sampled from. It is given by:

P (pk, ql|O) ∝ P (O|pk, ql)P (pk)P (ql) (4.2)

=

∫
PO\pk,QO\ql

P (O|PO, QO)
∏
p∈PO

P (p)
∏
q∈QO

P (q) (4.3)

=

∫
PO\pk,QO\ql

∏
(i,j)∈O

(piqj)
rij (1− piqj)1−rij

∏
p∈PO

Beta(p;α1, β1)
∏
q∈QO

Beta(q;α2, β2), (4.4)

where PO denotes the set of parameters pi for all observed columns i (columns

where at least one observation exists) and similarly for QO with rows. This pos-

terior suffers from non-conjugacy (because of the multiplicative interaction be-

tween the two Beta distribution) but also from a complicated dependence struc-

ture (pk and ql depend on observations outside of column k and row l). For these

reasons, the inference is done approximately.

We construct a Markov Chain using the Metropolis-Hastings algorithm to sample

from the posterior distribution of row and column parameters given observed

transitions, following the notation introduced in Section 4.2. Let O = {(i, j)} be

the set of observed reward locations, each associated with an observed reward

rij ∈ {0, 1}. The proposal distribution chooses a row-column pair (ip, jp) from

O uniformly at random, and samples p̃ip ∼ Beta(α1 + m1, β1 + n1) and q̃jp ∼

Beta(α2 + m2, β2 + n2), where m1 =
∑

(i,j)∈O 1i=iprij (i.e., the sum of rewards

observed on that column) and n1 = (1− β2/2(α2 + β2))
∑

(i,j)∈O 1i=ip(1− rij), and

similarly for m2, n2 (mutatis mutandis). The n1 term for the proposed column

parameter p̃i has this rough correction term, based on the prior mean failure

of the row parameters, to account for observed 0 rewards on the column due

to potentially low row parameters. Since the proposal is biased with respect to

the true conditional distribution (from which we cannot sample), we also prevent

the proposal distribution from getting too peaked. Better proposals (e.g., taking

into account the sampled row parameters) could be devised, but they would

likely introduce additional computational cost and the proposal above generated

large enough acceptance probabilities (generally above 0.5 for our experiments).

IV B Infinite 2D Grid Task B Results 116

All other parameters pi, qj such that i or j is present in O are kept from the

last accepted samples (i.e., p̃i = pi and q̃j = pj for these is and js), and all

parameters pi, qj that are not linked to observations are (lazily) resampled from

the prior — they do not influence the acceptance probability. We denote by

Q(p,q → p̃, q̃) the probability of proposing the set of parameters p̃ and q̃ from

the last accepted sample of column/row parameters p and q. The acceptance

probability A can then be computed as A = min(1, A′) where:

A′ =
P (p̃, q̃|h)Q(p̃, q̃→ p,q)

P (p,q|h)Q(p,q→ p̃, q̃)
(4.5)

=
P (p̃, q̃)Q(p̃, q̃→ p,q)P (h|p̃, q̃)

P (p,q)Q(p,q→ p̃, q̃)P (h|p,q)
(4.6)

=
pm1
ip

(1− pip)n1qm2
jp

(1− qjp)n2P (h|p̃, q̃)

p̃m1
ip

(1− p̃ip)
n1 q̃m2

jp
(1− q̃jp)

n2P (h|p,q)
, (4.7)

where

P (h|p̃, q̃) =
∏

(i,j)∈O

1[i = ip or j = jp](p̃i q̃j)
rij (1− p̃i q̃j)

1−rij , (4.8)

P (h|p,q) =
∏

(i,j)∈O

1[i = ip or j = jp](piqj)
rij (1− piqj)1−rij . (4.9)

The last accepted sample is employed whenever a sample is rejected. Finally,

reward values Rij are resampled lazily based on the last accepted sample of

the parameters pi, qj , when they have not been observed already. We omit the

implicit deterministic mapping to obtain the dynamics P from these parameters.

4.2.3 Results

Planning algorithms that attempt to solve an MDP based on sample(s) (or the

mean) of the posterior (e.g., BOSS, BEB, Bayesian DP) cannot directly handle

this large combinatorial state space. Previous forward-search methods (e.g.,

BA-UCT, BFS3) can deal with the state space, but not the complex belief space:

at every node of the search tree they must solve an approximate inference prob-

lem to estimate the posterior beliefs. By contrast, BAMCP limits the posterior

IV B Infinite 2D Grid Task B Results 117

0 50 100 150 200
0.05

0

0.05

Dwell Time (Horizontal)

Fr
eq

ue
nc

y

0 50 100 150 200
0.05

0

0.05

Dwell Time (Horizontal)

Fr
eq

ue
nc

y

0 50 100 150 200
0.05

0

0.05

Dwell Time (Horizontal)

Fr
eq

ue
nc

y

10−2 10−1 100 101
20

30

40

50

60

70

80

90

100

10−2 10−1 100 101
4

5

6

7

8

9

10

11

12

13

14

10−2 10−1 100 101
10

15

20

25

30

35

40

45

50

10−2 10−1 100 101
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

10−2 10−1 100 10110

20

30

40

50

60

70

80

90

Planning time(s) Planning time(s)
10−2 10−1 100 1013

4

5

6

7

8

9

10

11

12

13

BAMCP
BAMCP Wrong prior
Random

BAMCP
BAMCP Wrong prior

U
nd

is
co

un
te

d
su

m
 o

f r
ew

ar
ds

 a
fte

r
20

0
st

ep
s

D
is

co
un

te
d

su
m

 o
f r

ew
ar

ds
 a

fte
r

20
0

st
ep

s

Figure 4.6: Performance of BAMCP as a function of planning time on the
infinite 2D grid task, for γ = 0.97, where each row corresponds to a differ-
ent set of parameters generating the grid. The performance during the first
200 steps in the environment is averaged over 50 sampled environments (5
runs for each sample) and is reported both in terms of undiscounted (left)
and discounted (center) sum of rewards. BAMCP is run either with the cor-
rect generative model as prior (solid green) or with an incorrect prior (dot-
ted green). The performance of a uniform random policy is also reported
(blue). A small sample portion of a grid generated with these parame-
ters is displayed on each row, presented as in Figure 4.5. The frequency
histogram of dwell times — the number of consecutive steps the agent
stays on a row before switching — is reported for each scenario. The grids
are generated with Beta parameters a) α1=0.5, β1=0.5, α2=0.5, β2=0.5,
b) α1=0.5, β1=0.5, α2=1, β2=3, and c) α1=2, β1=1, α2=1, β2=2. For the
case of wrong priors (dot-dashed lines), BAMCP is given the parame-
ters a) α1=4, β1=1, α2=0.5, β2=0.5, b) α1=1, β1=3, α2=0.5, β2=0.5, and c)
α1=1, β1=2, α2=2, β2=1.

IV B Infinite 2D Grid Task B Results 118

inference to the root of the search tree and is not directly affected by the size of

the state space or belief space, which allows the algorithm to perform well even

with a limited planning time. Note that lazy sampling is required in this setup

since a full sample of the dynamics involves infinitely many parameters.

Figure 4.6 demonstrates the planning performance of BAMCP in this complex

domain. Performance improves with additional planning time. The quality of

the prior clearly affects the agent’s performance, BAMCP can take advantage of

correct prior information to gain more rewards. In addition, the behavior of the

agent is qualitatively different depending on the prior parameters employed.

For example, for the case of Figure 4.6-a, rewards are often found in relatively

dense blocks on the map and the agent exploits this fact when exploring; this

explains the high frequency of short dwell times. For Figure 4.6-b, good reward

rates can be obtained by following the rare rows that have high qj parameters,

but finding good rows can be expensive for at least two reasons: 1) good rows

can be far from the agent’s current position and 2) it takes longer to decide the

value of a row if most observations lack rewards; this is because the entropy of

the posterior is larger given observations of no rewards (which can be explained

by either rows or columns being poor, or both at the same time) than given ob-

servations of rewards (which can be explained with high probability by both rows

and columns being good, since rij ∼ Bernoulli(piqj)). Hence, the agent might

settle on sub-optimal rows for large periods of time, for example until it gains

enough confidence that a better row is likely to be found nearby (as in Bandit

problems where the Bayes-optimal agent might settle on a sub-optimal arm if it

believes it likely is the best arm given past data). The heavier-tail distribution of

dwell times for this scenario, in Figure 4.6-b, reflects this behavior.

The case of Figure 4.6-c consists of a mixture of rich and poor rows. The agent

can determine moderately quickly if a row is not good enough, given what it

expects to find, and then switches to a nearby row. Once a good enough row is

found, the agent can stick to it for large periods of time. This is reflected in the

bimodal nature of the distribution of dwell times in Figure 4.6-c. In many cases,

IV B Conclusion 119

the agent is satisfied with one of the first rows he visits, since it is likely that the

agent starts on a good row. He then decides to stay on it for the entire duration

of the episode, which explains the peak towards 200.

When BAMCP’s prior belief about the dynamics is not the same as the genera-

tive model’s distribution (Wrong prior dot-dashed lines in Figure 4.6), then mal-

adaptive behavior can be observed. For instance, in Figure 4.6-a, the deluded

agent expects most columns to be rich, and some rows to be rich and others to

be poor. Hence, a good strategy given this prior belief is to find one of the good

rows and exploit it by travelling horizontally. However, since a lot of columns are

actually poor in this generative model, the agent never encounters the continu-

ous sequence of rewards it expects to find on good rows. Given its wrong prior,

even if on what is actually a good row, it explains the observation by the row

being poor — rather than the column — and switches to a different row. This

behavior is reflected in the shorter horizontal dwell times plotted in Figure 4.6-a.

Similar effects can be observed in the Wrong prior cases of Figure 4.6-b,c.

It should be pointed out that the actual Bayes-optimal strategy in this domain is

not known — the behavior of BAMCP for finite planning time might not qualita-

tively match the Bayes-optimal strategy. Nevertheless, we speculate that some

of the behavior we observe with BAMCP, including the apparently maladaptive

behaviors, would also be found in the Bayes-optimal solution.

4.3 Conclusion

We demonstrated the efficiency of BAMCP in standard discrete domains by com-

paring its empirical performance against existing approaches. Perhaps more im-

portantly, we showed that BAMCP can approximate Bayes-adaptive planning in

a domain with an infinite state space and a prior that requires approximate in-

ference — a challenging task for existing planning algorithms. We now turn to a

generalization of some of the ideas behind BAMCP that will allow us to consider

continuous state spaces.

V

BAYES-ADAPTIVE

SIMULATION-BASED SEARCH

OUTLINE
We generalize the BAMCP algorithm by incorporating function
approximation to estimate the value of interaction histories dur-
ing search. This enables generalization in the search tree and
allow us to consider continuous state spaces. We compare
this simulation-based search method to BAMCP and other ap-
proaches in three varied domains.

V 121

When performing online planning, tree-search algorithms like BAMCP treat each

path of possible interaction separately. Each tree node represents a different his-

tory, with the corresponding values being stored separately. This ignores the fact

that related belief-states will generally have similar values, and, worse, that dif-

ferent histories (for instance those containing the same observations in different

orders) can correspond to the same belief. This implies that the most important

method of addressing the catastrophic exponential growth of the search tree

(as a function of horizon) is ignored, making tree-search algorithms inefficient in

discrete state spaces, and essentially inapplicable to BAMDPs with continuous

state or action spaces — except in very restricted scenarios.

In this chapter, we propose a class of efficient simulation-based algorithms for

Bayes-adaptive online planning which use function approximation to estimate the

value of interaction histories during search. This enables generalization between

different beliefs, states, and actions during planning, and therefore also works for

continuous state spaces. This result is a broadly applicable MC search algorithm

for continuous BAMDPs.

Our algorithm builds on the BAMCP algorithm (described in Chapter 2) and ex-

ploits value function approximation for generalization across interaction histories,

as has been proposed for simulation-based search in MDPs (Silver et al., 2012).

As a crucial step towards this end, we develop a suitable parametric form for

the value function estimates that can generalize appropriately across histories,

using the importance sampling weights of posterior samples to compress such

histories into a finite-dimensional feature vector.

As in BAMCP, we take advantage of root sampling to avoid expensive belief up-

dates at every step of simulation. This makes the algorithm practical for a broad

range of priors over environment dynamics. We also provide an interpretation

of root sampling as an auxiliary variable sampling method. This leads to a new

proof of its validity in general simulation-based settings, including BAMDPs with

continuous state and action spaces, and a large class of algorithms that includes

MC and TD upates.

V B Algorithm 122

Our simulation-based search algorithm for the Bayes-adaptive setting combines

efficient MC search via root-sampling, and value function approximation. In Sec-

tion 5.1, we first explain its underlying idea, assuming a suitable function approx-

imator exists. In Section 5.2, we provide a novel proof justifying the use of root

sampling that also applies in continuous state-action BAMDPs. Then, in Sec-

tion 5.3, we explain how to model Q-values as a function of interaction histories.

Finally, in Section 5.4, we investigate our approach empirically in a (discrete)

bandit task and two continuous control tasks with a Gaussian process prior over

the dynamics (Deisenroth and Rasmussen, 2011; Deisenroth et al., 2009). In

the well-known pendulum swing-up task, our algorithm learns how to balance

after just a few seconds of interaction.

5.1 Algorithm

As in other forward-search planning algorithms for Bayesian model-based

RL (Asmuth and Littman, 2011; Guez et al., 2012; Ross and Pineau, 2008; Wang

et al., 2005) (this includes the BAMCP algorithm presented in Chapter 2), at

each step t, which is associated with the current history ht (or belief) and state

st, we plan online to find π̃∗(〈st, ht〉) by constructing an action-value function

Q(〈s, h〉, a). Such methods use simulation to build a search tree of belief states,

each of whose nodes corresponds to a single (future) history, and estimate opti-

mal values for these nodes. However, existing algorithms only update the nodes

that are directly traversed in each simulation. This can be inefficient, as it fails

to generalize across multiple histories corresponding either to exactly the same,

or similar, beliefs. Instead, each such history must be traversed and updated

separately.

Here, we use a more general simulation-based search that relies on function

approximation, rather than a tree, to represent the values for possible simulated

histories and states. This approach was originally suggested in the context of

planning in large MDPs (Silver et al., 2012); we extend it to the case of Bayes-

Adaptive planning. The Q-value of a particular history, state, and action is rep-

V B Algorithm 123

resented as Q(〈s, h〉, a;w), where w is a vector of learnable parameters. Fixed-

length simulations are run from the current hyperstate 〈st, ht〉, and the parame-

ter w is updated online, during search, based on experience accumulated along

these trajectories, using an incremental RL control algorithm (e.g., Monte-Carlo

control, Q-learning). If the parametric form and features induce generalization

between histories, then each forward simulation can affect the values of histories

that are not directly experienced. This can considerably speed up planning, and

enables continuous-state problems to be tackled. Note that a search tree would

be a special case of the function approximation approach when the representa-

tion of states and histories is tabular.

Algorithm 2: Bayes-Adaptive simulation-based search with root sampling

procedure Search(〈st, ht〉)

Initialize w

repeat

P ∼ P (P|ht)

Simulate(st, ht,P, 0)

until Timeout()

return argmaxa Q(〈st, ht〉, a;w)

end procedure

procedure Simulate(s, h,P, t)

if t > T then return 0

a← π̃ε−greedy(Q(〈s, h〉, ·;w))

s′ ∼ P(s, a, ·), r ← R(s, a)

R← r + γ Simulate(has′, s′,P, t+1)

w← w+α (R−Q(〈s, h〉, a;w))∇wQ(〈s, h〉, a;w)

return R

end procedure

In the context of Bayes-Adaptive planning, simulation-based search works by

simulating a future trajectory ht+T = statst+1 . . . at+T−1st+T of T transitions

(the planning horizon) starting from the current belief-state. Actions are se-

lected by following a fixed policy π̃, which is itself a function of the hyperstate,

V B Analysis 124

a ∼ π̃(〈s, h〉, ·). State transitions can be sampled according to the BAMDP dy-

namics, st′ ∼ P+(〈st′−1, ht′−1〉, at−1, 〈·, ht′−1at′−1·〉). However, this can be com-

putationally expensive since belief updates must be applied at every step of the

simulation. As an alternative, we use root sampling (as described in Section 3.1),

which only samples the dynamics Pk ∼ P (P|ht) once at the root for each simula-

tion k and then samples transitions according to st′ ∼ Pk(st′−1, at′−1, ·); we pro-

vide justification for this approach in Section 5.2. After the trajectory hT has been

simulated on a step, the Q-value is modified by updating w based on the data in

ht+T . Any incremental algorithm could be used, including SARSA, Q-learning,

or gradient TD (Sutton et al., 2009); we use a simple scheme to minimize an

appropriately weighted squared loss E[(Q(〈st′ , ht′〉, at′ ;w)−Rt′)2]:

∆w = α (Rt′ −Q(〈st′ , ht′〉, at′ ;w))∇wQ(〈st′ , ht′〉, at′ ;w), (5.1)

where α is the learning rate and Rt′ denotes the discounted return obtained from

history ht′ .1 In other words, we apply Monte-Carlo control to our search problem.

Algorithm 2 provides pseudo-code for this scheme; here we suggest using as the

fixed policy for simulation the ε−greedy policy π̃ε−greedy based on some given Q

value. Other policies could be considered (e.g., the UCT policy for search trees),

but are not the main focus of this chapter. Note that w is only updated at the end

of the recursion in Algorithm 2 using the data from a sampled trajectory, hence

the policy is fixed during a given simulation.

5.2 Analysis

To exploit general results on the convergence of classical RL algorithms for our

simulation-based search, it is necessary to show that, starting from the cur-

rent history, root sampling produces the appropriate distribution of rollouts. For

the purpose of this section, a simulation-based search algorithm includes Algo-

rithm 2 (with Monte-Carlo backups) but also incremental variants, as discussed
1The squared loss is weighted according to the distribution of belief-states visited from the

current state by executing the policy π̃.

V B Analysis 125

above, or BAMCP.

Let Dπ̃t be the rollout distribution function of forward-simulations that explicitly

updates the belief at each step (i.e., using P+): Dπ̃t (ht+T) is the probability den-

sity that history ht+T is generated when running that simulation from 〈st, ht〉,

with T the horizon of the simulation, and π̃ an arbitrary history policy. Similarly

define the quantity D̃t
π̃
(ht+T) as the probability density that history ht+T is gen-

erated when running forward-simulations with root sampling, as in Algorithm 2.

The following lemma, a generalization of Lemma 1 to a wider class of search

algorithms, shows that these two rollout distributions are the same.

Lemma 1 Dπ̃t (ht+T) = D̃π̃t (ht+T) for all policies π̃ : H × A → [0, 1] and for all

ht+T ∈ H of length t+ T .

Proof

A similar result has been obtained for discrete state-action spaces as Lemma 1

using an induction step on the history length. Here we provide a more intuitive

interpretation of root sampling as an auxiliary variable sampling scheme which

also applies directly to continuous spaces. We show the equivalence by rewriting

the distribution of rollouts. The usual way of sampling histories in simulation-

based search, with belief updates, is justified by factoring the density as follows:

p(ht+T |ht, π̃) = p(atst+1at+1st+2 . . . st+T |ht, π̃) (5.2)

= p(at|ht, π̃)p(st+1|ht, π̃, at)

p(at+1|ht+1, π̃) . . . p(st+T |ht+T−1, at+T , π̃) (5.3)

=
∏

t≤t′<t+T
π̃(ht′ , at′)

∏
t<t′≤t+T

p(st′ |ht′−1, π̃, at′−1) (5.4)

=
∏

t≤t′<t+T
π̃(ht′ , at′)

∏
t<t′≤t+T

∫
P
P (P|ht′−1)P(st′−1, at′−1, st′) dP,

(5.5)

which makes clear how each simulation step involves a belief update in order to

compute (or sample) the integrals. Instead, one may write the history density as

the marginalization of the joint over history and the dynamics P, and then notice

V B Analysis 126

that an history is generated in a Markovian way if conditioned on the dynamics:

p(ht+T |ht, π̃) =

∫
P
p(ht+T |P, ht, π̃)p(P|ht, π̃) dP (5.6)

=

∫
P
p(ht+T |P, π̃)p(P|ht) dP (5.7)

=

∫
P

∏
t≤t′<t+T

π̃(ht′ , at′)
∏

t<t′≤t+T
P(st′−1, at′−1, st′) p(P|ht) dP,

(5.8)

where Equation (5.8) makes use of the Markov assumption in the MDP. This

makes clear the validity of sampling only from p(P|ht), as in root sampling. From

these derivations, it is immediately clear that Dπ̃t (ht+T) = D̃π̃t (ht+T). �

The result in Lemma 1 does not depend on the way we update the value Q, or

on its representation, since the policy is fixed for a given simulation. Further-

more, the result guarantees that simulation-based searches will be identical in

distribution with and without root sampling. Thus, we have:

Corollary 1 Define a Bayes-adaptive simulation-based planning algorithm as a

procedure that repeatedly samples future trajectories ht+T ∼ Dπ̃t from the cur-

rent history ht (simulation phase), and updates the Q value after each simulation

based on the experience ht+T (special cases are Algorithms 1-2). Then such a

simulation-based algorithm has the same distribution of parameter updates with

or without root sampling. Asymptotically, this also implies that the two variants

share the same fixed-points, since the updates match in distribution.

For example, for a discrete environment we can choose a tabular representation

of the value function in history space. Applying the MC updates in eq. (5.1) re-

sults in a MC control algorithm applied to the sub-BAMDP from the root state.

This is exactly the (BA version of the) MC tree search algorithm BAMCP from

Chapter 3. The same principle can also be applied to MC control with func-

tion approximation with convergence results under appropriate conditions (Bert-

sekas, 2011b), although it is useful to point out that these theoretical results

are quite weak at the moment. Finally, more general updates such as gradient

V B History Features and Parametric Form for the Q-value 127

Q-learning could be applied with corresponding convergence guarantees (Maei

et al., 2010).

5.3 History Features and Parametric Form for the Q-

value

The quality of a history policy obtained using simulation-based search with a

parametric representation Q(〈s, h〉, a;w) crucially depends on the features asso-

ciated with the arguments of Q, i.e., the history, state and action. These features

should arrange for histories that lead to the same, or similar, beliefs to have the

same, or similar, representations, to enable appropriate generalization. This is

challenging since beliefs can be infinite-dimensional objects with non-compact

sufficient statistics that are therefore hard to express or manipulate. Learning

good representations from histories is also tough, for instance because of hid-

den symmetries (e.g., the irrelevance of the order of the experience tuples that

lead to a particular belief).

We propose a parametric representation of the belief at a particular planning

step based on sampling. That is, we draw a set of M independent MDP sam-

ples or particles U = {P1,P2, . . . ,PM} from the current belief bt = P (P|ht),

and associate each with a weight zUm(h), such that the vector zU (h) is a finite-

dimensional approximate representation of the belief based on the set U . We

will also refer to zU as a function zU : H → RM that maps histories to a feature

vector.

There are various ways one could design the zU function. It is computation-

ally convenient to compute zU (h) recursively as importance weights, just as in

a sequential importance sampling particle filter (Gordon et al., 1993); this only

assumes we have access to the likelihood of the observations (i.e., state transi-

tions). In other words, the weights are initialized as zUm(ht) = 1
M ∀m and are then

updated recursively using the likelihood of the dynamics model for that particle

of observations as zUm(has′) ∝ zUm(h)P (s′|a, s,Pm) = zUm(h)Pm(s, a, s′).

V B History Features and Parametric Form for the Q-value 128

One advantage of this definition is that it enforces a correspondence between the

history and belief representations in the finite-dimensional space, in the sense

that zU (h′) = zU (h) if belief(h) = belief(h′). That is, we can work in history space

during planning, alleviating the need for complete belief updates, but via a finite

and well-behaved representation of the actual belief — since different histories

corresponding to the same belief are mapped to the same representation.

This feature vector (i.e., zU (h)) can be combined with any function approximator.

In our experiments, we combine it with features of the current state and action,

φ(s, a), in a simple bilinear form:

Q(〈s, h〉, a;W) = zU (h)T W φ(s, a), (5.9)

where W is the matrix of learnable parameters adjusted during the search (eq.

5.1). Here φ(s, a) is a domain-dependent state-action feature vector as is stan-

dard in fully observable settings with function approximation. Special cases in-

clude tabular representations or forms of tile coding.

In the POMDP literature, as we mentioned in Chapter 2, a key idea to represent

beliefs is to sample a finite set of (possibly approximate) belief points (Pineau

et al., 2003; Thrun, 1999) from the set of possible beliefs in order to obtain a

small number of (belief-)states for which to backup values offline or in a forward

search setting (Kurniawati et al., 2008). In contrast, our sampling approach to

belief representation does not restrict the number of (approximate) belief points

since our belief features (z(h)) can take an infinite number of values, but it in-

stead restricts the dimension since we are dealing with infinite-dimensional belief

spaces. Our Monte-Carlo construction was also explored in the work of Wang

et al. (2012) to transform the BAMDP into a discrete-state POMDP using a finite

sample set from the prior distribution over dynamics. However, in that work, the

POMDP was then solved offline with no (further) generalization between beliefs,

and no opportunity to re-adjust the belief representation based on past experi-

ence. A function approximation scheme in the context of BA planning has been

considered by Duff (2003), in an offline actor-critic paradigm. However, this was

V B Experimental Results 129

in a discrete setting where counts could be used as features for the belief.

5.4 Experimental Results

We investigate empirically in three varied domains the combination of the para-

metric form in the last section, simulation-based search and Monte-Carlo back-

ups, collectively known as BAFA (for Bayes Adaptive planning with Function

Approximation).

The discrete Bernoulli bandit domain (Section 5.4.1) demonstrates dramatic ef-

ficiency gains due to generalization with convergence to a near Bayes-optimal

solution. The navigation task (Section 5.4.2) and the pendulum (Section 5.4.3)

demonstrate the ability of BAFA to handle non-trivial planning horizons for large

BAMDPs with continuous states. We provide comparisons to our BA tree-search

algorithm (BAMCP, Chapter 3), choosing a suitable discretization of the state

space for the continuous problems. For the pendulum we also compare to two

Bayesian, but not Bayes adaptive, approaches.

5.4.1 Bernoulli Bandit

Bandits have simple dynamics, yet they are still challenging for a generic Bayes-

Adaptive planner. Importantly, ground truth is sometimes available (Gittins et al.,

1989), so we can evaluate how far the approximations are from Bayes-optimality.

We consider a 2-armed Bernoulli bandit problem. We oppose an uncertain arm

with prior success probability p1 ∼ Beta(α, β) against an arm with known suc-

cess probability p0. We consider the scenario γ = 0.99, p0 = 0.2 for which the

optimal decision, and the posterior mean decision, frequently differ. Decision

errors for different values of α, β do not have the same consequence, so we

weight each scenario according to the difference between their associated Git-

tins indices. Define the weight as mα,β = |gα,β − p0| where gα,β is the Gittins

index for α, β; this is an upper-bound (up to a scaling factor) on the difference

between the value of the arms. The weights are shown in Figure 5.1-a.

V B Experimental Results B Height map navigation 130

α

β

2 4 6 8 10

5

10

15

0.2

0.4

0.6

0.8

(a) mα,β

10
3

10
4

10
5

0

0.5

1

1.5

2

Number of simulations

W
ei

gh
te

d
de

ci
si

on
 e

rr
or

BAFA, M=2

BAFA, M=5

BAFA, M=25

BAMCP (Tree−search)

Posterior Mean

(b)

Figure 5.1: (a) The weights mα,β . (b) Averaged (weighted) decision errors
for the different methods as a function of the number of simulations.

We compute the weighted errors over 20 runs for a particular method as Eα,β =

mα,β · P (Wrong decision for (α, β)), and report the sum of these terms across

the range 1 ≤ α ≤ 10 and 1 ≤ β ≤ 19 in Figure 5.1-b as a function of the number

of simulations.

Though this is a discrete problem, these results show that the value function

approximation approach, even with a limited number of particles (M) for the

history features, learns considerably more quickly than BAMCP. This is because

BAFA generalizes between similar beliefs.

5.4.2 Height map navigation

We next consider a 2-D navigation problem on an unknown continuous height

map. The agent’s state is (x, y, z, θ); it moves on a bounded region of the

(x, y) ∈ 8 × 8m plane according to (known) noisy dynamics. The agent

chooses between 5 different actions. The dynamics for (x, y) are (xt+1, yt+1) =

(xt, yt) + l(cos(θa), sin(θa)) + εεε, where θa corresponds to the action from this set

θa ∈ θ + {−π
3 ,−

π
6 , 0,

π
6 ,

π
3 }, εεε is small isotropic Gaussian noise (σ = 0.05), and

l = 1
3m is the step size.

Within the bounded region, the reward function is the value of a latent height

map z = f(x, y) which is only observed at a single point by the agent. The height

V B Experimental Results B Under-actuated Pendulum Swing-up 131

map is a draw from a Gaussian process (GP), f ∼ GP (0,K), using a multi-scale

squared exponential kernel for the covariance matrix and zero mean. In order to

test long-horizon planning, we downplay situations where the agents can simply

follow the expected gradient locally to reach high reward regions by starting the

agent on a small local maximum. To achieve this, we simply condition the GP

draw on a few pseudo-observations with small negative z around the agent and a

small positive z at the starting position, which creates a small bump (on average).

The domain is illustrated in Figure 5.2-a with an example map.

We compare BAMCP against BAFA on this domain, planning over 75 steps with a

discount of 0.98. Since BAMCP works with discrete state, we uniformly discretize

the height observations. For the state-features in BAFA, we use a regular tile

coding of the space; an RBF network leads to similar results. We use a common

set of a 100 ground truth maps drawn from the prior for each algorithm/setting,

and we average the discounted return over 200 runs (2 runs/map) and report

that result in Figure 5.2-b as a function of the planning horizon (T). This result

illustrates the ability of BAFA to cope with non-trivial planning horizons in belief

space. Despite the discretization, BAMCP is very efficient with short planning

horizons, but has trouble optimizing the history policy with long horizons because

of the huge tree induced by the discretization of the observations.

5.4.3 Under-actuated Pendulum Swing-up

Finally, we consider the classic RL problem in which an agent must swing a

pendulum from hanging vertically down to balancing vertically up, but given only

limited torque. This requires the agent to build up momentum by swinging, be-

fore being able to balance. Note that although a wide variety of methods can

successfully learn this task given enough experience, it is a challenging domain

for Bayes-adaptive algorithms, which have duly not been tried.

We use conventional parameter settings for the pendulum (Deisenroth et al.,

2009), a mass of 1kg, a length of 1m, a maximum torque of 5Nm, and coefficient

of friction of 0.05 kg m2 / s. The state of the pendulum is s = (θ, θ̇). Each time-

V B Experimental Results B Under-actuated Pendulum Swing-up 132

(a)
0 5 10 15 20 25

10

15

20

25

30

35

40

Planning horizon

D
is

c
o
u
n
te

d
 r

e
tu

rn

BAMCP K=2000

BAMCP K=5000

BAMCP K=15000

BAFA K=2000

BAFA K=5000

BAFA K=15000

(b)

Figure 5.2: (a) Example map showing with the height color-coded from
white (negative reward z) to black (positive reward z). The black dots
denote the location of the initial pseudo-observations used to obtain the
ground truth map. The white squares show the past trajectory of the agent,
starting at the cross and ending at the current position in green. The green
trajectory is one particular forward simulation of BAFA from that position.
(b) Averaged discounted return (higher is better) in the navigation domain
for discretized BAMCP and BAFA as a function of the number of simula-
tions (K), and as function of the planning horizon (x-axis).

step corresponds to 0.05s, γ = 0.98, and the reward function is R(s) = cos(θ).

In the initial state, the pendulum is pointing down with no velocity, s0 = (π, 0).

Three actions are available to the agent, to apply a torque of either {−5, 0, 5}Nm.

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

Time (s)

|θ
|

0 2 4 6 8 10 12 14 16 18 20

−5

0

5

A
c
ti
o

n
,

T
o

rq
u

e
 (

N
m

)

(a)

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

Time (s)

|θ
|

0 2 4 6 8 10 12 14 16 18 20

−5

0

5

A
c
ti
o

n
,

T
o

rq
u

e
 (

N
m

)

(b)

Figure 5.3: Two runs of BAFA on the pendulum domain. In each run this
is the first few seconds of interaction of the agent with the domain (time
refers to simulated time, not computation time). The runs are selected to
illustrate a typical good run (a) and a typical slower run (b). Top row shows
the absolute value of the pendulum angle θ. Bottom row shows the action
selection. Dotted line marks the π

4 region for up-states.

The agent does not initially know the dynamics of the pendulum. As in Deisen-

V B Experimental Results B Under-actuated Pendulum Swing-up 133

roth et al. (2009), we assume it employs independent Gaussian processes

to capture the state change in each dimension for a given action. That is,

sit+1 − sit ∼ GP (mi
a,Kia) for each state dimension i and each action a (where

kia are Squared Exponential kernels). Since there are 2 dimensions and 3 ac-

tions, we maintain 6 Gaussian processes, and plan in the joint space of (θ, θ̇)

together with the possible future GP posteriors to decide which action to take at

any given step.

0 5 10 15 20
0

0.1

0.2
BAFA

> 20
0

0.5

1

0 5 10 15 20
0

0.1

0.2
BAMCP

> 20
0

0.5

1

0 5 10 15 20
0

0.1

0.2
FA

> 20
0

0.5

1

0 5 10 15 20
0

0.1

0.2
THOMP

F
ra

c
ti
o

n

Time (s)

> 20
0

0.5

1

(a)

0 5 10 15 20
0

0.1

0.2
BAFA

> 20
0

0.5

1

0 5 10 15 20
0

0.1

0.2
BAMCP

> 20
0

0.5

1

0 5 10 15 20
0

0.1

0.2
FA

> 20
0

0.5

1

0 5 10 15 20
0

0.1

0.2
THOMP

F
ra

c
ti
o

n

Time (s)

> 20
0

0.5

1

(b)

Figure 5.4: Histogram of delay until the agent reaches its first balance state (|θ|<
π
4

for ≥ 3s) for different methods in the pendulum domain. (a) A standard version
of the pendulum problem with a cosine cost function. (b) A more difficult version of
the problem with uncertain cost for balancing (see text). There is a 20s time limit,
so all runs which do not achieve balancing within that time window are reported in
the red bar. The histogram is computed with 100 runs with (a) K = 10000, or (b)
K = 15000, simulations for each algorithm, horizon T = 50 and (for BAFA) M = 50
particles. The black dashed line represents the median of the distribution.

We compare four approaches on this problem to understand the contributions

of both generalization and Bayes-Adaptive planning to the performance of the

agent. BAFA includes both; we also consider two non-Bayes-adaptive vari-

ants using the same simulation-based approach with value generalization. In

a Thompson Sampling variant (THOMP), we only consider a single posterior

sample of the dynamics at each step and greedily solve using simulation-based

search. In an exploit-only variant (FA), we run a simulation-based search that op-

timizes a state-only policy over the uncertainty in the dynamics, this is achieved

by running BAFA with no history feature.2 For BAFA, FA, and THOMP, we use the
2The approximate value function for FA and THOMP thus takes the form Q(s, a) = wT φ(s, a).

V B Experimental Results B Under-actuated Pendulum Swing-up 134

same RBF network for the state-action features, consisting of around 900 nodes.

In addition, we also consider the BAMCP planner with a uniform discretization of

the θ, θ̇ space that worked best in a coarse initial search; this method performs

Bayes-adaptive planning but with no value generalization.

We allow each algorithm a maximum of 20s of interaction with the pendulum

(simulation time, and not computation time), and consider as up-state any con-

figuration of the pendulum for which |θ|≤ π
4 and we consider the pendulum bal-

anced if it stays in an up-state for more than 3s. We report in Figure 5.4-a

the time it takes for each method to reach for the first time a balanced state.

We observe that Bayes-adaptive planning (BAFA or BAMCP) outperforms more

heuristic exploration methods, with most runs balancing before 8.5s. Figure 5.3

shows traces of example runs. With the same parametrization of the pendulum,

Deisenroth et al. reported balancing the pole after between 15 and 60 seconds

of interaction when assuming access to a restart distribution (Deisenroth et al.,

2009). More recently, Moldovan et al. reported balancing after 12-18s of in-

teraction using a method tailored for locally linear dynamics (Moldovan et al.,

2013).

However, the pendulum problem also illustrates that BA planning for this partic-

ular task is not hugely advantageous compared to more myopic approaches to

exploration. We speculate that this is due to a lack of structure in the problem

and test this with a more challenging, albeit artificial, version of the pendulum

problem that requires non-myopic planning over longer horizons. In this modi-

fied version, balancing the pendulum (i.e., being in the region |θ|< π
4) is either

rewarding (R(s) = 1) with probability 0.5, or costly (R(s) = −1) with probabil-

ity 0.5; all other states have an associated reward of 0. This can be modeled

formally by introducing another binary latent variable in the model. These latent

dynamics are observed with certainty if the pendulum reaches any state where

|θ|≥ 3π
4 . The rest of the problem is the same. To approximate correctly the

Bayes-optimal solution in this setting, the planning algorithm must optimize the

belief-state policy after it simulates observing whether balancing is rewarding or

not. We run this version of the problem with the same algorithms as above and

V B Representing the Value Function 135

0 5 10 15 20
0

0.1

0.2 BAFA − M=1 (FA)

> 20
0

0.5

1

0 5 10 15 20
0

0.1

0.2 BAFA − M=2

> 20
0

0.5

1

0 5 10 15 20
0

0.1

0.2 BAFA − M=10

> 20
0

0.5

1

0 5 10 15 20
0

0.1

0.2 BAFA − M=20

> 20
0

0.5

1

0 5 10 15 20
0

0.1

0.2 BAFA − M=30

> 20
0

0.5

1

0 5 10 15 20
0

0.1

0.2 BAFA − M=40

> 20
0

0.5

1

0 5 10 15 20
0

0.1

0.2 BAFA − M=50

F
ra

c
ti
o

n

Time (s)

> 20
0

0.5

1

Figure 5.5: Histogram of delay until the agent reaches its first balance state
(|θ|< π

4
for ≥ 3s). The algorithm is BAFA, for different values of the number of

particles in the belief representation (M), in the modified version of the pendulum
problem with hidden costs. All the other parameters are as in Figure 3-b in the main
text. We observe that around 20 particles are needed to obtain some reasonable
performance in this domain. Increasing the number of particles past a certain point
provides a diminishing return, since it requires more parameter to learn.

report the results in Figure 5.4-b. This hard planning problem highlights more

clearly the benefits of Bayes-adaptive planning and value generalization. Our

approach manages to balance the pendulum more than 80% of the time, com-

pared to about 35% for BAMCP, while THOMP and FA fail to balance for almost

all runs. Figure 5.5 illustrates the influence of the number of particles M on the

performance of BAFA.

5.5 Representing the Value Function

It is known that the value function for the BAMDP is convex as a function of the

belief for a particular state (Duff, 2002; Porta et al., 2006); it is piecewise linear

if the horizon is finite and the state and action spaces are discrete. Suppose,

V B Conclusion 136

for simplicity, that states and beliefs are represented exactly (i.e., for example

assuming discrete states and zU (h) = b(h)), then the bilinear form we introduced

in Section 3.3 to represent the value function approximates the true convex value

function (for a given state as a function of the belief) with a single linear function:

Q(h, s, a; {ws}) = 〈b(h),ws〉. In general, this is not enough to represent exactly

the true value function, but our experiments suggest that it is enough to reason

approximately about the consequences of future beliefs.

We have also experimented with an alternative parametric form, an approxi-

mately piecewise linear form that combines multiple hyperplanes via a softmax:

Q(h, s, a; {Wi}) = k

√√√√ I∑
i

(zU (h)T Wi φ(s, a))k, (5.10)

inspired by the work of Parr and Russell in the context of POMDPs (Parr and

Russell, 1995). The constants k and I are fixed parameters that trade-off com-

putation and accuracy against the number of learnable parameters (the bilinear

form is recovered from the soft-max form using k = I = 1). Given sufficient

components, this form should be able to represesent the true value function ar-

bitrarily closely. However, in our experiments with this more general form, this

advantage was outweighed by its computational complexity, and it performed

poorly in practice.

5.6 Conclusion

We have introduced a tractable approach to Bayes-adaptive planning in large

or continuous state spaces. Our method is quite general, subsuming Monte

Carlo tree search methods, while allowing for arbitrary generalizations over in-

teraction histories using value function approximation. Our general framework

can be applied with more powerful methods for learning the parameters of the

value function approximation, and it can also be adapted to be used with con-

tinuous actions. We expect that further gains will be possible, e.g. from the use

of bootstrapping in the weight updates, alternative rollout policies, and reusing

V B Conclusion 137

values and policies between (real) steps. We will discuss some of these future

directions in more details in the final chapter.

VI

BAYES-ADAPTIVE PLANNING WITH

RICH STATISTICAL MODELS

OUTLINE
The motivation for this chapter is to demonstrate the practical
power of Bayes-adaptive planning. We show that, despite the
arduous optimization problem, sample-based planning approx-
imations can excel with rich models in realistic settings. Con-
versely, we show that more myopic forms of planning, when
equipped with the same probabilistic models, can perform dra-
matically worse.

VI 139

In Chapters 3-5, we developed sample-based algorithms for Bayes-adaptive

planning. These approximate the Bayes-optimal solution directly at each step.

This involves running many forward simulations to integrate over possible fu-

tures and optimize the policy, a costly process in spite of all of our approxima-

tion schemes. Given that Bayes-adaptive planning is computationally demand-

ing, particularly for complex models, it leaves open the possibility that it might

not be justified compared to heuristic approaches such as Thompson Sampling

(TS) that may perform very similarly at a much reduced computational cost. In-

deed, many Bayesian exploration-exploitation approaches that use complex pri-

ors side-step the planning problem by sampling from the posterior but only plan-

ning myopically (Asmuth et al., 2009; Doshi-Velez et al., 2010; Tziortziotis et al.,

2013). This chapter has two goals: first (Section 6.1) explaining through explicit

counter-examples the perils of myopia; second (Section 6.2) showing relevant

circumstances in which Bayes adaptivity is demonstrably worthwhile.

Skepticism about BA planning is rife, because of the apparently mediocre gains

it offers. We argue that this is because past work has largely been confined to

domains which lack substantial structure. The computational effort in planning

properly is only likely to pay off when experience can be shared extensively —

something that requires richly structured priors. In Section 6.2, we consider a

class of non-parametric priors based on the CRP that models shared structure

across sequences of tasks. We show that, despite the optimization cost, sample-

based Bayes-adaptive planning approximations can excel with such priors in

realistic settings — here a challenging exploration-exploitation task that uses real

data coming from a popular supervised learning problem (the UCI ’mushroom’

task) along with simulated extensions. The problems highlighted by the counter-

examples described above are real: the benefits of Bayesian inference can be

squandered by more myopic forms of planning — such as the provably over-

optimistic Thompson Sampling — which fails to account for risk in these tasks

and performs poorly. The experimental results highlight the fact that the Bayes-

optimal behavior adapts its exploration strategy as a function of the cost, the

horizon, and the uncertainty in a non-trivial but powerful way.

VI B Issues with Myopic Forms of Planning 140

6.1 Issues with Myopic Forms of Planning

Myopic forms of planning ignore the evolution of future beliefs when taking deci-

sions. They must then rely on other mechanisms to generate optimism so as to

to induce sufficient exploration. As we discussed in Section 2.2.4.3, there exist

different such mechanisms to derive optimism cheaply from the posterior (cer-

tainty equivalence, explicit reward bonuses, optimism from sampling). However,

not all of them can deal with the rich statistical models that we want to consider.

Certainty equivalence, which takes the posterior mean model as the true model,

is one such option. Its main flaw has already been largely documented (Dayan

and Sejnowski, 1996; Duff, 2002; Kumar, 1985): it does not generate enough

optimism — we exhibited examples of this in past chapters and provide another

example in the next section. Another option, generating optimism myopically via

posterior sampling, can also scale to large domains, but its flaws have not been

so well documented. We therefore consider it here.

Perhaps the most popular algorithm that generates optimism from sampling

is Thompson Sampling. Though heuristically myopic from the perspective of

Bayes-adaptivity, TS is computationally cheap, and has been proven to perform

well in various domains. Because it relies on the posterior distribution without the

burden of propagating (or filtering) beliefs when planning, it fits well with complex,

e.g., Bayesian non-parametric, models that in any case are handled via MCMC

sampling (Doshi-Velez et al., 2010). Further, as we described in Chapter 2, the

idea behind TS can be extended to combine multiple posterior samples and to

stick to a particular plan for multiple time steps. Though this way of deriving op-

timism may sometimes be appropriate when structure is lacking, or when only

studying the long-term behavior of the agent, the optimism generated by these

algorithms may not always be appropriate given the actual beliefs of the agent.

Given some prior and some horizon, the Bayes-optimal policy carefully chooses

what is worth exploring and in what order. The precise degree of justifiable opti-

mism is a complex function of the belief and other parameters. By contrast, blind

optimism is dangerous: failing to integrate over the posterior risks over-optimism

VI B Issues with Myopic Forms of Planning 141

from ignoring the potentially disastrous effect of some actions; being myopic

risks under-optimism from ignoring quick improvements to the state of knowl-

edge that some actions might deliver. Although these flaws may not be clearly

apparent when there is too much uncertainty, they can be quite pronounced

in scenarios in which some exploration-exploitation strategies are clearly better

than others according to particular beliefs. To better understand these modes

of failures, we consider four simple, and yet particularly pernicious, classes of

counter-example; other failure modes are illustrated in the results section below

in the context of larger domains.

Example 1

Consider an MDP consisting of a linear chain of 2x+1 states. Each interior state

admits 2 deterministic actions: going left or right. The only source of reward

(r = 1) is at either one or other end. The agent starts in the middle (state x+ 1),

and knows everything except the end which delivers the reward; each of the two

MDPs P has prior probability P (P) = 1
2 . The episode terminates after the reward

is obtained. See Figure 6.1 for an illustration. Critically, the only transition that

changes this belief is at an end. At each step, TS samples one of the chains,

and so heads for the end which that sample suggests is rewarding. Since this

depends on an unbiased coin flip, TS is effectively performing a random walk

with probability 1
2 of moving in either direction, and so takes O(x2) time to reach

an end (Moon, 1973). This is much worse than the linear time of the Bayes-

optimal policy which commits to a given direction by tie-breaking in the first step

and then maintains this direction to the end of the chain.1

w.p 1/2
w.p 1/2

Figure 6.1: Illustration of Example 1. The two possible chains with x = 3,
with green dots representing the reward states and the blue dot represent-
ing the start state.

1We note that a similar example has been independently put forward by Ortega and Braun
(2010).

VI B Issues with Myopic Forms of Planning 142

One might ascribe this failure to the fact that TS was developed for multi-armed

bandits, which lack temporally extended structure. TS has duly been adapted to

the MDP setting with the goal of controlling the expected regret. For instance,

the PSRL algorithm (Osband et al., 2013), which was inspired by Bayesian

DP (Strens, 2000), samples an MDP from the current posterior and executes

its optimal policy for several steps (or an entire episode). This way of exploring

an MDP bypasses the TS’s lack of commitment in Example 1, but can still be

problematic for discounted objectives, as illustrated in Example 2.

Example 2

Consider a slight modification of Example 1 where the start state is the second

state on the chain, so that with probability 1
2 the agent is only 1 step away from

the reward source (See Figure 6.2). Clearly, the Bayes-optimal solution is to go

left towards the nearest end first. The value of the policy at the start state is

V ∗ = 1
2(γ + γ2x+1). On the other hand, an algorithm that commits to a particular

policy based on a posterior sample will aim for the left or right end of the chain

equally often (since they are equally likely). The resulting value of such a strategy

is V = 1
4(γ + γ2x−2(1 + γ3) + γ4x−1), which gives V = 1

2V
∗ as x→∞.

w.p 1/2
w.p 1/2

Figure 6.2: Illustration of Example 2.

The BOSS (Asmuth et al., 2009) algorithm is a more complicated construction

that combines multiple posterior samples, Examples 3-4 illustrate a similar issue

with the kind of optimism it generates for exploration.

Example 3

Consider a single-step decision between two actions, a1 and a2, with uncertainty

in the payoff as follows. With probability p (case 1), action a1 leads to reward

VI B Issues with Myopic Forms of Planning 143

c1 < 0 and a2 leads to reward 0. With probability 1 − p (case 2), action a1 leads

to reward 1 and a2 leads to reward 0. This is illustrated in Figure 6.3.

Case 1 w.p p

a1 a2

r = c1 r = 0

Case 2 w.p (1− p)

a1 a2

r = 1 r = 0

Figure 6.3: The two possible payoff structures of Example 3.

Conventional TS in this example involves sampling one of the transitions ac-

cording to the prior and taking the corresponding optimal action. This results in

the following expected reward: VTS = E[r] = p(p · 0 + (1 − p) · 0) + (1 − p)(p ·

c1 + (1 − p) · 1) = (1 − p)(p · c1 + (1 − p)). If c1 is arbitrarily large and nega-

tive, VTS can be made arbitrarily bad. The Bayes-optimal policy integrates over

the possible outcomes, therefore it performs at least as well as always choosing

action a2 with an expected reward of 0. This implies V ∗ ≥ 0. The BOSS algo-

rithm (Asmuth et al., 2009) constructs an optimistic MDP based on K posterior

samples, so that the best action across all K samples is taken. In this example,

it is enough for a single sample of case 2 to be present in these K samples to

decide to take action a1 (since r2 > r1), resulting in the following value for BOSS

(denoting X to be the number of samples in the set of K samples of case 2):

V ex3
BOSS = P (X ≥ 1)(p · c1 + (1− p)) = (1− pK)(p · c1 + (1− p)) := z(K), which

is a decreasing function of K (since c1 < 0), showing the cost of this added

optimism.

Of course, we usually think of BOSS as being applied to MDPs with sequential

decisions, but one can readily transform Example 3 in an MDP by putting these

1-step decisions one after the other. We provide details of the construction in

Example 4.

Example 4

Consider linking together different instances of Example 3. The agent starts in

s0, and chooses between a1 and a2 with payoff described in Example 3. After

VI B NP Contextual Tasks 144

executing either action, the agent makes a transition to state s1, where the pro-

cess repeats until state sn, which itself transits back to s0. The outcome of a1

and a2 (determined by whether si is of case 1 or 2) is independent across states.

BOSS has a parameter B that decides the number of steps between posterior

resampling operations. However, B has no effect in this example for the first

n steps. To compute the value of BOSS’s policy from the initial belief state,

leveraging the independence assumption, we can employ the value analysis of

Example 3 for the first visit of every state. After every state gets visited once, the

transition in some states (where action a1 was chosen) will be uniquely known

and BOSS can perfectly exploit the MDP in these states. For simplicity, we bound

the value of the policy by assuming perfect knowledge of the MDP after the first

n states: V ex4
BOSS <

∑n
t=0 γ

tz(K) +
∑∞

t=n+1 γ
t(1 − p) = z(K)1−γn

1−γ + γn+1(1−p)
1−γ ,

where z(K) = (1−pK)(p ·c1 +(1−p)) (from Example 3). We can choose n large

to make the second term arbitrarily small, whereas the first term again depends

on c1 < 0, which we can make arbitrarily bad. Again, the value of the Bayes-

optimal policy in this example can easily be lower-bounded as V ∗ ≥ 0 since the

Bayes-optimal policy can at least choose action a2 at all times (no exploration).

We stress that PSRL and BOSS do enjoy strong theoretical guarantees for dif-

ferent objectives (expected regret and PAC-MDP); our goal of Bayes adaptivity

is a more severe objective because discounting exerts pressure to perform well

within a relatively shorter time horizon.

6.2 Non-parametric Contextual Tasks

We consider three exploration-exploitation domains that are composed of an

infinite sequence of related subtasks, whose associations are signalled by ac-

companying context vectors. In each domain, we employ a non-parametric prior

to model statistical sharing between the parameters of each subtask.

First, in Section 6.2.1, we examine a realistic domain based on a popular su-

pervised learning task where data were (likely) not generated from the prior.

VI B NP Contextual Tasks B Mushroom Task 145

This domain, despite its simple description, presents a challenging exploration-

exploitation trade-off, because many actions are significantly costly. Careful eval-

uation of the benefits of future exploitability is necessary in the light of the dis-

counted horizon.

Although (or perhaps because) the mushroom task is derived from real data, we

cannot be sure that the examples follow the prior. This motivates a richer, arti-

ficial, domain derived from generalizing the probabilistic model. In this second

domain, investigated in Section 6.2.2, we generate task instances directly from

the generative model and not from data. Since we have control over the param-

eters of the task generation, it is more revealing about the differences between

different methods of planning.

The internal dynamics in the subtasks are not sequential in the first two domains.

While this can already model many real settings, we consider in Section 6.2.3 an

extension of the model to a case of more general subtasks that are themselves

small MDPs.

6.2.1 The Mushroom Exploration Task

The Mushroom Dataset from the UCI repository (Bache and Lichman, 2013)

contains 8124 instances of gilled mushrooms from 23 different species in the

Agaricus and Lepiota family, each of which is described by discrete attributes

(e.g., color, odor, ring type) and whether the mushroom is poisonous or edible

(51.8% of all instances are edible). We build an MDP based on the data as

follows: at each point in time the agent is faced with the attributes of a random

mushroom from the dataset, and has to choose whether to eat or ignore it. Ignor-

ing a mushroom has no consequence; eating an edible mushroom is rewarding;

but eating a poisonous mushroom incurs a large cost. This is illustrated in Fig-

ure 6.4. The agent may be provided with some initial ’free’ observations of the

attributes and edibility of a set of mushrooms.

This problem is conventionally thought of in terms of supervised learning. How-

ever, since the agent is allowed to ignore a mushroom, it is actually more akin to

VI B NP Contextual Tasks B Mushroom Task 146

C
a
p

 S
h

a
p

e

S
ta

lk
 S

h
a
p

e

G
ill S

p
a
cin

g

P
o
p

u
la

tio
n

L
a
b

e
l

Figure 6.4: Illustration of the mushroom exploration domain, the rows rep-
resent the sequence of mushrooms, with the value of different attributes
being displayed on each column. The agent may eat the mushroom to
obtain a reward/cost (green/red circle) or choose to ignore it (black circle).

a contextual bandit task (Langford and Zhang, 2007). As briefly mentioned be-

fore, a contextual bandit problem is an extension of a multi-armed bandit problem

where a context vector is available at each round and which relates to the pay-

offs for each arm. However in our case, unlike most past work on contextual

bandits, early rewards are more valuable than later ones, characterized by a dis-

count factor γ. This is a critical difference from exploration objectives based on

regret that are dominated by the long-term behavior of the agent, and so fail ad-

equately to reward fast learning. In addition, unlike our approach, existing work

on contextual bandit rarely exploits the unsupervised learning that the context

affords even when no label is obtained.

More formally, the mushroom MDP consists of a sequence of mushroom tasks

parametrized by xτ where τ = 1, 2, Each parameter vector xτ contains

C = 22 scalar parameters x1
τ , . . . , x

C
τ to generate context (the mushroom at-

tributes), and a single scalar parameter xC+1
τ to generate the subtask dy-

namic (the outcome of eating the mushroom). Denoting n = C + 1, we have

xτ = (x1
τ , x

2
τ , . . . , x

n
τ). The MDP dynamics P can be described as follows. Let

S be the set of states, each of the form s = (τ, x1
τ , . . . , x

C
τ , oτ), where oτ = �

(meaning unobserved) if the mushroom was not eaten in task τ and oτ = xC+1
τ

otherwise. Choosing the exit action aexit increments the first state component

and updates the context and observation components. Choosing the eat action

aeat updates oτ = xC+1
τ and delivers a reward or cost. If the mushroom is edible,

VI B NP Contextual Tasks B Mushroom Task B Statistical Model 147

the reward is r = 5. If the mushroom is poisonous, the reward is r = −15.

6.2.1.1 A Simple Statistical Model

The key aspect of the mushroom task is the joint statistics over the characteris-

tics and danger of the mushrooms. The truth of the matter for the UCI data is

actually unclear; it is therefore a stringent test of a planning algorithm whether it

is possible to perform at all well based on what can only be a vague, and likely

inaccurate model. Our contribution here is to assume a general non-parametric

model that allows for substantial underlying complexity in the true model, but

adapts its ongoing characterization as a function of the evidence in the data that

has so far been observed. We employ one particularly popular non-parametric

model called the Chinese Restaurant Process (introduced in Section 2.3.2.2),

which postulates that the mushrooms come from a possibly infinite number of

mixture components.

The generative model of the mushroom statistics is formally described as follows:

α ∼ Gamma(a, b),

{zτ}∞τ=1 ∼ CRP(α)

θik ∼ Dirichlet(
β

Di
), ∀i ∈ {1, . . . , n},∀k ∈ Z+,

xiτ ∼ Categorical(θizτ) ∀i ∈ {1, . . . , n},∀τ ∈ Z+,

where α is the concentration parameter of the CRP, the z random variables are

the cluster assignments. The base measure of this Dirichlet process is assumed

to be a symmetric Dirichlet prior with hyperparameter β = 1 (Di is the dimension

of θi, the number of possible observations for xi), which together with the conju-

gate observation model, allows for relatively straightforward inference schemes

(see the appendix of this chapter for details). The collection {θik|i ∈ {1, . . . , n}}

of vectors contains the parameters corresponding to each mixture component

k. The task parameters xτ for a particular τ are drawn by first choosing a mix-

ture component zτ according to the CRP and then using the corresponding θzτ

VI B NP Contextual Tasks B Mushroom Task B Results 148

parameters to sample each component of xτ . The infinite-state, infinite-horizon

MDP is derived from this generative process by sampling an infinite sequence of

tasks (τ →∞) and patching them together.

The data at time t, ht, consist of all mushroom attributes and labels observed, in-

cluding the current mushroom subtask (and any initial ’free’ examples). The pos-

terior distribution over the dynamics P (P|ht) is then obtained straightforwardly

from the posterior over all past and future xτ (denoted x1:∞), P (x1:∞|ht), since

P is uniquely characterized by x1:∞.

For the mushroom data, we set Di = 12 for each context dimension i — the

maximum number of values for any of the 22 attribute dimensions in the data.

This implies 2·1222 ≥ 1024 possible configurations of mushrooms assumed by the

model. Since α is not known, we set a generic hyperprior on α ∼ Gamma(.5, .5).

6.2.1.2 Results in the Mushroom Task

We stress that the mushroom data were not really generated by the process

assumed in the previous section – this is what makes the task interesting as

a test case. Indeed, when the agent lacks prior data, maximizing the return

is highly challenging. Randomly eating mushrooms to sample the dataset is a

particularly bad strategy because of the cost asymmetry between edible and

poisonous mushrooms. A natural point of comparison is the policy of ignoring all

mushrooms, which leads to a neutral return of 0.

We ran the Bayes-adaptive agent (BAMCP) and TS using this statistical model

on the mushroom task. Since the concentration parameter is unknown, it is in-

ferred from data, both influencing, and being influenced by, the exploration. Re-

sults are reported in Figure 6.5a for three different numbers of ’free’ examples.

A surprising result is that the Bayes-adaptive agent manages to obtain a posi-

tive return when starting with no data, despite the mismatch between true data

and generative model. This demonstrates that abstract prior information about

structure can guide exploration successfully. Given exactly the same statistical

model, TS fails to match this performance. We speculate that this is due to over-

VI B NP Contextual Tasks B Mushroom Task B Results 149

0 5 15
−20

−10

0

10

20

30

40

Number of free data points

R
e

tu
rn

Thompson Sampling

BAMCP

(a)

0 5 15

−50

−40

−30

−20

−10

0

Number of free data points

R
e

tu
rn

Thompson Sampling (LogReg)

α−UCB (LogReg)

(b)

Figure 6.5: Exploration-Exploitation results on the mushroom dataset, af-
ter 150 steps with γ= 0.97. (a) Discounted return for BAMCP and TS with
the CRP model of Section 6.2.1, including hyperparameter inference. Ei-
ther starting from scratch from the prior (0 ’free’ data points), or from the
prior plus an initial random (labeled) data set of size 5 or 15. At most
75+{0, 5, 15} datapoints can be observed during these 150 steps. (b) Dis-
counted return for TS and α−UCB (with α = 1 and upper confidence ap-
proximation U0 as defined by Li et al. (2012)) when using the Bayesian
Logistic Regression model, and the same task setting as (a). Averaged
over 50 runs.

optimism — we provide some evidence for this in Figure 6.6 and investigate this

aspect further in Section 6.2.2. When initial data (incl. labels) is provided for free

to reduce the prior uncertainty, TS can improve its performance by a large margin

but its return remains inferior to a Bayes-adaptive agent in the same conditions.2

For the purposes of comparison, we also considered a simpler discriminative

statistical model, namely Bayesian Logistic Regression, which Li et al. (2012)

suggested for use in contextual bandits. In this model, the reward (between 0
2We also tested the PSRL version of TS (Osband et al., 2013), which commits to a policy for

1
1−γ steps. Performance was worse than for regular TS, an expected outcome, since PSRL takes
more time to integrate and react to new observations.

VI B NP Contextual Tasks B NP Bandit Sequence Model 150

0 50 100 150
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Step

E
a
ti
n
g
 m

u
s
h
ro

o
m

 /
 N

o
t
e
a
ti
n
g
 m

u
s
h
ro

o
m

 r
a
ti
o

BAMCP

Thompson

Figure 6.6: Average rate of exploitation of mushrooms over time for
BAMCP and TS for the domain described in Section 6.2.1, when start-
ing with no labelled observations (0 free data condition). For a given step,
the reported value is the fraction of time the agent chose to eat the current
mushroom (when it had the option to), rather than to skip it. Throughout
the duration of a run, and especially early on, TS is more willing to try
mushrooms than BAMCP.

and 1 before rescaling) for an action a in context x, denoted r(x,wa), is assumed

to be (1+exp(−xTwa))
−1, with wa ∼ N (0, I) the parameter vector for each arm.

TS and α−UCB (Li et al., 2012) are two ways to derive actions from the output of

the logistic regression model. TS samples the wa vectors from the posterior and

takes the greedy action. Algorithm α−UCB, following the idea of UCB for multi-

armed bandits, selects the action that maximizes E[r(x,wa)] +α
√

Var[r(x,wa)]

according to the posterior distribution on the weight vectors. Figure 6.5 shows

the results of applying TS and α−UCB with the logistic regression model in the

context of our exploration task. TS does worse with the logistic regression model

than with the CRP-based model; this demonstrates the added benefits of a prior

that captures many aspects of the data with only a few datapoints. The α−UCB

algorithm, despite good performance in the long-run on large datasets, is too

optimistic to perform well with discounted objectives.

6.2.2 Non-Parametric Contextual Bandit Sequence Model

The mushroom task can be seen as a sequence of subtasks that share struc-

ture, but whose order the agent cannot control. Other such domains are adap-

tive medical treatments where each patient can be understood as the subtask,

VI B NP Contextual Tasks B NP Bandit Sequence Model B Model 151

handling customer interactions, or making decisions to drill for oil at different

geological locations. In this section, we consider a generalized version of do-

mains with this characteristic form of shared structure. Further, by addressing

environments that were actually drawn from the model, we study planning in the

absence of model mis-match.

x1
τ x2

τ x3
τ

— f(x4
τ) f(x5

τ) f(x6
τ)

τ = 1 -10

τ = 2 1 -1

τ = 3 5 -10

τ = 4 5 0

τ = 5 -10

Figure 6.7: Example of a sample sequence of tasks from Section 6.2.2 with
C= 3, A = 3. The left columns indicate the context variables (each color
represents a possible value), and the right columns indicate the rewards
that have been observed in each task (black when the arm was not pulled).
On the left, the true clustering of the tasks (shared mixture component)
is displayed. The dictionary of context variables is composed of D = 5
different colors in this case.

6.2.2.1 Model

The key generalization is to allow multiple arms in each subtask (rather than a

single eat/exit decision). Using the same notation as Section 6.2.1, each param-

eter vector xτ now contains C scalar parameters x1
τ , . . . , x

C
τ to generate context,

and Y scalar parameters xC+1
τ , . . . , xC+Y

τ to generate the actual task dynam-

ics (i.e., denoting n = C+Y , we have xτ = (x1
τ , x

2
τ , . . . , x

n
τ)). The generative

model is identical otherwise, but now the choices of the agent in any particular

task τ are to either: 1) leave the subtask for the next; or 2) pull any of the Y

arms that has not been previously pulled. The MDP states are now of the form

s = (τ, x1
τ , . . . , x

C
τ , o

1
τ , . . . , o

Y
τ), where oaτ =� if arm a has not been pulled in task

τ and oaτ = xC+a
τ otherwise. Figure 6.7 shows the first part of a draw of the

generative process including a hypothetical agent trajectory.

The exact setting for the experiments is as portrayed in Figure 6.7: with C = 3

VI B NP Contextual Tasks B NP Bandit Sequence Model B Results 152

context cues, A = 3 arms in each task, and D = 5 possible values of x (i.e., the

dimension Di = 5 for each θ). The function f (that maps values of xa to rewards)

is 1-1 with the domain: {5, 2, 0,−1,−10}. We drew MDPs with different values of

the concentration parameter α ∈ {0.1, 0.5, 1, 2, 5, 10}. The agent was assumed to

know the generative structure of the MDP; but we considered both cases when it

knew the true value of α or just had a generic hyperprior on α ∼ Gamma(.5, .5),

and had to learn.

This can be seen again as a contextual bandit task with shared structure mod-

eled by a CRP. The difference in this model is that we give the option of playing

multiple arms for the same context (subtask). Many extensions are possible,

including more complex intra-task dynamics (we explore this avenue in Sec-

tion 6.2.3) and more general forms of shared structure; however we focus here

on planning rather than modeling.

6.2.2.2 Results on synthetic data

We investigate the behaviour and performance of Bayesian agents acting in

tasks sampled from the non-parametric model above. The reward mapping im-

plies that E[f(xa)]=−0.8<0 for all arms a and for all τ , since all values of xa are

equally likely a priori. Thus, again, the strategy πexit of always exiting subtasks

(without pulling any arms) is a fair comparison, with value 0 – a myopic plan-

ner based on the posterior mean only should never explore an arm, gaining this

value of 0. Any useful adaptive strategy should be able to obtain a mean return

of at least 0.

We concentrate on two metrics computed during the first 120 steps of the agent

in the environment: the discounted sum of rewards (the formal target for op-

timization; Figure 6.8a), and the number of times the agent decides to skip a

subtask before trying any of its arms (Figure 6.8b). The second metric relates

to the safe exploration aspect of this task; sometimes optimism is unwarranted

because it is more likely to lead to negative outcomes, even when taking into

account the long-term consequences of the potential information gain.

VI B NP Contextual Tasks B NP Bandit Sequence Model B Results 153

0.1 0.5 1 2 5 10

−10

−5

0

5

10

α
R

e
tu

rn

Thompson Sampling

BAMCP

(a)

0.1 0.5 1 2 5 10
0

20

40

60

80

100

α

N
u

m
b

e
r

o
f

ig
n

o
re

d
 s

u
b

ta
s
k
s

(b)

Figure 6.8: The performance of BAMCP and Thompson sampling on the
non-parametric bandit task (γ = 0.96) in terms of discounted return (a).
The concentration parameter α is known to the algorithm and varies on the
x-axis. In (b), the average number of subtasks ignored by each algorithm in
the different environmental conditions. Each plotted value is averaged over
200 runs of 120 steps (with 60K forward simulations per step).

We ran BAMCP and TS on the task. Figure 6.8 shows the performance as a

function of α, when this concentration parameter is known. When the concentra-

tion parameter α is small, there will only be a few different mixture components,

making for an easy case with little uncertainty about the identity of the mixture

components after a few observations, and therefore little uncertainty about the

outcome of an arm pull. In the limit of α → 0, only one cluster will exist and

the domain essentially degenerates to a form of multinomial multi-armed ban-

dit problem. As α grows, the identity of a given task’s cluster becomes more

uncertain and aliasing grows, so safe exploration becomes more challenging.

Learning is slower in that regime too, simply because there are more parameter

values to acquire. As α → ∞, every cluster will be different; this would prevent

any kind of generalization and the Bayes-optimal policy will be to skip every sub-

task τ (since the a priori expected values of the arms in any given subtask is

VI B NP Contextual Tasks B NP Bandit Sequence Model B Results 154

negative).

0.1 0.5 1 2 5 10

0

2

4

6

8

10

12

α

R
e
tu

rn

Known Alpha

Unknown Alpha

(a)

0.1 0.5 1 2 5 10
0

20

40

60

80

100

α

N
u

m
b

e
r

o
f

ig
n

o
re

d
 s

u
b

ta
s
k
s

(b)

Figure 6.9: Performance of BAMCP for various values of the concentra-
tion parameter α, with and without hyperparameter inference. The learned
Bayes-adaptive policy avoids more subtasks (b) but manages to maintain
a similar level of performance (a) despite the uncertainty over α. Aver-
aged over 200 runs with 60K simulations for each time step. The discount
parameter is γ = 0.96.

Figure 6.8 shows that BAMCP adapts its exploration-exploitation strategy ac-

cording to the structure in the environment; small values of α justify the risk of

exploring and incurring costs but this optimism progressively disappears as α

gets larger. This translates into positive return when generalization is feasible,

despite the marginal negative expected cost for each arm, and a return close

to 0 when costs cannot be avoided. On the other hand, TS suffers from over-

optimism across the board, leading to poor discounted returns, especially when

the number of mixture components is large. Intuition for TS’s poor performance

comes from considering an extreme case in which all or most subtasks are sam-

pled from a different cluster. Here, past experience provides little information

about the value of the arms for the current cluster; thus, discovering these val-

VI B NP Contextual Tasks B NP Bandit Sequence Model B Results 155

0.1 0.5 1 2 5 10
0

20

40

60

80

100

120

α
N

u
m

b
e

r
o

f
ig

n
o

re
d

 s
u

b
ta

s
k
s

BAMCP − γ = 0.95

BAMCP − γ = 0.96

Figure 6.10: In the domain described in Section 6.2.2.2, the average num-
ber of ignored subtasks over 120 steps when using BAMCP with either
γ = 0.95 or γ = 0.96 (Known α scenario). We see that a larger γ induces
more exploration and risk-taking (fewer subtasks are ignored), showing the
sensitivity of Bayes-Adaptive planning to the horizon.

ues (which, on average, is expensive) is not likely to help in the future. However,

TS samples a single configuration of the arm, mostly informed by the prior in

this situation, which likely results in at least one of the arms as having a pos-

itive outcome (for the prior, we repeat 3 times a draw having 2
5 probability of

success, so p = 0.784). TS then, incorrectly, picks this putatively positive arm

rather than exiting. Other myopic sample-based exploration strategies, such as

Bayesian DP (Strens, 2000) or BOSS (Asmuth et al., 2009), would suffer from

similar forms of unwarranted optimism — since they also rely on one or more

posterior samples according to which they act greedily (see Examples 3-4 in

Section 6.1).

A yet more challenging scenario arises when α is not known to the agent. A

Bayesian agent starts with a uninformative (hyper-)prior on α in order to infer

the value from data, it also takes into account during planning how its belief

about this hyperparameter changes over time. In Figure 6.9, we observe that

the Bayes-adaptive agent explores more conservatively when α is unknown. As

expected, this results in lower returns (compared to when α is known). However,

robustness to increased uncertainty is shown by the modest difference.

In Figure 6.10, we also show that BAMCP is sensitive to the discount factor,

highlighting the dependence of the exploration-exploitation strategy to the hori-

zon.

VI B NP Contextual Tasks B CRP mixture of MDPs 156

6.2.3 CRP mixture of MDPs

To illustrate that our methodology is not restricted to tasks resembling contextual

bandits, we consider an extension of the problem in Section 6.2.2 in which each

subtask is a random MDP of a particular class, with contextual information being

informative about the class. This extension is loosely motivated by the follow-

ing oil exploration problem. Possible drilling sites are considered in a sequence;

each site comes with some particular known contextual information (e.g., geo-

logical features). One can ignore a drilling site, or (buy acreage and) run one of

two types of terrain preparation strategies. The outcomes of these two strategies

is the potential for either natural gas or crude oil. Finally, one has to make a final

choice about how to exploit (e.g., the type of extraction process), which results

in a stochastic payoff for this drilling site: either dry hole with many expenses or

a profitable exploitation.

6.2.3.1 Model

We model this task as in Section 6.2.2, with each drilling site corresponding to

a cluster/subtask τ . To establish the transitions between states, additional xτ

variables are necessary, in addition to the variables already modeling context

and rewards.

Figure 6.11: The extension of the CRP mixture model to MDPs, modelling
an intermediate decision within each subtask before getting a payoff.

VI B NP Contextual Tasks B CRP mixture of MDPs B Model 157

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

Pairs of actions index (sorted per run)

F
re

q
u

e
n

c
y

α = 0.1

Thompson Sampling

BAMCP

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

Pairs of actions index (sorted per run)

F
re

q
u
e
n
c
y

α = 5

Thompson Sampling

BAMCP

(a)

Step

C
u

m
u

la
tiv

e
 r

e
tu

rn

0 50 100 150
-15

-10

-5

0

5

10

15

20

(b)

Figure 6.12: (a) Intratask exploration-exploitation statistics for BAMCP and
TS in the drilling problem for α = 0.1 (left) and α = 5 (right). The distribution
of action pairs (sorted in each run) executed inside the MDP subtasks that
were explored by the agent. Mean over 100 runs. (b) Comparison of the
cumulative return as a function of the time step for BAMCP (red) and TS
(blue). Solid lines: α = 0.1, dotted line: α = 5.

From the starting state of a subtask, s0, there are three possible actions: to

ignore a drilling site (aexit), or the two terrain preparation strategies (a0 and a1).

After taking a0 or a1, the agent moves to either s1 or s2 based on the value of

these additional xτ variables. From these states, the choice of extraction strategy

corresponds to actions a2 and a3.

The payoff r1,3 from executing action a3 in s1 in subtask τ is determined by

the binary variable x1,3
τ as r1,3 = f(x1,3

τ), where f(0) = −1.5 (dry hole) and

f(1) = 1 (profitable exploitation). In the generative model, x1,3
τ (and other xi,jτ) is

determined like the other xτ variables in Section 6.2.2. The model is illustrated

in Figure 6.11.

VI B NP Contextual Tasks B CRP mixture of MDPs B Results 158

6.2.3.2 Results

The performance of BAMCP and TS on simulated data closely resemble that in

the contextual bandits of Section 6.2.2. BAMCP adaptively ignores, explores, or

exploits drilling sites depending on the environmental statistics. As in the other

examples, with the same statistical model, TS acts too optimistically to do well in

terms of discounted return and is less inclined to ignore subtasks. Figure 6.12-

a shows that BAMCP is also more conservative when acting within each MDP

when α is large, compared to TS. The dynamics of the cumulative return as a

function of the steps is presented in Figure 6.12-b.

6.3 Conclusion

We provided empirical evidence that agents can greatly benefit from non-myopic

Bayes-adaptive planning in tasks with sufficient structured prior knowledge —

even if that prior only approximately captures the true dynamics of the environ-

ment, as in the mushroom-exploration task. While this conclusion has previously

been reached on intuitive grounds, an explicit demonstration of Bayes-adaptive

planning using rich models had not previously been possible because of the al-

gorithmic obstacles that our sample-based planning methods are designed to

vault. Here, we showed these obstacles can be overcome using the sample-

based methods developed in this thesis. Furthermore, our results indicate that

the cheaper, myopic, planning methods relied on in past work cannot be as effec-

tive at selecting appropriate exploration-exploitation strategies in the Bayesian

setting.

VI B Inference Details 159

Appendix: Inference Details for the CRP-based Models

For all the CRP-based sequence models, we use a (Rao-Blackwellized) Gibbs

sampler, as described, for example, in Sudderth (2006), to sample the assign-

ment of subtasks to clusters (z), the cluster parameters (θ). We use an auxiliary

variable trick from Escobar and West (1995) for tractable inference of the con-

centration parameter α. A couple of Gibbs sweeps are performed between every

BAMCP simulation. This thinning is not necessary for convergence but it helps

when running BAMCP with a finite number of simulations. For Thompson Sam-

pling, we burn in the chain with 500 Gibbs sweep before selecting the sample

used for a particular step; the performance of Thompson Sampling was not af-

fected by the length of the burn in period past some minimum threshold.

Given a setting of the cluster assignments and cluster parameters for the ob-

served subtasks (obtained from the Gibbs sampler), the future subtasks xt:∞

are sampled by running the generative model forward conditioned on the inferred

variables. To improve the planning speed, posterior samples can be memoized

at the root of the search tree. The simulations pick uniformly from a fixed-size

pool of previously generated samples, a pool that gets slowly regenerated with

new posterior samples.

VII

DISCUSSION

Our thesis is that sample-based, online, reinforcement-learning methods can be

employed to realize the benefits of Bayes-adaptive planning in large domains

with complex priors. We first summarize our main contributions, and then dis-

cuss the wider context of our work, some relevant open questions, and important

avenues for future investigation.

7.1 The BAMCP Algorithm

In Chapter 3, we suggested a sample-based algorithm for Bayesian RL called

BAMCP. The main idea is to employ Monte-Carlo tree search to explore the aug-

mented Bayes-adaptive search space efficiently. The naive implementation of

that idea is an algorithm that we called BA-UCT. However, BA-UCT cannot cope

with most priors because it employs expensive belief updates inside the search

tree. We therefore introduced three modifications to obtain a computationally

tractable sample-based algorithm: root sampling, which only requires beliefs to

be sampled at the start of each simulation (based on the work of Silver and Ve-

VII B Bayes-Adaptive Planning with Function Approximation 161

ness (2010)); a model-free RL algorithm that learns a rollout policy; and a lazy

sampling scheme that enables the posterior beliefs to be sampled cheaply. Fur-

thermore, we proved that BAMCP converges to the Bayes-optimal solution, even

when MCMC-based posterior sampling is employed.

In Chapter 4, we showed that BAMCP significantly outperformed many exist-

ing Bayesian RL algorithms, as well non-Bayesian approaches, on several well-

known benchmark problems. While it is important to run comparisons on these

standard domains, the domains are quite small and are associated with un-

structured priors. Therefore, they are not representative of the sort of domains

for which we expect Bayes-adaptive planning to be specially advantageous.

BAMCP is particularly well suited to support planning in large domains in which

richly structured prior knowledge makes lazy sampling both possible and effec-

tive. This offers the prospect of applying Bayesian RL at a realistically complex

scale. We illustrated this possibility by showing that BAMCP can tackle a do-

main with an infinite number of states and a structured prior over the dynamics,

a challenging, if not radically intractable, task for existing approaches. This ex-

ample highlights BAMCP’s ability to use Markov chain Monte Carlo methods for

inference associated with the posterior distribution over models.

7.2 Bayes-Adaptive Planning with Function Approxima-

tion

In Chapter 5, we addressed generalization in Bayes-Adaptive planning, propos-

ing a generic simulation-based search method that can operate with reduced

representations of the history of the interaction between agent and environment.

Our method, BAFA, subsumes various existing tree-based approaches such as

BAMCP. It allows the values accorded to nearby belief-states to be shared –

each simulation is no longer an isolated path in an exponentially growing tree,

but can impact many non-visited beliefs and states. We proposed a parametric

form for the action-value function that relies on a generic sampled representation

for the history based on a Monte-Carlo approximation of the belief. To reduce the

VII B Bayes-Adaptive Planning with Rich Statistical models 162

computational complexity of each simulation, we exploited root sampling, show-

ing that it is valid for a large class of planning methods that includes BAFA and

BAMCP.

7.3 Bayes-Adaptive Planning with Rich Statistical mod-

els

We argued in Chapter 4 that the prime motivation for paying the price of Bayes

adaptivity is its power in structured domains. In Chapter 6, we considered some

such tasks that are richer than the product model of Chapter 4. To create a more

realistic problem, we derived a contextual bandit problem from the UCI mush-

room dataset, through the medium of a Bayesian non-parametric model. In this

challenging exploration-exploitation domain, we demonstrated the feasibility and

advantages of using a Bayes-Adaptive, or fully Bayesian, agent. Furthermore,

we showed that alternative, over-optimistic, myopic planning methods such as

Thompson Sampling can run into severe problems that BAMCP avoids through

explicit lookahead computations.

7.4 Discussion and Future Work

We consider four overlapping facets of the thesis. The first topic addresses the

problem definition itself, namely by questioning the objective employed in our

work on BA control (Section 7.4.1). Second, we discuss the impact and na-

ture of the priors that play a large role in the behavior of Bayes-adaptive agents

(Section 7.4.2). Turning more directly to the focus of this thesis, we discuss

the algorithmic issues of online BA planning and how our contributions could

be extended to deal with larger problems while minimizing computation (Sec-

tion 7.4.3). Finally, in a section on modeling animal learning, we provide a brief

perspective on the existence and implementation of Bayesian adaptive control

mechanisms in biological systems (Section 7.4.4).

VII B Discussion/Future Work B About the Objective 163

7.4.1 About the Objective

Bayesian adaptive control has been studied typically in the context of a

geometrically-discounted infinite-horizon objective — or an undiscounted objec-

tive in the finite-horizon setting. Discounting makes future rewards worth less

and has a huge impact on behavior. It is pervasive in RL, and more generally in

control, and can be justified in different ways (Schwartz, 1993).

Normatively, discounting can reflect some general uncertainty about being able

to enjoy rewards in the future. For the geometrically discounted case, it corre-

sponds to a constant probability of death, γ, at every step. While convenient, the

agent may have some other ways of valuing future rewards that would induce

different kinds of discounting, for example a variable discount depending on the

state. Even if largely unexplored, these other forms of discounting could be in-

corporated in the Bayes-Adaptive framework if the application domain justifies

it.

A more pragmatic reason to rely on discounting is to avoid dealing with an undis-

counted sum of rewards that can be infinite. An alternative is to define objectives

in terms of average rewards. There are multiple notions of optimality for the av-

erage reward setting. We mentioned gain and bias optimality in Chapter 2, but

more stringent objectives exist. One of particular importance is called Blackwell

optimality; a notion which encompasses bias-optimality but that also relates to

the limiting case of the discounted objective — this can be seen as another jus-

tification for discounting. Even in the fully-observable case, average reward ob-

jectives are much less studied than discounted objectives. In partially-observed

settings, the average setting is barely mentioned. It is an open question as to

whether these objectives are always well-defined when acting under uncertainty

in the infinite or non-ergodic domains derived from belief-space dynamics. More

importantly, even if the objective is well-defined, algorithms to optimize a Bayes-

optimal policy in the average reward setting have not been developed yet.

In undiscounted problems, an alternative to Bayesian average reward objectives

is to consider minimizing the regret (Section 2.1.2.1). The regret formulation

VII B Discussion/Future Work B About the Objective 164

also accounts for the performance during the learning period. Nevertheless, it

is typically more forgiving of early transgressions. A Bayesian agent can be

more conservative or aggressive in its exploration in a way justified by its prior

in order to maximize every last bit of expected reward. Algorithms that optimize

regret need to be conservative in their learning since missing an opportunity for

exploitation in any environment will have dramatic consequences on its regret

rate bounds. These algorithms are therefore more willing to accept the short

term costs induced by over-exploration. By focusing on a learning mechanism

to reduce the regret rate in all cases, rather than on optimizing the sequence of

steps from any given state, learning can be done with much less computation.

More generally, we can ask whether these maximization objectives for adap-

tive control are sufficient to elicit complex behavior such as curiosity and skill-

learning (Schmidhuber, 1991). We believe many of these behaviors can emerge

from simple reward maximization principles if the agent has appropriately struc-

tured priors and if there is enough justification for generalization (Dayan, 2013).

However, this has not been tested thoroughly. One reason is that it stretches the

capacity of existing planning algorithms because such behavior requires a long,

coherent, exploration plan. We can envision that complex exploratory behav-

iors, if they recur across environments, may be compressed into pre-compiled

policies, forming a learning curriculum, that are much less computationally de-

manding to execute but almost as effective, albeit at the cost of flexibility.

A related open problem is to understand which classes of domains will truly

benefit from the computations of Bayes-Adaptive planning (such as the ones

explored in Chapter 6), and which will be adequately served with a simpler

exploration-exploitation approach. Indeed, one can come up with examples for

which additional computation barely matters, in that the gains are vanishingly

small (e.g., the Gittins indices for a multi-armed bandit problem with γ ≈ 1 are

hard to obtain, but many myopic policies would do well in that scenario, see for

example Ortega and Braun (2010)).

VII B Discussion/Future Work B About Priors 165

7.4.2 About Priors

In past work, the priors employed in combination with Bayesian stochastic control

have frequently been selected for computational convenience rather than mod-

eling accuracy. In supervised learning, the data distribution is usually fixed, so

the prior then principally informs inference in low-data regimes. By contrast, the

closed-loop interaction in RL causes the data distribution to be shaped according

to the agent’s original beliefs. This implies that a prior can have a long-standing

effect on learning. Priors that are misaligned with the true distribution of the

environment can be deleterious for a control setting and introduce maladaptive

behavior — we showed examples of this in the infinite grid task in Chapter 4.

For this reason, it is essential to look beyond computational convenience and

incorporate in the prior the environment structure that we want to model. In

recent years, there has been a slow appearance of richer prior distributions in

model-based RL that actually reflect credible beliefs about the structure of the

environment.

While the Bayesian toolbox is constantly growing with more sophisticated priors

and better inference tools, it still remains challenging to build statistical models

for large, complex, domains. Of the various options, non-parametric priors seem

particularly well-suited to capture the complexity of the environment at a level

supported by the data. Combining these priors in a hierarchical manner has the

potential to deliver flexible and structured models for RL. For scalability, it may

help to combine them with energy-models for unsupervised learning to perform

feature extraction from low-level representations (Salakhutdinov et al., 2013).

Another flexible tool is probabilistic programming, a general framework for rep-

resenting complex generative models in a natural way (Milch et al., 2007). This

leads to easier modeling, especially when causal prior knowledge is available.

Though efficient inference schemes are still lacking, we see it as a promising

tool to be combined with Bayesian model-based RL. To reduce the reliance on

human intervention in designing agents, other promising approaches for large-

scale modeling may take advantage of architectures that can learn a generative

VII B Discussion/Future Work B About Priors 166

model from past experience (Dayan et al., 1995).

Priors license different sorts of generalization. When modeling domains, al-

though some of that generalization will emerge from domain-specific features,

it may be essential to consider more abstract properties of environments that

will enable generalization across many domains. An example of such property

is the notion of controllability, which describes whether an agent can reliably

achieve certain outcomes in the environment (Huys and Dayan, 2009). With-

out specifying precise beliefs on the nature of low-level dynamics, priors about

such abstract properties, combined with some learning, can exert substantial

influence on the behavior of the agent and improve its fitness.

In this thesis, we focused on priors about dynamics — both transition and re-

ward dynamics, since it is the dynamics that are uncertain. However, agents

are ultimately interested only in optimal policies. One could derive the prior over

the optimal policy implicitly implied by the prior over the dynamics. However, it

might be more direct to put a prior on the optimal policy itself (Doshi-Velez et al.,

2010). Agents might even have priors on both optimal policies and dynamics,

and whereas certain combinations may result in incoherent beliefs (priors on the

environment implicitly imply priors on policies through a complex mapping), it

would be interesting to consider using the beliefs on policies to refine the search

process during online planning.

Finally, in the same way that the true reward function is not necessarily the re-

ward function that can best be employed by a learning system with bounded

resources (Sorg et al., 2010), we speculate that there might be ways to alter the

prior a constrained agent employs for planning to improve behavior. In particular,

it may not be optimal to rely on the true belief to optimize the objective under that

same belief. For example, an architecture that relies on Monte-Carlo methods

may need to overestimate rare but significant events under the prior in order to

account for them in the planning.

VII B Discussion/Future Work B Online Planning 167

7.4.3 About Online Planning

One may be dissatisfied with the avalanche of approximations that results from

the proposed approaches for adaptive control based on planning with beliefs.

While we are optimistic that some special cases will be solved in more satisfy-

ing ways (e.g., through reductions, just like the Gittins indices for bandits), the

general problem has long resisted complete solutions. If the problem is truly

intractable, lacking general shortcuts, we face a classic dilemma between ap-

proximating the problem (e.g., by changing the objective) or the solution. The

work in this thesis has tried to argue that directly approximating the solution to

this intractable problem can be worth the effort, and at the same time can be

done in principled ways. In this section, we continue this approach and discuss

three ways in which Bayes-Adaptive planning could be further scaled up to larger

domains.

7.4.3.1 Temporal Abstractions

The discount factor implies that there is an effective horizon for forward-planning.

Since search grows exponentially with the horizon, high discount factors can be

computationally prohibitive for planning. In fully-observable domains, a powerful

idea is to rely on temporal abstractions (Sutton et al., 1999) to select time-scales

at which planning is easier to perform. Instead of selecting primitive actions dur-

ing search, one can employ macro-actions — abstractions for policy fragments

that may take several time-steps to execute. By taking bigger jumps with each

decision, planning can be done over longer time-scales with less effort.

Investigation of these ideas has begun for the case of general POMDPs (Lim

et al., 2011), but has yet been applied to the special case of BA planning. Al-

though attractive, there are some obstacles to planning under model uncertainty

with such temporal abstractions. First, the macro-actions need to be defined.

Even in fully-observable domains, there does not exist any generic way of deriv-

ing macro-actions that can help with planning. Typically, these macro-actions are

hand-tuned based on the known solution to a domain. In a BA setting, it is even

VII B Discussion/Future Work B Online Planning B Meta-Control 168

less clear which macro-actions should be employed, since the value of a macro-

action for planning is likely to depend on the agent’s belief. It might be that the

structure in the prior distribution could be leveraged to generate good temporally

extended actions. Second, although planning with macro-actions reduces the

number of action nodes during forward search, the branching to (augmented)

state nodes is large because, done naively, the entire sub-history seen during

the macro-action matters in taking the next decision — since nodes should be

labeled by their history or belief. To minimize these branching issues, it would

be useful to consider function approximation, as we did with BAFA in Chapter 5,

to generalize the value between different augmented states.

7.4.3.2 Meta-Control

In the framework we studied, the agent’s own decision-making processes are

assumed to be cost-free (and the environment remains in stasis until the deci-

sion is registered). In real environments, planning consumes internal resources.

Moreover, time spent planning is time that is not spent on exploring and exploit-

ing external resources. In some situations, additional planning time may trans-

late into significantly improved behavior. But the same amount of planning time

and resource may not always improve the performance of the agent at all. To

take into account these planning costs and trade-offs dynamically, it is useful to

consider internal states, actions and costs (Hay et al., 2012). The internal state

gathers all the internal variables that are maintained as part of the planning pro-

cess. This involves quantities like the estimated value for future states, the time

spent on planning, or various visitation statistics. Internal actions have no (di-

rect) effect on the external world, but they make explicit all the internal decisions

based on internal states that constitute a planning algorithm. One of these de-

cisions is to stop planning and execute a real action; other internal actions may

decide to search some promising part of the state space based on the current

internal state.

Because Bayes-adaptive planning is so computationally demanding and may

VII B Discussion/Future Work B Online Planning B Memory 169

not always yield a high return on computational investment, we see meta-level

control as a necessary component to allocate planning resources in an intelli-

gent and dynamic way. One particularly attractive idea is to leverage information

encoded in the prior, such as controllability, to determine whether planning is

worth the computational effort (Lieder et al., 2013). In a way, the UCT policy

in BAMCP is a primitive example of such resource allocation mechanisms, but

there are many more variables to control and many more ways to control them.

7.4.3.3 Long Term Memories

We introduced planning methods as if it there is a clear dichotomy between on-

line and offline planning. Given the difficulty posed by scaling offline approxima-

tions for Bayes-adaptive planning, we chose to focus on online planning mecha-

nisms. However, online and offline planning need not be treated as incompatible

paradigms.

In its purest form, online planning optimizes the current action from scratch

at every step. Instead, online planning can incorporate information from past

searches, but also from some offline computations. In our BAMCP algorithm, the

tree computed at the previous planning step can be used to bootstrap planning

for the current time-step by starting from the corresponding computed subtree.

Similarly, in the BAFA algorithm, the parameter values computed in previous

time-steps can be used to warm-start the learning as long as the same particles

are employed across steps. Another form of long-term memory is the rollout

learning mechanism in BAMCP that learns a state-value function to help in all

planning steps.

More generally, as in the Dyna 2 architecture (Silver et al., 2012), we could

learn a representation of the value for all augmented states offline, or across

steps. This value would then be combined with a local value representation that

is learned at each time step during online planning. If appropriate representa-

tions can be found, then online planning could be greatly accelerated from these

global representations. This also resonates with the meta-control idea in the last

VII B Discussion/Future Work B About Modeling 170

section; if there exists enough certainty about the value, or superiority, of an ac-

tion in a particular belief-state according to some learned global representation,

then it is not necessary to perform some expensive planning operations.

7.4.4 About Modeling

As we mentioned in the first chapter, we expect that animals also face adap-

tive control problems, since they must act in the face of substantial uncertainty

about their environment. There is solid evidence that animals such as rodents

learn models of the environment (Tolman, 1948) and use them to make deci-

sions (Dickinson and Balleine, 2002), including recent suggestions that forms

of sample-based forward-planning may be involved (Pfeiffer and Foster, 2013).

There is also evidence that some aspects of perception in animals can be well

explained by modeling it as Bayesian inference influenced by prior distributions

about natural (or learned) statistics. However, there is little data about animals

(or humans) combining Bayesian inference and planning to perform some kind

of Bayesian adaptive planning (Acuña and Schrater, 2010; Daw et al., 2006;

Huys and Dayan, 2009).

At the same time, there are suggestions (Daw et al., 2005; Keramati et al., 2011;

Pezzulo et al., 2013) that forms of meta-control are present that can arbitrate

between different types of controllers present in the brain and can adaptively

allocate resources for planning based on internal states. We have described

scenarios, including ethologically relevant ones such as the mushroom explo-

ration task in Chapter 6, where Bayes-adaptive planning can have a substantial

advantage using a moderate amount of computation. We expect similar scenar-

ios to arise across animal niches, making it plausible that some animal brains

would benefit from a mechanism to plan in belief-space in order to achieve these

gains. We speculate that, if these systems are present, they would learn to rely

on expensive Bayes-adaptive computations only if this is likely to be beneficial

(at least sufficiently beneficial as to compensate the costs of computation).

To uncover whether such a mechanism is present, we need to find instrumen-

VII B Final Words 171

tal tasks for which the (presumed) meta-controller would judge it worthwhile to

allocate a substantial amount of planning resources, if that decision process is

conducted in a model-based way. An existing, or easily learned, representa-

tion for beliefs about the task dynamics should also be ideally present to opti-

mize some belief-policy incrementally, or to help during planning. Even if such

planning takes place, it is unclear whether the necessary approximations im-

plemented in neurological tissues, with heavy constraints on resources, would

have anything to do with the forms of sample-based planning methods we pro-

posed; this would have to be tested by looking at various behavioral signatures in

the data. An alternative is that animals and humans simply employ finely-tuned

heuristics, akin to reward bonuses, to provide a cheap approximation to optimal

exploration-exploitation. While such Pavlovian biases may be effective in natural

historical environments, this should lead to inapppropriate behavior when mak-

ing important decisions in uncertain settings not well captured by the animal’s

evolutionary history.

7.5 Final Words

In sum, properly integrating exploration and exploitation has been a central con-

cern since the earliest days of normative approaches to sequential decision mak-

ing. However, despite its theoretical elegance, the empirical impact of these

concerns has been diminished by two linked factors: integration is most valu-

able in the context of richly structured models of uncertainty that specify broad

patterns of generalization; but such structured models have hitherto posed in-

surmountable computational challenges. Here, we have shown how to address

these challenges by exploiting modern RL techniques, providing scalability to

large, and even formally infinite, domains, and thus further closing the gap to

fully-Bayesian agents in real-world applications.

BIBLIOGRAPHY

Acuña, D. E. and Schrater, P. (2010). Structure learning in human sequential

decision-making. PLoS computational biology, 6(12). (pages 13 and 170)

Agrawal, R. (1995). Sample mean based index policies with O(log n) regret

for the multi-armed bandit problem. Advances in Applied Probability, pages

1054–1078. (page 47)

Agrawal, S. and Goyal, N. (2012). Analysis of Thompson sampling for the multi-

armed bandit problem. In Proceedings of the 25th Annual Conference on

Learning Theory (COLT). Arxiv preprint. (page 48)

Aldous, D. J. (1985). Exchangeability and related topics. Springer. (page 79)

Araya-López, M., Buffet, O., and Thomas, V. (2012). Near-optimal BRL using op-

timistic local transitions. In Proceedings of the 29th International Conference

on Machine Learning. (pages 43 and 71)

Arrow, K. J., Blackwell, D., and Girshick, M. A. (1949). Bayes and minimax so-

lutions of sequential decision problems. Econometrica, Journal of the Econo-

metric Society, pages 213–244. (pages 83 and 84)

Asmuth, J., Li, L., Littman, M., Nouri, A., and Wingate, D. (2009). A Bayesian

sampling approach to exploration in reinforcement learning. In Proceedings

of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pages

19–26. (pages 64, 71, 76, 77, 81, 139, 142, 143, and 155)

173

Asmuth, J. and Littman, M. (2011). Approaching Bayes-optimality using Monte-

Carlo tree search. In Proceedings of the 27th Conference on Uncertainty in

Artificial Intelligence, pages 19–26. (pages 21, 69, 108, 112, and 122)

Asmuth, J. T. (2013). Model-based Bayesian reinforcement learning with

generalized priors. PhD thesis, Rutgers University-Graduate School-New

Brunswick. (pages 43 and 77)

Astrom, K. J. (1965). Optimal control of markov decision processes with incom-

plete state estimation. Journal of Mathematical Analysis and Applications,

10(1):174–205. (page 44)

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the

multiarmed bandit problem. Machine learning, 47(2):235–256.

(pages 14, 47, and 62)

Auer, P., Jaksch, T., and Ortner, R. (2009). Near-optimal regret bounds for re-

inforcement learning. Advances in neural information processing systems,

21:89–96. (page 64)

Auer, P. and Ortner, R. (2010). UCB revisited: Improved regret bounds for the

stochastic multi-armed bandit problem. Periodica Mathematica Hungarica,

61(1):55–65. (page 47)

Bache, K. and Lichman, M. (2013). UCI machine learning repository, mushroom

dataset. http://archive.ics.uci.edu/ml/datasets/Mushroom. (page 145)

Baird, L. et al. (1995). Residual algorithms: Reinforcement learning with function

approximation. In Proceedings of the International Conference on Machine

Learning, pages 30–37. (page 56)

Bar-Shalom, Y. and Tse, E. (1974). Dual effect, certainty equivalence, and

separation in stochastic control. Automatic Control, IEEE Transactions on,

19(5):494–500. (page 85)

Barnard, G. A. (1946). Sequential tests in industrial statistics. Supplement to

the Journal of the Royal Statistical Society, pages 1–26. (page 84)

http://archive.ics.uci.edu/ml/datasets/Mushroom

174

Bartlett, P. L. and Baxter, J. (2011). Infinite-horizon policy-gradient estimation.

Journal of Artificial Intelligence Research, 15:319–350. (page 52)

Beal, M. J., Ghahramani, Z., and Rasmussen, C. E. (2001). The infinite hidden

Markov model. In Advances in Neural Information Processing Systems, pages

577–584. (page 81)

Bellman, R. (1954). The theory of dynamic programming. Bulletin of the Ameri-

can Mathematical Society, 60(6):503–515. (page 51)

Bellman, R. (1956). A problem in the sequential design of experiments. Sankhyā:

The Indian Journal of Statistics, pages 221–229. (page 29)

Bellman, R. and Kalaba, R. (1959). On adaptive control processes. Automatic

Control, IRE Transactions on, 4(2):1–9. (pages 16, 48, and 84)

Bertsekas, D. and Tsitsiklis, J. (1996). Neuro-dynamic programming. Athena

Scientific. (pages 12 and 53)

Bertsekas, D. P. (2011a). Approximate dynamic programming. (page 52)

Bertsekas, D. P. (2011b). Approximate policy iteration: A survey and some new

methods. Journal of Control Theory and Applications, 9(3):310–335.

(page 126)

Bertsekas, D. P. and Shreve, S. E. (1978). Stochastic optimal control: The dis-

crete time case, volume 139. Academic Press New York. (pages 37, 41, and 42)

Brafman, R. and Tennenholtz, M. (2003). R-max-a general polynomial time algo-

rithm for near-optimal reinforcement learning. The Journal of Machine Learn-

ing Research, 3:213–231. (pages 64 and 70)

Cassandra, A. R., Kaelbling, L. P., and Littman, M. L. (1994). Acting optimally in

partially observable stochastic domains. In Association for the Advancement

of Artificial Intelligence, volume 94, pages 1023–1028. (page 65)

Castro, P. and Precup, D. (2007). Using linear programming for Bayesian explo-

ration in Markov decision processes. In Proceedings of the 20th International

Joint Conference on Artificial Intelligence, pages 2437–2442. (page 69)

175

Castro, P. and Precup, D. (2010). Smarter sampling in model-based Bayesian

reinforcement learning. In Machine Learning and Knowledge Discovery in

Databases, pages 200–214. Springer. (pages 71, 108, and 112)

Coquelin, P. and Munos, R. (2007). Bandit algorithms for tree search. In Pro-

ceedings of the 23rd Conference on Uncertainty in Artificial Intelligence, pages

67–74. (page 62)

Cozzolino, J., Gonzalez-Zubieta, R., and Miller, R. (1965). Markov decision pro-

cesses with uncertain transition probabilities. Technical report, 11, Operations

Research Center, MIT. (pages 70 and 84)

Davies, S., Ng, A., and Moore, A. (1998). Applying online search techniques to

reinforcement learning. In Proceedings of the National Conference on Artificial

Intelligence, pages 753–760. (page 58)

Daw, N., Niv, Y., and Dayan, P. (2005). Uncertainty-based competition between

prefrontal and dorsolateral striatal systems for behavioral control. Nature Neu-

roscience, 8(12):1704–1711. (page 170)

Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B., and Dolan, R. J.

(2006). Cortical substrates for exploratory decisions in humans. Nature,

441(7095):876–879. (page 170)

Dayan, P. (2013). Exploration from generalization mediated by multiple con-

trollers. In Intrinsically Motivated Learning in Natural and Artificial Systems,

pages 73–91. Springer. (pages 13 and 164)

Dayan, P., Hinton, G. E., Neal, R. M., and Zemel, R. S. (1995). The Helmholtz

machine. Neural computation, 7(5):889–904. (page 166)

Dayan, P. and Sejnowski, T. (1996). Exploration bonuses and dual control. Ma-

chine Learning, 25(1):5–22. (pages 70 and 140)

Dearden, R., Friedman, N., and Russell, S. (1998). Bayesian Q-learning. In

Proceedings of the National Conference on Artificial Intelligence, pages 761–

768. (pages 106, 107, and 108)

176

Deisenroth, M. and Rasmussen, C. (2011). PILCO: A model-based and data-

efficient approach to policy search. In Proceedings of the 28th International

Conference on Machine Learning, pages 465–473. (pages 76, 77, 82, and 122)

Deisenroth, M. P., Neumann, G., and Peters, J. (2013). A survey on policy search

for robotics. Foundations and Trends in Robotics, 2(1-2):1–142. (page 33)

Deisenroth, M. P., Rasmussen, C. E., and Peters, J. (2009). Gaussian process

dynamic programming. Neurocomputing, 72(7):1508–1524.

(pages 82, 122, 131, 132, and 134)

Dickinson, A. and Balleine, B. (2002). The role of learning in the operation of

motivational systems. Stevens’ handbook of experimental psychology.

(page 170)

Doshi-Velez, F. (2009). The infinite partially observable Markov decision process.

In Advances in Neural Information Processing Systems, volume 22, pages

477–485. (pages 77 and 81)

Doshi-Velez, F., Wingate, D., Roy, N., and Tenenbaum, J. (2010). Nonparamet-

ric Bayesian policy priors for reinforcement learning. In Advances in Neural

Information Processing Systems. (pages 76, 139, 140, and 166)

Duff, M. (2002). Optimal Learning: Computational Procedures For Bayes-

Adaptive Markov Decision Processes. PhD thesis, University of Mas-

sachusetts Amherst. (pages 17, 21, 41, 45, 48, 66, 67, 75, 85, 114, 135, and 140)

Duff, M. (2003). Design for an optimal probe. In Proceedings of the 20th Interna-

tional Conference on Machine Learning, pages 131–138. (pages 68 and 128)

Escobar, M. D. and West, M. (1995). Bayesian density estimation and inference

using mixtures. Journal of the american statistical association, 90(430):577–

588. (page 159)

Fel’dbaum, A. (1960). Dual control theory. Automation and Remote Control,

21(9):874–1039. (page 84)

177

Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems.

The annals of statistics, pages 209–230. (page 78)

Fienberg, S. E. (2006). When did Bayesian inference become ”Bayesian”?

Bayesian analysis, 1(1):1–40. (page 83)

Fonteneau, R., Busoniu, L., and Munos, R. (2013). Optimistic planning for belief-

augmented Markov decision processes. In IEEE International Symposium on

Adaptive Dynamic Programming and reinforcement Learning (ADPRL 2013).

(page 68)

Friedman, N. and Singer, Y. (1999). Efficient Bayesian parameter estimation in

large discrete domains. In Advances in Neural Information Processing Sys-

tems, pages 417–423. (pages 75, 76, and 107)

Gelly, S., Kocsis, L., Schoenauer, M., Sebag, M., Silver, D., Szepesvári, C., and

Teytaud, O. (2012). The grand challenge of computer Go: Monte Carlo tree

search and extensions. Communications of the ACM, 55(3):106–113.

(pages 21 and 62)

Gelly, S. and Silver, D. (2007). Combining online and offline knowledge in UCT.

In Proceedings of the 24th International Conference on Machine learning,

pages 273–280. (page 95)

Gittins, J. and Jones, D. (1974). A dynamic allocation index for the sequential

design of experiments. In Gani, J., editor, Progress in Statistics, pages 241–

266. North-Holland, Amsterdam, NL. (pages 14, 17, and 29)

Gittins, J., Weber, R., and Glazebrook, K. (1989). Multi-armed bandit allocation

indices. Wiley Online Library. (pages 48, 67, 99, 100, and 129)

Good, I. J. (1979). Studies in the history of probability and statistics. XXXVII AM

Turing’s statistical work in World War II. Biometrika, 66(2):393–396. (page 84)

Gordon, N. J., Salmond, D. J., and Smith, A. F. (1993). Novel approach to

nonlinear/non-Gaussian Bayesian state estimation. In IEE Proceedings F

(Radar and Signal Processing), volume 140, pages 107–113. (page 127)

178

Goschin, S., Weinstein, A., Littman, M. L., and Chastain, E. (2012). Planning in

reward-rich domains via PAC bandits. In European Workshop on Reinforce-

ment Learning, pages 25–42. (page 33)

Griffiths, T. and Ghahramani, Z. (2005). Infinite latent feature models and the

Indian buffet process. (page 81)

Guez, A., Silver, D., and Dayan, P. (2012). Efficient Bayes-adaptive reinforce-

ment learning using sample-based search. In Advances in Neural Information

Processing Systems (NIPS), pages 1034–1042. (page 122)

Hart, P., Nilsson, N., and Raphael, B. (1968). A formal basis for the heuristic de-

termination of minimum cost paths. Systems Science and Cybernetics, IEEE

Transactions on, 4(2):100–107. (page 58)

Hay, N., Russell, S., Tolpin, D., and Shimony, S. E. (2012). Selecting computa-

tions: Theory and applications. arXiv preprint arXiv:1207.5879. (page 168)

Howard, R. A. (1960). Dynamic Programming and Markov Processes.

(pages 31 and 51)

Huys, Q. and Dayan, P. (2009). A Bayesian formulation of behavioral control.

Cognition, 113(3):314–328. (pages 13, 73, 76, 166, and 170)

Huys, Q. J., Guitart-Masip, M., Dolan, R. J., and Dayan, P. (2014). Decision-

theoretic psychiatry. Clinical Psychological Science. (page 73)

Jaksch, T., Ortner, R., and Auer, P. (2010). Near-optimal regret bounds for re-

inforcement learning. The Journal of Machine Learning Research, 99:1563–

1600. (pages 35 and 36)

Jung, T. and Stone, P. (2010). Gaussian processes for sample efficient reinforce-

ment learning with rmax-like exploration. In Machine Learning and Knowledge

Discovery in Databases, pages 601–616. Springer. (page 82)

Kaelbling, L. (1993). Learning in embedded systems. The MIT Press. (page 47)

Kakade, S. (2003). On the sample complexity of reinforcement learning. PhD

thesis, University College London. (pages 34, 35, and 64)

179

Kearns, M., Mansour, Y., and Ng, A. (1999). A sparse sampling algorithm for

near-optimal planning in large Markov decision processes. In Proceedings

of the 16th international joint conference on Artificial intelligence-Volume 2,

pages 1324–1331. (pages 20, 59, and 70)

Kearns, M. and Singh, S. (2002). Near-optimal reinforcement learning in poly-

nomial time. Machine Learning, 49(2):209–232. (page 64)

Kelly, F. et al. (1981). Multi-armed bandits with discount factor near one: The

Bernoulli case. The Annals of Statistics, 9(5):987–1001. (page 50)

Keramati, M., Dezfouli, A., and Piray, P. (2011). Speed/accuracy trade-off be-

tween the habitual and the goal-directed processes. PLoS computational bi-

ology, 7(5). (page 170)

Kleinberg, R. D. (2004). Nearly tight bounds for the continuum-armed bandit

problem. In Advances in Neural Information Processing Systems, pages 697–

704. (page 29)

Kocsis, L. and Szepesvári, C. (2006). Bandit based Monte-Carlo planning. In

Machine Learning: ECML, pages 282–293. Springer.

(pages 21, 62, 98, and 101)

Kolter, J. and Ng, A. (2009). Near-Bayesian exploration in polynomial time. In

Proceedings of the 26th Annual International Conference on Machine Learn-

ing, pages 513–520. (pages 43, 71, 108, and 112)

Korf, R. E. (1990). Real-time heuristic search. Artificial intelligence, 42(2):189–

211. (page 20)

Kumar, P. (1985). A survey of some results in stochastic adaptive control. SIAM

Journal on Control and Optimization, 23(3):329–380.

(pages 16, 38, 85, and 140)

Kurniawati, H., Hsu, D., and Lee, W. S. (2008). SARSOP: Efficient point-based

POMDP planning by approximating optimally reachable belief spaces. In

Robotics: Science and Systems, pages 65–72. (pages 66 and 128)

180

Lai, T. and Robbins, H. (1985). Asymptotically efficient adaptive allocation rules.

Advances in applied mathematics, 6(1):4–22. (pages 14, 27, 28, 46, and 47)

Langford, J. and Zhang, T. (2007). The epoch-greedy algorithm for contextual

multi-armed bandits. Advances in Neural Information Processing Systems,

20:1096–1103. (pages 29 and 146)

Lazaric, A. and Ghavamzadeh, M. (2010). Bayesian multi-task reinforcement

learning. In Proceedings of the International Conference on Machine Learn-

ing. Citeseer. (page 76)

Li, L. (2009). A unifying framework for computational reinforcement learning

theory. PhD thesis, Rutgers, The State University of New Jersey. (page 64)

Li, L., Chu, W., Langford, J., Moon, T., and Wang, X. (2012). An unbiased offline

evaluation of contextual bandit algorithms with generalized linear models. In

JMLR Workshop: On-line Trading of Exploration and Exploitation 2.

(pages 149 and 150)

Lieder, F., Goodman, N. D., and Huys, Q. J. (2013). Controllability and resource-

rational planning. In Computational and Systems Neuroscience Conference.

(page 169)

Lim, Z., Sun, L., and Hsu, D. J. (2011). Monte carlo value iteration with macro-

actions. In Advances in Neural Information Processing Systems, pages 1287–

1295. (page 167)

Maei, H., Szepesvári, C., Bhatnagar, S., and Sutton, R. (2010). Toward off-policy

learning control with function approximation. In Proceedings of the Interna-

tional Conference on Machine Learning, pages 719–726. Citeseer.

(pages 56 and 127)

Mahadevan, S. (1996). Average reward reinforcement learning: Foundations,

algorithms, and empirical results. Machine learning, 22(1-3):159–195.

(page 32)

181

Mannor, S. and Tsitsiklis, J. (2004). The sample complexity of exploration in

the multi-armed bandit problem. The Journal of Machine Learning Research,

5:623–648. (page 35)

Martin, J. (1967). Bayesian decision problems and Markov chains. Wiley.

(pages 17, 36, 41, 75, and 84)

McAllester, D. A. and Singh, S. (1999). Approximate planning for factored

pomdps using belief state simplification. In Proceedings of the Fifteenth con-

ference on Uncertainty in artificial intelligence, pages 409–416. (page 66)

Meuleau, N. and Bourgine, P. (1999). Exploration of multi-state environments:

Local measures and back-propagation of uncertainty. Machine Learning,

35(2):117–154. (pages 47, 70, and 108)

Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D. L., and Kolobov, A. (2007).

Blog: Probabilistic models with unknown objects. Statistical relational learning,

page 373. (page 165)

Moldovan, T. M., Jordan, M. I., and Abbeel, P. (2013). Dirichlet process rein-

forcement learning. In Reinforcement Learning and Decision Making Meeting.

(page 134)

Monahan, G. E. (1982). State of the art—a survey of partially observable markov

decision processes: Theory, models, and algorithms. Management Science,

28(1):1–16. (page 65)

Moon, J. (1973). Random walks on random trees. Journal of the Australian

Mathematical Society, 15(01):42–53. (page 141)

Neal, R. M. (1993). Probabilistic inference using markov chain monte carlo meth-

ods. Technical report, University of Toronto. (page 99)

Niño-Mora, J. (2007). A (2/3) n3 fast-pivoting algorithm for the gittins index and

optimal stopping of a markov chain. INFORMS J. Comput, 19(4):596–606.

(page 50)

182

Orbanz, P. and Teh, Y. W. (2010). Bayesian nonparametric models. In Encyclo-

pedia of Machine Learning. Springer. (page 77)

Ortega, P. A. and Braun, D. A. (2010). A minimum relative entropy principle for

learning and acting. Journal of Artificial Intelligence Research, 38(1):475–511.

(pages 141 and 164)

Osband, I., Russo, D., and Van Roy, B. (2013). (more) efficient reinforcement

learning via posterior sampling. In Advances in Neural Information Processing

Systems (NIPS). (pages 35, 64, 70, and 142)

Parr, R. and Russell, S. (1995). Approximating optimal policies for partially ob-

servable stochastic domains. In International Joint Conference on Artificial

Intelligence, volume 95, pages 1088–1094. (page 136)

Pezzulo, G., Rigoli, F., and Chersi, F. (2013). The mixed instrumental controller:

using value of information to combine habitual choice and mental simulation.

Frontiers in psychology, 4. (page 170)

Pfeiffer, B. E. and Foster, D. J. (2013). Hippocampal place-cell sequences depict

future paths to remembered goals. Nature, 497(7447):74–79. (page 170)

Pineau, J., Gordon, G., and Thrun, S. (2003). Point-based value iteration: An

anytime algorithm for POMDPs. In International Joint Conference on Artificial

Intelligence, volume 18, pages 1025–1032. (pages 66 and 128)

Porta, J., Vlassis, N., Spaan, M., and Poupart, P. (2006). Point-based value

iteration for continuous POMDPs. The Journal of Machine Learning Research,

7:2329–2367. (pages 45, 66, and 135)

Poupart, P., Vlassis, N., Hoey, J., and Regan, K. (2006). An analytic solution to

discrete Bayesian reinforcement learning. In Proceedings of the 23rd interna-

tional conference on Machine learning, pages 697–704. (pages 66 and 68)

Puterman, M. (1994). Markov decision processes. John Wiely and Sons, New

York. (pages 15, 29, 32, and 52)

183

Raiffa, H. and Schlaifer, R. (1961). Applied statistical decision theory.

(pages 67 and 84)

Rasmussen, C. E. (2006). Gaussian processes for machine learning. (page 81)

Robbins, H. (1952). Some aspects of the sequential design of experiments.

Bulletin of the American Mathematical Society, 58(5):527–535.

(pages 14 and 27)

Ross, S. (1983). Introduction to stochastic dynamic programming: Probability

and mathematical. Academic Press, Inc. (page 51)

Ross, S. and Pineau, J. (2008). Model-based bayesian reinforcement learning

in large structured domains. In Proceedings of the 24th Conference in Uncer-

tainty in Artificial Intelligence, pages 476–483. (pages 21, 69, 76, and 122)

Ross, S., Pineau, J., Chaib-draa, B., and Kreitmann, P. (2011). A Bayesian

approach for learning and planning in Partially Observable Markov Decision

Processes. Journal of Machine Learning Research, 12:1729–1770. (page 45)

Ross, S., Pineau, J., Paquet, S., and Chaib-Draa, B. (2008). Online planning

algorithms for POMDPs. Journal of Artificial Intelligence Research, 32(1):663–

704. (pages 21 and 66)

Salakhutdinov, R., Tenenbaum, J. B., and Torralba, A. (2013). Learning with

hierarchical-deep models. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 35(8):1958–1971. (page 165)

Schmidhuber, J. (1991). Curious model-building control systems. In IEEE Inter-

national Joint Conference on Neural Networks, pages 1458–1463.

(pages 70 and 164)

Schwartz, A. (1993). A reinforcement learning method for maximizing undis-

counted rewards. In Proceedings of the International Conference on Machine

Learning, volume 93, pages 298–305. (pages 31, 32, and 163)

184

Silver, D., Sutton, R. S., and Müller, M. (2012). Temporal-difference search in

computer Go. Machine learning, 87(2):183–219.

(pages 24, 62, 63, 121, 122, and 169)

Silver, D. and Veness, J. (2010). Monte-Carlo planning in large POMDPs. In

Advances in Neural Information Processing Systems, pages 2164–2172.

(pages 21, 22, 66, 87, 93, 96, 98, and 160)

Silver, E. (1963). Markovian decision processes with uncertain transition proba-

bilities or rewards. Technical report, DTIC Document. (page 84)

Singh, S., Jaakkola, T., Littman, M. L., and Szepesvári, C. (2000). Convergence

results for single-step on-policy reinforcement-learning algorithms. Machine

Learning, 38(3):287–308. (page 63)

Singh, S. P. and Sutton, R. S. (1996). Reinforcement learning with replacing

eligibility traces. Machine learning, 22(1-3):123–158. (page 54)

Smallwood, R. and Sondik, E. (1973). The optimal control of partially observable

markov processes over a finite horizon. Operations Research, pages 1071–

1088. (page 65)

Sonin, I. (2008). A generalized gittins index for a markov chain and its recursive

calculation. Statistics and Probability Letters, 78(12):1526–1533. (page 50)

Sorg, J., Singh, S., and Lewis, R. (2010). Internal rewards mitigate agent bound-

edness. In Proceedings of the 27th International Conference on Machine

Learning. (page 166)

Spaan, M. and Vlassis, N. (2005). Perseus: Randomized point-based value

iteration for POMDPs. Journal of Artificial Intelligence Research, 24(1):195–

220. (page 66)

Strehl, A., Li, L., and Littman, M. (2009). Reinforcement learning in finite MDPs:

PAC analysis. The Journal of Machine Learning Research, 10:2413–2444.

(page 35)

185

Strehl, A., Li, L., Wiewiora, E., Langford, J., and Littman, M. (2006). PAC model-

free reinforcement learning. In Proceedings of the 23rd international confer-

ence on Machine learning, pages 881–888. (pages 34 and 64)

Strehl, A. L. and Littman, M. L. (2005). A theoretical analysis of model-based

interval estimation. In Proceedings of the 22nd international conference on

Machine learning, pages 856–863. (pages 47 and 64)

Strens, M. (2000). A Bayesian framework for reinforcement learning. In Pro-

ceedings of the 17th International Conference on Machine Learning, pages

943–950. (pages 70, 76, 106, 107, 108, 142, and 155)

Sudderth, E. B. (2006). Graphical models for visual object recognition and track-

ing. PhD thesis, Massachusetts Institute of Technology. (page 159)

Sutton, R. (1990). Integrated architectures for learning, planning, and reacting

based on approximating dynamic programming. In Proceedings of the Sev-

enth International Conference on Machine Learning, volume 216, page 224.

Citeseer. (page 70)

Sutton, R. and Barto, A. (1998). Reinforcement learning. MIT Press.

(pages 13, 53, and 55)

Sutton, R., Maei, H., Precup, D., Bhatnagar, S., Silver, D., Szepesvári, C., and

Wiewiora, E. (2009). Fast gradient-descent methods for temporal-difference

learning with linear function approximation. In Proceedings of the 26th Annual

International Conference on Machine Learning, pages 993–1000. ACM.

(page 124)

Sutton, R. S., Precup, D., and Singh, S. (1999). Between MDPs and semi-MDPs:

A framework for temporal abstraction in reinforcement learning. Artificial intel-

ligence, 112(1):181–211. (page 167)

Szepesvári, C. (2010). Algorithms for reinforcement learning. Synthesis Lec-

tures on Artificial Intelligence and Machine Learning. Morgan & Claypool Pub-

lishers. (page 53)

186

Szita, I. and Szepesvári, C. (2010). Model-based reinforcement learning with

nearly tight exploration complexity bounds. In Proceedings of the 27th In-

ternational Conference on Machine Learning (ICML-10), pages 1031–1038.

(page 64)

Thompson, W. (1933). On the likelihood that one unknown probability exceeds

another in view of the evidence of two samples. Biometrika, 25(3/4):285–294.

(pages 27 and 47)

Thrun, S. (1999). Monte carlo POMDPs. In Advances in Neural Information

Processing Systems, volume 12, pages 1064–1070. (pages 66 and 128)

Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological review,

55(4):189. (pages 12 and 170)

Tonk, S. and Kappen, H. (2010). Optimal exploration as a symmetry breaking

phenomenon. Technical report, Radboud University Nijmegen. (page 67)

Tsitsiklis, J. N. (2003). On the convergence of optimistic policy iteration. The

Journal of Machine Learning Research, 3:59–72. (page 55)

Tsitsiklis, J. N. and Van Roy, B. (2002). On average versus discounted reward

temporal-difference learning. Machine Learning, 49(2-3):179–191. (page 32)

Tziortziotis, N., Dimitrakakis, C., and Blekas, K. (2013). Cover tree Bayesian

reinforcement learning. arXiv preprint arXiv:1305.1809. (pages 76 and 139)

Van Hee, K. M. (1978). Bayesian control of Markov chains, volume 95. Mathe-

matisch centrum. (page 42)

Varaiya, P., Walrand, J., and Buyukkoc, C. (1985). Extensions of the multiarmed

bandit problem: the discounted case. Automatic Control, IEEE Transactions

on, 30(5):426–439. (page 50)

Wald, A. (1945). Sequential tests of statistical hypotheses. The Annals of Math-

ematical Statistics, 16(2):117–186. (page 83)

187

Wald, A. and Wolfowitz, J. (1948). Optimum character of the sequential proba-

bility ratio test. The Annals of Mathematical Statistics, pages 326–339.

(pages 83 and 84)

Walsh, T., Goschin, S., and Littman, M. (2010). Integrating sample-based plan-

ning and model-based reinforcement learning. In Proceedings of the 24th

Conference on Artificial Intelligence (AAAI). (pages 60 and 69)

Wang, T., Lizotte, D., Bowling, M., and Schuurmans, D. (2005). Bayesian sparse

sampling for on-line reward optimization. In Proceedings of the 22nd Interna-

tional Conference on Machine learning, pages 956–963.

(pages 21, 68, 69, and 122)

Wang, Y., Won, K., Hsu, D., and Lee, W. (2012). Monte Carlo Bayesian rein-

forcement learning. In Proceedings of the 29th International Conference on

Machine Learning. (pages 68 and 128)

Watkins, C. (1989). Learning from delayed rewards. PhD thesis, Cambridge.

(pages 55 and 95)

Weber, R. (1992). On the Gittins index for multiarmed bandits. The Annals of

Applied Probability, pages 1024–1033. (page 48)

Whittle, P. (1980). Multi-armed bandits and the Gittins index. Journal of the Royal

Statistical Society. Series B (Methodological), pages 143–149. (page 50)

Williams, R. J. (1992). Simple statistical gradient-following algorithms for con-

nectionist reinforcement learning. Machine learning, 8(3-4):229–256.

(page 52)

Wingate, D., Goodman, N., Roy, D., Kaelbling, L., and Tenenbaum, J. (2011).

Bayesian policy search with policy priors. In Proceedings of the International

Joint Conferences on Artificial Intelligence. (page 76)

	Declaration
	Abstract
	Acknowledgments
	Table of contents
	List of figures
	List of tables
	List of algorithms
	Introduction
	Acting under Model Uncertainty
	Formalization
	Finding the Optimal Learning Plan

	Bayes-Adaptive Planning
	Contrib. 1: The BAMCP Algorithm
	Contrib. 2: Generalizing BAMCP
	Contrib. 3: BA Planning with Rich Models

	Summary

	Existing Work
	Problem Types
	Multi-armed Bandits
	MDPs
	Objectives for EE in MDPs

	BAMDPs
	PAC-BAMDP

	POMDPs

	Solution Methods
	Bandits
	Regret-based Strategies
	Bayesian Strategies

	MDPs
	Dynamic Programming
	Approximate DP
	Learning with Sim-based Methods
	Planning: Online Search
	Exploration-Exploitation

	POMDPs
	BAMDPs
	Offline Methods
	Online Methods: Sparse Sampling
	Online Methods: Dual Optimism
	Discussion of Existing Methods

	Bayesian Models
	Flat priors
	Dirichlet distribution
	Sparse-Dirichlet

	Structured Priors
	Finite mixtures
	Bayesian Non-Parametric
	Models in Thesis

	Historical Notes on Bayesian Adaptive Control

	Bayes-Adaptive Monte-Carlo Planning (BAMCP)
	BA-UCT with Root Sampling
	Root Sampling Example

	Lazy Sampling
	Rollout Policy Learning
	Theoretical Properties
	Exact Inference Case
	Approximate Inference Case

	Possible Misuse of Latent Variable Information
	Conclusion

	BAMCP: Experimental Results
	Standard Domains
	Description
	Results
	Experimental Details

	Infinite 2D Grid Task
	Problem Description
	Inference
	Results

	Conclusion

	Bayes-Adaptive Simulation-based Search
	Algorithm
	Analysis
	History Features and Parametric Form for the Q-value
	Experimental Results
	Bernoulli Bandit
	Height map navigation
	Under-actuated Pendulum Swing-up

	Representing the Value Function
	Conclusion

	Bayes-Adaptive Planning with Rich Statistical Models
	Issues with Myopic Forms of Planning
	NP Contextual Tasks
	Mushroom Task
	Statistical Model
	Results

	NP Bandit Sequence Model
	Model
	Results

	CRP mixture of MDPs
	Model
	Results

	Conclusion
	Inference Details

	Discussion
	The BAMCP Algorithm
	Bayes-Adaptive Planning with Function Approximation
	Bayes-Adaptive Planning with Rich Statistical models
	Discussion/Future Work
	About the Objective
	About Priors
	Online Planning
	Temp. Abstractions
	Meta-Control
	Memory

	About Modeling

	Final Words

	References

