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Introduction

Only rich statistical models are adequate for agents that must learn to navigate complex
environments. However, it has not been clear how methods for planning can take advantage
of these models. Myopic methods such as Thompson Sampling have shortcomings that we
illustrate with formal counter-examples. We show that Bayes-Adaptive planning can
be combined in a principled way with approximate sampling, and demonstrate
the power of the resulting method in a challenging task involving safe
exploration. This highlights the importance of propagating beliefs in realistic cases
involving trade-offs between exploration and exploitation.

Model-based Bayesian RL

P := Model of the dynamics.
D := Interaction data (transitions, rewards).

• Start with prior P (P).
•Receive data and update posterior:
P (P |D) ∝ P (D |P)P (P).
•During interaction, choose actions to maximize
E[
∑∞

t=0 γ
trt], with γ < 1.

•Requires balancing exploration and exploitation.

•Bayes-optimal policy integrates over how
P (P |D) might change as the result of
expected future interactions.

Bayes-Adaptive example

Agent is in either MDP w.p 1
2.
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adaptive agent to take an informed decision in state s1 or s2. Using Bayes-rule, we have
that P (P = P0 |s0a0s1) ∝ P (s0a0s1| P = P0)P (P = P0) = 0.8.
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Figure 2: The two MDPs of Section 3.1.1, with prior probability P (P = P0) = P (P =
P1) = 1

2 . Differences between the two MDPs are highlighted in blue.

We can therefore compute the optimal values:

V ∗(h = s0a0s1) = max

�
2P (P = P0 |h) − 2P (P = P1 |h)

2P (P = P1 |h) − 2P (P = P0 |h)
(19)

= 2 · 0.8 − 2 · 0.2 = 1.2 (= V ∗(h = s0a0s2))

V ∗(h = s0) = max{0, 1.2γ} = 1.2γ.

We now simulate BAMCP on this simple example for the first decision in state s0. With
root sampling, BAMCP only samples either P0 or P1 with equal probability at the root
of the tree, and does not perform any explicit posterior update inside the tree. Yet, as
suggested by Lemma 1, we expect to find the correct distribution P (P = P0 |s0a0s1) of
samples of P at the tree node �s0a0s1�. Moreover, BAMCP should converge to the optimal
values V ∗ according to Theorem 1. This is what is observed empirically in Figure 3.

In the second row of Figure 3, we observe that Q̂(s0a0s1, a1) is slower to converge
compared to other values. This is because time is ticking more slowly for this non-optimal
node (i.e., a small fraction of simulations reach this node) so the value stays put for many
simulations.
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Q∗(s0, a0) > Q∗(s0, a1) = 0

Can we make it work in practice?

Rich statistical models allow confident inferences from limited observations, but inference is
generally hard and approximate. Existing work generally combines:

Rich statistical models +Myopic planning

or Toy statistical models + Adaptive planning.

What’s wrong with myopic planning? See Box 1.

Is it feasible to combine rich stat. models+adaptive planning? Yes, see Box 2.

Is there much to gain? Yes, see Box 3-4.

What else is needed for a fully practical solution? See Box 5.

Box 1: Myopic planning

Myopic planning doesn’t take into account how belief will evolve. For example, Thompson
Sampling works by: (1) Sampling a single P according to P (P |D), (2) Solving MDP
corresponding to P , and (3) Selecting greedy action.

Understanding what can go wrong in examples:
Start state Reward state

E1: Thompson Sampling (TS) random walking.
O(x2) steps to reach either end.

w.p 1/2
w.p 1/2

E2: Problem with myopic+commitment. Don’t go
right first! w.p 1/2

w.p 1/2

E3: Unwarranted optimism about cost. Let
c << 0, V ∗=0 but VTS=(1−p)(pc+1−p). Can be
worse for other alg. (e.g., BOSS). Chain instances
together to obtain an MDP example. Case 1 w.p p

a1 a2
r=c r=0

Case 2 w.p (1− p)
a1 a2
r=1 r=0

Box 2: Sample-based Forward-search with root sampling

Plan from current belief state only and repeat:

•Perform (approximate) inference to get samples
from P (P |D) at tree root only.

•Run a simulation of a tree-based planner
(Monte-Carlo Tree Search) for each sample.

•Perform Monte-Carlo backup.

→ BAMCP algorithm.

Th: Converges to Bayes-optimal policy even when
using MCMC inference.

Box 3 - Case study: Mushroom exploration task

Task: Discrimination as generalization under safe exploration.
You can choose to eat or skip each mushroom. Some are poisonous.

→ → → → ??

•Mushroom τ described by attributes xτ .
(Data from UCI mushroom dataset)

• r << 0 if poisonous, r > 0 if edible.

• Skip mushroom (•): still learn about
distribution of mushrooms (unsupervised).

•Can we safely explore and exploit without
specific knowledge about the mushrooms?
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Assume general prior that only encodes ’mushrooms are likely to be like others’.
The prior says that each τ belongs to a latent cluster zτ , distributed according to
a Chinese Restaurant Process (CRP).

Visualization of the gen. model: Formal generative model:

α ∼ Gamma(a, b),

zτ ∼ CRP(α), ∀τ ∈ Z+,

θik ∼ Dirichlet(
β

Di
), ∀i ∈ {1, . . . , n}, ∀k ∈ Z+,

xiτ ∼ Categorical(θizτ) ∀i ∈ {1, . . . , n},∀τ ∈ Z+,

Results

Combine with planning
from Box 1-2.
Left: With CRP gen.
model described above.
Right: Using logistic
regression. 0 5 15
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Number of free labeled data points before starting.
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Box 4 - Contextual CRP Bandits

Model
• Extend model in Box 3 with multiple

actions/outcomes.

•Remove model mismatch by using
data from generative model.

•E [r] for each action is negative!
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Bayes-Adaptive Planning with Rich Models
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Figure 3. (a) Illustration of the mushroom exploration domain, the rows represent the sequence of mushrooms, with the value of different
attributes being displayed on each column. The agent may eat the mushroom to obtain a reward/cost (green/red circle) or choose to ignore
it (black circle). (b) Example of a sample sequence of tasks from Section 3.2 with C = 3, A = 3. The left columns indicate the context
variables (each color represent a possible value), and the right columns indicate the rewards that have been observed in each task (black
when arm has not been pulled). On the left, the true clustering of the tasks (shared mixture component) is displayed. The dictionary of
context variables is composed of D = 5 different colors in this case.

somewhat more realistic. Indeed, when the agent lacks
prior data, maximizing the return is highly challenging.
Randomly eating mushrooms to sample the dataset is a par-
ticularly bad strategy because of the cost asymmetry be-
tween edible and poisonous mushrooms. A natural point of
comparison is the policy of ignoring all mushrooms, which
leads to a neutral return of 0.

We ran the Bayes-adaptive agent (BAMCP) and TS us-
ing this statistical model on the mushroom task. Since
the concentration parameter is unknown, it is inferred from
data, both influencing, and being influenced by the explo-
ration. Results are reported in Figure 4a for three differ-
ent numbers of ’free’ examples. A surprising result is that
the Bayes-adaptive agent manages to obtain a positive re-
turn when starting with no data, despite the mismatch be-
tween true data and generative model. This demonstrates
that abstract prior information about structure can guide
exploration successfully. Given exactly the same statisti-
cal model, TS fails to match this performance; we specu-
late that this is due to over-optimism, and investigate this
further in Section 3.2. Evidence of this optimism is also
provided in the Supp. material (Figure S1). When ini-
tial data (including labels) is provided for free to reduce
the prior uncertainty, TS can improve its performance by
a large margin but its return remains inferior to a Bayes-
adaptive agent in the same conditions.1

For the purposes of comparison, we also considered a sim-

1We also tested the PSRL version of TS (Osband et al., 2013),
which commits to a policy for 1

1−γ
steps. Performance was worse

than for conventional TS, an expected outcome, since PSRL takes
more time to integrate and react to new observations.

pler discriminative statistical model, namely Bayesian Lo-
gistic Regression, which (Li et al., 2012) suggested for use
on contextual bandits. Figure 4 shows the results of apply-
ing TS and α−UCB (Li et al., 2012) in this context. TS
does worse with the logistic regression model than with the
CRP-based model; this demonstrates the added benefits of
a prior that captures many aspects of the data with only a
few datapoints. The α−UCB algorithm, despite good per-
formance in the long-run on large datasets, is too optimistic
to perform well with discounted objectives.

3.2. Non-Parametric Contextual Bandit Sequence
model

The mushroom task can be seen as a sequence of subtasks
that share structure, but whose order the agent cannot con-
trol. Other such domains are adaptive medical treatments
where each patient can be understood as the subtask, han-
dling customer interactions, or making decisions to drill for
oil at different geological locations. In this section, we con-
sider a generalized version of domains with this character-
istic form of shared structure. Further, by addressing an
environment that was actually drawn from the model, we
study planning in the absence of model mis-match.

The key generalization is to allow multiple arms in each
subtask. Using the same notation as Section 3.1, each
parameter vector xτ now contains C scalar parameters
x1
τ , . . . , x

C
τ to generate context, and Y scalar parameters

xC+1
τ , . . . , xC+Y

τ to generate the actual task dynamics (i.e.,
denoting n = C +Y , we have xτ = (x1

τ , x
2
τ , . . . , x

n
τ )).

The generative model is identical otherwise, but now the
choices of the agent in any particular task τ are to either: 1)

Results

Vary concentration
parameter α (Known).
Bayes-Adaptive
(BAMCP) vs myopic
planning.

Comparison
known/unknown α for
BAMCP.
(α ∼ Gam(0.5, 0.5))
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Box 5: Value Function Approximation (Work in progress)

Generalize between different parts of the tree, switch to value approximation
to represent the belief-state value during forward search.

• For history h, represent Q(h, a) as φ(h, a)Tw.

• Should improve search efficiency further: enables longer search horizons.

•Compatible with continuous state space.

•Two main issues: Finding good φ(h, a) + Theoretical guarantees.

Example:
A search problem arising from a Gaussian Process with
continuous states. A latent function f ∼ GP
describes the reward signal (red: high values, blue: low
values). Reward is only observed locally.

The agent needs to find the high reward regions. On
the right, an agent implementing a forward-search with
function approximation using history features. Root
sampling is performed by sampling from the GP
posterior at the current belief state for each forward
simulation.

White: past trajectory of agent. Grey: forward
simulation. Large map is the true function, inset is a
posterior sample.

Posterior

mean
Posterior

sample

True map
t=5

t=23

Conclusion

•Bayes-adaptive planning is conceivable in complex, infinite domains.

•Can exploit rich statistical models.

• Large gains vs myopic planning in a contextual-bandit task.

• For larger domains, need better models (capture more structure) and more
efficient planning algorithms (see Box 5).
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